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access method design is now as important as ever
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how many more new access methods to design?



how many more new access methods to design?

it is not about radical new designs only! 
design, tuning and variations
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say we buy new hardware X (flash/memory):
 should we change the size of b-tree nodes? 

should we change the merging strategy in our LSM-tree?

say we want to improve response time:
would it be beneficial if we would buy faster flash disks? 

would it be beneficial if we buy more memory?

say the workload (read/write ratio) shifts (e.g., due to app features):
should we use a different data layout for base data - diff updates? 

should we use different indexing or no indexing?



application requirements

hardware

budget

energy profile

performance

(hardware and requirements change continuously and rapidly)
conflicting goals moving target



move from design based on intuition & experience only  
to a more formal and systematic way to design systems
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goals and structure of the tutorial

~30 min

~40 min
design 
space

basic tradeoffs
goals & vision

structure design space & tradeoffs 
highlight open problems towards easy to design methods

[slides available at daslab.seas.harvard.edu]



target audience = beginner to expert

no new designs but new  
connections & structure



NOT JUST SQL 
+

operating systems, no sql, sciences



hardware is a big drive of access method (re)design  
(and it continuously evolves)
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it is not just memory and disk
we want to move as few data items as possible 

all the way up to the CPU



random access &  
page-based access

…

need to only read x… 
but have to read all of page 1 

page1 page2 page3

data value x
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what is the perfect access method?

no single answer; it depends

what is the application 
read patterns 
write patterns 

reads/writes ratios 
hardware (CPU, memory, etc) 

SLAs 
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it all starts with how we store data 
every bit matters

design space



basic tradeoffs

Reads	

Updates	
Memory	

RUM conjecture, EDBT 2016
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study basic access methods design components

Part 2

how they affect the RUM tradeoffs

how are they combined in existing access methods



can we make it easy to design/tune access methods?



disk memory flash …

1 easily utilize past concepts
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move from design based on intuition & experience only  
to a more formal and systematic way to design systems



construct access methods  
out of basic components  

(and their tradeoffs) 
e.g., scan*, tree*, bloom filters, 

bitmaps, hash tables, etc.



INTERACTIVE DATA SYSTEM DESIGN/TUNING/TESTING

data
system

designer
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possible opportunities
once we have a “complete” & navigable set of design modules

testing

universal 
development 

platform

easy to design

easy to change/adapt

discovery of 
new combinations  
of design options

learn from: s/w engineering, modular dbs, compilers,  
goes all the way back to basic texts



Part 2: observe how papers fill in gaps  
in the structure and existing open gaps


