
Design Tradeoffs of Data Access Methods

Manos Athanassoulis and Stratos Idreos

declarative interface
ask ‘’what’’ you want

db system

the system decides
“how” to best store
and access data

applications

api/sql

cpu

memory hierarchydata data data

al
go

rit
hm

s/
op

er
at

or
s

data system kernel:
a collection of access methods

layout

structure

navigation

an access method is a way to store and access data

layout

structure

navigation

e.g., array

unordered

scan

an access method is a way to store and access data

layout

structure

navigation

e.g., array

unordered

scan

e.g., array

ordered

binary search

an access method is a way to store and access data

TREES

TRIES

HASH TABLES

ARRAYS

LOG-STRUCTURED TREES

MULTI-DIMENTIONAL

COLUMNS

COLUMN-GROUPS
SLOTTED PAGES

isn’t this a solved problem?

isn’t this a solved problem?

access method design is now as important as ever

data systems are nearly
everywhere…

today

continuous need for new and tailored data systems

y

da
i

2

2.5

[IB

data
grows

data systems are nearly
everywhere…

today

tomorrow

continuous need for new and tailored data systems

y

da
i

2

2.5

[IB

data
grows

data systems are nearly
everywhere…

today

tomorrow

continuous need for new and tailored data systems

y

da
i

2

2.5

[IB

data
grows

disk memory

A B C D

disk memory

A B C D
ABC

row-store
engine

option1

disk memory

A B C D

A

column-
store

engine

option2

ABC
row-store

engine

option1X X X

how many more new access methods to design?

how many more new access methods to design?

it is not about radical new designs only!
design, tuning and variations

say the workload (read/write ratio) shifts (e.g., due to app features):
should we use a different data layout for base data - diff updates?

should we use different indexing or no indexing?

say we buy new hardware X (flash/memory):
 should we change the size of b-tree nodes?

should we change the merging strategy in our LSM-tree?

say the workload (read/write ratio) shifts (e.g., due to app features):
should we use a different data layout for base data - diff updates?

should we use different indexing or no indexing?

say we buy new hardware X (flash/memory):
 should we change the size of b-tree nodes?

should we change the merging strategy in our LSM-tree?

say we want to improve response time:
would it be beneficial if we would buy faster flash disks?

would it be beneficial if we buy more memory?

say the workload (read/write ratio) shifts (e.g., due to app features):
should we use a different data layout for base data - diff updates?

should we use different indexing or no indexing?

application requirements

hardware

budget

energy profile

performance

(hardware and requirements change continuously and rapidly)
conflicting goals moving target

move from design based on intuition & experience only
to a more formal and systematic way to design systems

goals and structure of the tutorial
structure design space & tradeoffs

highlight open problems towards easy to design methods

goals and structure of the tutorial

~30 min

~40 min
design
space

basic tradeoffs
goals & vision

structure design space & tradeoffs
highlight open problems towards easy to design methods

[slides available at daslab.seas.harvard.edu]

target audience = beginner to expert

no new designs but new
connections & structure

NOT JUST SQL
+

operating systems, no sql, sciences

hardware is a big drive of access method (re)design
(and it continuously evolves)

registers

on chip cache

on board cache

memory

disk

CPU

memory wall

ch
ea

pe
r

fa
st

er

SRAM

DRAM

~1ns

~10ns

~100ns

it is not just memory and disk
we want to move as few data items as possible

all the way up to the CPU

random access &
page-based access

…

need to only read x…
but have to read all of page 1

page1 page2 page3

data value x

what is the perfect access method?

what is the perfect access method?

no single answer; it depends

what is the perfect access method?

no single answer; it depends

what is the application
read patterns
write patterns

reads/writes ratios
hardware (CPU, memory, etc)

