
Stacked Filters: Learning to Filter by Structure
Kyle Deeds

∗

Harvard University

kdeeds@harvard.edu

Brian Hentschel
∗

Harvard University

bhentschel@g.harvard.edu

Stratos Idreos

Harvard University

stratos@seas.harvard.edu

ABSTRACT
We present Stacked Filters, a new probabilistic filter which is fast

and robust similar to query-agnostic filters (such as Bloom and

Cuckoo filters), and at the same time brings low false positive rates

and sizes similar to classifier-based filters (such as Learned Filters).

The core idea is that Stacked Filters incorporate workload knowl-

edge about frequently queried non-existing values. Instead of learn-

ing, they structurally incorporate that knowledge using hashing

and several sequenced filter layers, indexing both data and frequent

negatives. Stacked Filters can also gather workload knowledge on-

the-fly and adaptively build the filter. We show experimentally that

for a given memory budget, Stacked Filters achieve end-to-end

query throughput up to 130x better than the best alternative for

a workload, either query-agnostic or classifier-based filters, and

depending on where data is (SSD or HDD).

PVLDB Reference Format:
Kyle Deeds, Brian Hentschel, Stratos Idreos. Stacked Filters: Learning to

Filter by Structure. PVLDB, 14(4): 600 - 612, 2021.

doi:10.14778/3436905.3436919

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://bitbucket.org/HarvardDASlab/stackedfilters.

1 LEARNING FILTERS BY STRUCTURE
Filters are Everywhere. The storage and retrieval of values in a

data set is one of the most fundamental operations in computer

science. For large data sets, the raw data is usually stored over

a slow medium (e.g., on disk) or distributed across the nodes of

a network. Because of this, it is critical for performance to limit

accesses to the full data set. That is, applications should be able

to avoid accessing slow disk or remote nodes when querying for

values that are not present in the data. This is the exact utility of

approximate membership query (AMQ) structures, also referred

to as filters. Filters have tunably small sizes, so that they fit in

memory, and provide probabilistic answers to whether a queried

value exists in the data set with no false negatives and a limited

number of false positives. For all filters, the probability of returning

a false positive, known as the false positive rate (FPR), and the

space used are competing goals. Filters are used in a large number

of diverse applications such as web indexing [24], web caching

[21], prefix matching [18], deduping data [17], DNA classification

∗
Both authors contributed equally to the paper

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 4 ISSN 2150-8097.

doi:10.14778/3436905.3436919

[42], detecting flooding attacks [22], cryptocurrency transaction

verification [23], distributed joins [38, 40], and LSM-tree based

key-value stores [14], amongst many others [43].

Robust Query-Agnostic Designs. Query-agnostic filters utilize
only the data set during construction. For example, a Bloom Filter

[5] starts with an array of bits set to 0 and using multiple hash

functions per value, hashes each value to various positions, setting

those bits to 1. A query for a value 𝑥 probes the filter by hashing 𝑥

using the same hash functions and returns positive if all positions

𝑥 hashes to are set to 1. When querying a value that exists in the

data set, these bits were set to 1 during construction and so there

are no false negatives; however, when querying a value not in the

data set, a false positive can occur if the value is hashed entirely to

positions which were set to 1 during construction.

Other query-agnostic filters such as Cuckoo [20], Quotient [34],

and Xor [25] filters work similarly to Bloom Filters. These filters

generally work by hashing data values and storing the resulting

fingerprints in a hash table losslessly (for instance, using cuckoo

hashing for Cuckoo Filters or linear probing for Quotient filters).

If the hash functions are truly random, then every query-able

value not in the data set has the same false positive chance. This

makes query-agnostic filters robust, as they have the same expected

performance across all workloads, and easy to deploy, as they re-

quire noworkload knowledge. However, at the same time, this limits

the performance of query-agnostic filters, as they are required to

work for any query distribution. Additionally, the possibility for

further improvements in the trade-off between space and false pos-

itive rate are limited, as current query-agnostic filters are close to

their theoretical lower bound in size [7, 11].

