Access Path Selection in Main-Memory Optimized Data Systems: Should I Scan or Should I Probe?


M. S. Kester, M. Athanassoulis, and S. Idreos, “Access Path Selection in Main-Memory Optimized Data Systems: Should I Scan or Should I Probe?” in ACM SIGMOD International Conference on Management of Data , 2017.
accespathselection.pdf683 KB


The advent of columnar data analytics engines fueled a series of optimizations on the scan operator. New designs include column-group storage, vectorized execution, shared scans, working directly over compressed data, and operating using SIMD and multi-core execution. Larger main memories and deeper cache hierarchies increase the efficiency of modern scans, prompting a revisit of the question of access path selection.

In this paper, we compare modern sequential scans and secondary index scans. Through detailed analytical modeling and experimentation we show that while scans have become useful in more cases than before, both access paths are still useful, and so, access path selection (APS) is still required to achieve the best performance when considering variable workloads. We show how to perform access path selection. In particular, contrary to the way traditional systems choose between scans and secondary indexes, we find that in addition to the query selectivity, the underlying hardware, and the system design, modern optimizers also need to take into account query concurrency. We further discuss the implications of integrating access path selection in a modern analytical data system. We demonstrate, both theoretically and experimentally, that using the proposed model a system can quickly perform access path selection, outperforming solutions that rely on a single access path or traditional access path models. We outline a light-weight mechanism to integrate APS into main-memory analytical systems that does not interfere with low latency queries. We also use the APS model to explain how the division between sequential scan and secondary index scan has historically changed due to hardware and workload changes, which allows for future projections based on hardware advancements.