SLAs

a perfect access method for reads (point queries)

oracle

x

find(x)

a perfect access method for reads (point queries)

oracle

x

find(x)
reads

updates

memory

a perfect access method for reads (point queries)

oracle

x

find(x)
reads

updates

memory

a perfect access method for reads (point queries)

oracle

x

find(x)
reads

updates

memory

a perfect access method for reads (point queries)

oracle

x

find(x)
reads

updates

memory

a perfect access method for reads (point queries)

binary search to find(x)

but with no memory overhead

sorted

a perfect access method for reads (point queries)

binary search to find(x)

reads

updates

memory

but with no memory overhead

sorted

a perfect access method for reads (point queries)

binary search to find(x)

reads

updates

memory

but with no memory overhead

sorted

a perfect access method for reads (point queries)

binary search to find(x)

reads

updates

memory

but with no memory overhead

sorted

a perfect access method for reads (point queries)

binary search to find(x)

reads

updates

memory

but with no memory overhead

sorted

a perfect access method for writes (point writes)

x

update(x)

x x
update log

a perfect access method for writes (point writes)

x

update(x)

reads

updates

memory
x x

update log

a perfect access method for writes (point writes)

x

update(x)

reads

updates

memory
x x

update log

a perfect access method for writes (point writes)

x

update(x)

reads

updates

memory
x x

update log

a perfect access method for writes (point writes)

x

update(x)

reads

updates

memory
x x

update log

it all starts with how we store data
every bit matters

design space

basic tradeoffs

Reads	

Updates	
Memory	

RUM conjecture, EDBT 2016

Read	

Update	 Memory	

max	

min	

min	min	

Reads	

Updates	
Memory	

Read	

Update	 Memory	

max	

min	

min	min	

read-op(mized	

max	

min	min	

update	&	memory	
op-mized	

max	

min	min	

memory-op(mized	

min	min	

max	

Reads	

Updates	
Memory	

Logarithmic
Design

Fractional
Cascading

Log-structured
Updates

Sparse
Indexing

Differential
Updates

PartitioningFractional
Cascading

Read	

Update	 Memory	

max	

min	

min	min	

study basic access methods design components
how they affect the RUM tradeoffs

how are they combined in existing access methods

Logarithmic
Design

Fractional
Cascading

Log-structured
Updates

Sparse
Indexing

Differential
Updates

PartitioningFractional
Cascading

Read	

Update	 Memory	

max	

min	

min	min	

study basic access methods design components

Part 2

how they affect the RUM tradeoffs

how are they combined in existing access methods

can we make it easy to design/tune access methods?

disk memory flash …

1 easily utilize past concepts

2 do not miss out on cool ideas and concepts

of

 c
ita

tio
ns

0

7

14

21

28

35

1996 1999 2002 2005 2008 2011 2014

P. O’Neil, E. Cheng, D. Gawlick, E, O'Neil
The log-structured merge-tree (LSM-tree)
Acta Informatica 33 (4): 351–385, 1996

2 do not miss out on cool ideas and concepts

of

 c
ita

tio
ns

0

7

14

21

28

35

1996 1999 2002 2005 2008 2011 2014

P. O’Neil, E. Cheng, D. Gawlick, E, O'Neil
The log-structured merge-tree (LSM-tree)
Acta Informatica 33 (4): 351–385, 1996

Google publishes
BigTable

move from design based on intuition & experience only
to a more formal and systematic way to design systems

construct access methods
out of basic components

(and their tradeoffs)
e.g., scan*, tree*, bloom filters,

bitmaps, hash tables, etc.

INTERACTIVE DATA SYSTEM DESIGN/TUNING/TESTING

data
system

designer

possible opportunities
once we have a “complete” & navigable set of design modules

learn from: s/w engineering, modular dbs, compilers,
goes all the way back to basic texts

possible opportunities
once we have a “complete” & navigable set of design modules

easy to design

easy to change/adapt

learn from: s/w engineering, modular dbs, compilers,
goes all the way back to basic texts

possible opportunities
once we have a “complete” & navigable set of design modules

testing

universal
development

platform

easy to design

easy to change/adapt

learn from: s/w engineering, modular dbs, compilers,
goes all the way back to basic texts

possible opportunities
once we have a “complete” & navigable set of design modules

testing

universal
development

platform

easy to design

easy to change/adapt

discovery of
new combinations
of design options

learn from: s/w engineering, modular dbs, compilers,
goes all the way back to basic texts

Part 2: observe how papers fill in gaps
in the structure and existing open gaps