Learning fromQueries forReduced Filter Size.Classifier based
filters such as Weighted Bloom Filters [8, 45], Ada-BF [13], and

Learned Bloom Filters [28, 39] utilize workload knowledge, making

it possible to move beyond the theoretical limits of query-agnostic

filters. Such filters need as input a sample of past queries and using

that they train a classifier to model how likely every possible value

is to 1) be queried, and 2) exist in the data set. The classifier is then

used in one of two ways.

In the first [28, 39], it acts as a module which accepts values that

have a high weighted probability of being in the data. It cannot

reject values as the stochasticity of the classifier might cause false

negatives. Thus, a query-agnostic filter is also built using the (few)

values in the data set for which the classifier returns a false negative.

Queries are first evaluated by the classifier, and if rejected, then

probe the query-agnostic filter. In the second [8, 13, 45], the classifier

uses the weighted probability of being in the set to control the

number of hash functions used by a Bloom filter for each value. For

values with a high likelihood of being in the set, few hash functions

are used, setting fewer bits in the filter but also checking fewer bits,

and therefore providing fewer chances to catch a false positive. For

values not likely to be in the set, this is reversed.

https://doi.org/10.14778/3436905.3436919
https://bitbucket.org/HarvardDASlab/stackedfilters
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3436905.3436919

Classifier based filters can reduce the requiredmemory to achieve

a given false positive rate when keys and non-keys have clear se-

mantic differences. URL Blacklisting is such a use case [28], wherein

browsers such as Google Chrome maintain a list of dangerous web-

sites and alert users before visiting one. Browsers store a filter

containing the dangerous websites at the client. For each web re-

quest, the client checks the filter; if the filter rejects the query, the

website is safe and can be visited. If the filter accepts the query, an

expensive full check to a remote list of dangerous websites is done.

Because there are no false negatives, every dangerous website is

caught, and that there are only a few false positives means most

safe websites do not need to perform extra work.

However, classifier based filters offer a host of new problems.

First, the classifier has to be accurate, which can be hard: for some

workloads the data value and its probability of existing in the data

set are loosely correlated. For other types of data that appear in

practice such as hashed IDs, there is no correlation. Additionally,

even when data patterns exist, often data such as textual keys

have complex decision boundaries which require complex models

such as neural networks for accurate classification. As a result, the

computational expense of the classifier is often orders of magnitude

more expensive than hashing. Finally, the classifier is trained on a

specific sample workload, and thus if the workload shifts, we need

to go through the expensive process of gathering sample queries

and retraining the classifier to maintain good performance.

Stacked Filters: Encapsulating workload information struc-
turally. We introduce a new class of filters, Stacked Filters, which

structurally encapsulate knowledge about frequently queried non-

existing values. The key intuition is as follows: for non-keys which

are queried often, find a structural way to run them through multi-

ple filter checks. Stacked Filters achieve that through several layers

of query-agnostic filters which alternate between representing val-

ues in the data and frequently queried non-existing values.

All frequently queried non-existing values need to pass multiple

membership checks to be false positives, and so they incur exponen-

tially smaller false positive rates. At the same time, each additional

layer is exponentially smaller in size, and thus the total size of a

Stacked Filter is comparable to the first filter in its stack. A similar

pattern holds for computational costs. Both size and computational

costs rise like a geometric series with the number of layers, and

thus have values close to that of a single filter, while an entire set of

non-existing values has their FPR decrease arbitrarily close to zero.

The overall result is that for workloads with any frequently queried

non-existing values, Stacked Filters provide a superior tradeoff be-

tween false positive rate, filter size, and computation than either of

classifier-based filters or query-agnostic filters.

While the idea of checking frequently queried non-existing val-

ues multiple times is intuitive, it comes with significant challenges.

How many layers are needed for good filter performance? How

should the memory budget be spread across the layers? How much

workload knowledge is enough for good filter performance? Can

we build Stacked Filters without any workload knowledge?

Contributions. The contributions of this paper are as follows:
• Data Structure Formalization: We introduce a new way to de-

sign workload-aware filters as multi-layer filter structures which

index both positives and frequent negatives.

