Adaptive indexing in modern database kernels


S. Idreos, S. Manegold, and G. Graefe, “Adaptive indexing in modern database kernels,” in Proceedings of the 15th International Conference on Extending Database Technology (EDBT), Berlin, Germany, 2012, pp. 566-569.
a4-idreos.pdf109 KB


Physical design represents one of the hardest problems for database management systems. Without proper tuning, systems cannot achieve good performance. Offline indexing creates indexes a priori assuming good workload knowledge and idle time. More recently, online indexing monitors the workload trends and creates or drops indexes online. Adaptive indexing takes another step towards completely automating the tuning process of a database system, by enabling incremental and partial online indexing. The main idea is that physical design changes continuously, adaptively, partially, incrementally and on demand while processing queries as part of the execution operators. As such it brings a plethora of opportunities for rethinking and improving every single corner of database system design. We will analyze the indexing space between offline, online and adaptive indexing through several state of the art indexing techniques, e. g., what-if analysis and soft indexes. We will discuss in detail adaptive indexing techniques such as database cracking, adaptive merging, sideways cracking and various hybrids that try to balance the online tuning overhead with the convergence speed to optimal performance. In addition, we will discuss how various aspects of modern techniques for database architectures, such as vectorization, bulk processing, column-store execution and storage affect adaptive indexing. Finally, we will discuss several open research topics towards fully autonomous database kernels.

Last updated on 12/21/2013