RINSE: Interactive Data Series Exploration with ADS+


K. Zoumpatianos, S. Idreos, and T. Palpanas, “RINSE: Interactive Data Series Exploration with ADS+,” Proceedings of the Very Large Databases Endowment (PVLDB), vol. 8, no. 12, 2015.
rinsevldb15.pdf551 KB


Numerous applications continuously produce big amounts of data series, and in several time critical scenarios analysts need to be able to query these data as soon as they become available. An adaptive index data structure, ADS+, which is specifically tailored to solve the problem of indexing and querying very large data series collections has been recently proposed as a solution to this problem. The main idea is that instead of building the complete index over the complete data set up-front and querying only later, we interactively and adaptively build parts of the index, only for the parts of the data on which the users pose queries. The net effect is that instead of waiting for extended periods of time for the index creation, users can immediately start exploring the data series. In this work, we present a demonstration of ADS+; we introduce RINSE, a system that allows users to experience the benefits of the ADS+ adaptive index through an intuitive web interface. Users can explore large datasets and find patterns of interest, using nearest neighbor search. They can draw queries (data series) using a mouse, or touch screen, or they can select from a predefined list of data series. RINSE can scale to large data sizes, while drastically reducing the data to query delay: by the time state-of-the-art indexing techniques finish indexing 1 billion data series (and before answering even a single query), adaptive data series indexing can already answer 300K queries.

Last updated on 08/03/2015