• Generalization: We show that Stacked Filters work for all query-

agnostic filters including Bloom, Cuckoo, and Quotient Filters.

• Better trade-off of FPR and size: We derive the metric equations

of Stacked Filters for size, computation, and false positive rate.

Using these equations, we provide theoretical results showing

Stacked Filters are strictly better in terms of FPR vs. size than

query-agnostic filters on the majority of workloads, and quantify

the expected benefit.

• Optimization: We show that the optimization problem of tuning

the number of layers and layer sizes is non-convex. Still, we

provide 𝜖-approximation algorithms, running in the order of

milliseconds, which automatically tune the number of layers

and the individual sizes of each layer so that performance is

arbitrarily close to optimal.

• Adaptivity: We show that the benefits of Stacked Filters can be

extended to Stacked Filters built adaptively. Here, Stacked Filters

start with a rough knowledge of how skewed a workload is, but

not which values are frequently queried, and build their structure

incrementally during normal query execution.

• Experiments: Using URL blacklisting, a networking benchmark,

and synthetic experiments we show that Stacked Filters 1) pro-

vide improvements in FPR of up to 100× over the best alternative

query-agnostic or classifier-based filter for the same memory

budget, while retaining good robustness properties, 2) provide

a superior tradeoff between false positive rate, size, and com-

putation than all other filters, resulting in up to 130× better

end-to-end query throughput than the best alternative, and 3) for

scenarios where learning is not easy, Stacked Filters can still

utilize workload knowledge and offer throughput up to 1000×
better than classifier-based filters.

2 NOTATION AND METRICS
We first introduce notation used throughout the paper and metrics

that are critical for describing the behavior of filters. Table 1 lists

the key variables and metrics.

Notation. Let 𝑈 be the universe of possible data values, such as

the domain of strings or integers. Let 𝑃 be a data set, which we will

refer to as the positive set, and let 𝑁 = 𝑈 − 𝑃 be the set of negative

values. From now on we will refer to data values as well as to

queried values as elements, which is the traditional terminology in

the filters literature. We will denote filter structures by 𝐹 , which we

treat as a function from𝑈 → {0, 1}, and we say that 𝑥 is accepted

by 𝐹 if 𝐹 (𝑥) = 1 and that 𝑥 is rejected by 𝐹 if 𝐹 (𝑥) = 0.

As a filter, we have 𝐹 (𝑥) = 1 : ∀𝑥 ∈ 𝑃 and we are interested

in minimizing the number of false positives, which are the event

𝐹 (𝑥) = 1, 𝑥 ∉ 𝑃 . The filter 𝐹 is itself random; different instantiations

of 𝐹 produce different data structures, either because the hash

functions used have randomly chosen parameters or because the

machine learning model used in classifier based filters is stochastic.

Expected False Positive Bound (EFPB). A traditional guarantee

for a filter 𝐹 is to bound 𝐸𝐹 [P(𝐹 (𝑥) = 1|𝑥 ∉ 𝑃)] for any 𝑥 chosen

independently of the creation of 𝐹 . We call this bound the expected
false positive bound.
Expected False Positive Rate (EFPR). Given a distribution 𝐷

over 𝑈 which captures the query probabilities for elements in 𝑈 ,

the expected false positive rate is 𝐸𝑥∼𝐷 [𝐸𝐹 |𝐷 [P(𝐹 (𝑥) = 1|𝑥 ∉ 𝑃)]].

Notation Definition

𝑃 Set of all positive elements

𝑁 Set of all negative elements

𝑁𝑓 Negatives used to construct a Stacked Filter

𝑁𝑖 The complement of 𝑁𝑓 , i.e. 𝑁 \ 𝑁𝑓

𝑠 Size of a filter in bits/element

𝑐𝑖,𝑆 Cost of inserting an element from set 𝑆

𝑐𝑞,𝑆 Cost of querying a filter for an element in 𝑆

Metric Definition

EFPR Expected false positive rate of a filter structure given a

specific query distribution

EFPB Upper bound on the EFPR of a filter structure for queries

chosen independently of the filter

Table 1: Notation used throughout the paper

Optimization via Expected False PositiveRate.Query through-
put most directly relies on the EFPR and since the EFPR depends

on the query distribution D, the goal of workload-aware filters is

to capture and utilize D to improve the EFPR. Namely, for 𝑥 ∈ 𝑁

with higher chance of being queried, workload-aware filters should

lower the probability that 𝑥 is a false positive.

Robustness via Bounding False Positive Probability. Optimiz-

ing the EFPR helps system throughput but brings concerns about

workload shift. Query-agnostic filters can act as a safeguard against

such a shift. To see this, note that 𝐹 and 𝐷 are independent by

assumption and so for a query-agnostic filter with FPR 𝜖 ,

𝐸𝑥∼𝐷 [𝐸𝐹 |𝐷 [P(𝐹 (𝑥) = 1|𝑥 ∉ 𝑃)]] ≤ 𝐸𝑥∼𝐷 [𝐸𝐹 |𝐷 [𝜖]] = 𝜖

regardless of what 𝐷 is. Thus, filters which provide an expected

false positive bound provide an upper bound on the expected false

positive rate for any workload 𝐷 chosen independently of the filter.

Memory - False Positive Tradeoff. For all filter structures, their
EFPR and EFPB can be made arbitrarily close to 0 with enoughmem-

ory, and there exists a tradeoff between the memory required and

the false positive rate provided. Thus for purposes of comparison,

we always report EFPR and EFPB with respect to a space budget.

Space budgets in practice tend to be between 6 and 14 bits per ele-

ment, and are significantly smaller than the elements they represent

(which can be anywhere from 4 bytes to several megabytes).

For query-agnostic filters, the EFPR and the EFPB are equal,

and is just called the false positive rate. Additionally, for all query-

agnostic filters, the false positive rate 𝛼 and size in bits per element

𝑠 are 1-1 functions of each other. When going from one to the other,

we denote the quantities by 𝑠 (𝛼) and 𝛼 (𝑠), which denote the size

for a given FPR and the FPR for a given size respectively.

Computational Performance. Filter structures desire computa-

tional performance much faster than the cost to access the data

they protect. We denote the cost to insert into a filter an element

of set 𝑆 by 𝑐𝑖,𝑆 . We also denote the cost to query for an element of

set 𝑆 by 𝑐𝑞,𝑆 . If no set is denoted, then 𝑆 = 𝑈 .

3 STACKED FILTERS
The traditional view of filters is that they are built on a set 𝑆 , and

return no false negatives for 𝑆 . An alternative view of a filter is that

it returns that an element is certainly in 𝑆 (the complement of 𝑆), or

that an element’s set membership is unknown. In Stacked Filters,

we use this way of thinking about filters, with 𝑆 for different layers

of the stack alternating between subsets of 𝑃 and subsets of 𝑁 , to

iteratively prune the set of elements in𝑈 whose set membership is

undecided.

Stacked Filters by Example.We start with an example of a 3 layer

Stacked Filter using Figure 1. The filter is given the data set 𝑃 and a

set of frequently queried negatives 𝑁𝑓 . The first filter in the stack,

𝐿1, is constructed using 𝑃 similarly to a traditional filter except

with fewer bits per element so as to reserve space for subsequent

layers. Conceptually, 𝐿1 partitions the universe 𝑈 . Items that 𝐿1
rejects are known to be in 𝑁 and can be rejected by the Stacked

Filter. Items accepted by 𝐿1 can have set membership of 𝑃 or 𝑁

and thus their status is unknown. If the Stacked Filter ended here

after a single filter, as is the case for all query-agnostic filters, all

undecided elements would be accepted by the Stacked Filter.

Instead, Stacked Filters construction continues by probing 𝐿1 for

each element in 𝑁𝑓 . Using all elements of 𝑁𝑓 accepted by 𝐿1, and

which therefore normally would become false positives, Stacked Fil-

ters build a second layer with another query-agnostic filter. During

a query, values which are still undecided after 𝐿1 are passed to 𝐿2.

If 𝐿2 rejects the value, the value is definitely in 𝑁𝑓 , which includes

both 𝑃 and 𝑁 \𝑁𝑓 , which we denote by 𝑁𝑖 and call the infrequently

queried negative set. Since 𝑃 ∪ 𝑁𝑖 contains both positives and neg-

atives, the overall Stacked Filter accepts all the rejected elements of

𝐿2 in order to maintain a zero false negative rate. If the element is

instead accepted by 𝐿2, then its set membership is still undecided

and so it continues down the stack.

Construction then continues by querying 𝐿2 for all elements in

𝑃 and building a third layer with a query-agnostic filter. This layer

uses as input all elements of 𝑃 whose set membership is undecided

after querying 𝐿2. At query time, 𝐿3 performs the same operations

as 𝐿1; elements rejected by 𝐿3 are certainly in 𝑃 = 𝑁 and so are

rejected by the Stacked Filter.

Workload-aware Design. 𝐿2 and 𝐿3 are how Stacked Filters struc-

turally incorporate workload knowledge. They collaborate to filter

out frequent negatives to minimize FPR. All frequent negatives that

are false positives on 𝐿1 reach 𝐿3 since they are in the construction

set for 𝐿2, and so such frequent negatives need to pass an extra

membership check to be false positives for the full Stacked Filter.

To make deeper Stacked Filters, and thus perform more checks on

frequently queried negatives, we recursively perform this process,

adding more paired sets of layers.

An intuitive understanding of the effectiveness of Stacked Filters

comes from the interplay between the extra size of additional layers

vs. their benefit for FPR. Compare the simple 3 layer example above,

assuming each layer has an FPR of 0.01, with a single traditional

filter using FPR 0.01. If |𝑁𝑓 | = |𝑃 |, then 𝐿2 and 𝐿3 are on average

1/100 the size of 𝐿1, and the Stacked Filter has 2% higher space

costs than a traditional filter. But for every element in 𝑁𝑓 , the

extra membership check makes their 𝐹𝑃𝑅 a full 100× lower; thus if

𝑁𝑓 contains any significant portion of the query distribution, the

Stacked Filter has a much lower EFPR.

General Stacked Filters Construction. Algorithm 1 shows the

full construction algorithm. Like both query-agnostic and classifier

based filters, Stacked Filters need two inputs 1) the data set, and 2)

a constraint (memory budget or a desired maximum EFPR).

SP

p1 p3p2

3Insertion
Query

p1 p3p2 n1 n3n2

Surviving
Elements of Nf

n1 n2

n1

p1
Surviving

Elements of P

p1
n1 n2

n1

False Positives
in Nf

21

Query({p1, n2, n4, n5})

p1 n4n2 n5

Accepted Rejected

n2 n5n4 p1

n2
0 01 0 0 1 0 0 01

0 0 0 0 0 0

0 0

0 01 0 0 1 0 0 01

1 0 0 1 0 0

0 0

0 1 0 0 1 0 0 01

1 0 0 1 0 0

1 0

0

0 1 0 0 1 0 0 01

1 0 0 1 0 0

1 0

0
SP SNf

SNf

SP SNf

L1

L2

L1L1

L2

L3 L3

L3
L3

L2

L2

L1

L1

Figure 1: Stacked Filters are built in layer order, with each layer containing either positives or negatives. The set of elements
to be encoded at each layer decreases as construction progresses down the stack. For queries, the layers are queried in order
and the element is accepted or rejected based on whether the first layer to return not present is negative or positive.

Algorithm 1 ConstructStackedFilter(𝑆𝑃 ,𝑊 ,𝐶)

Input: 𝑆𝑃 ,𝑊 ,𝐶 : data set, workload, constraint

1: 𝑆𝑁𝑓
, {𝛼𝑖 } = OptimizeSF (W,C) // In Sec. 5

2: // Construct the layers in the filter sequentially.

3: for 𝑖 = 1 to𝑇𝐿 do
4: 𝑆𝑟 = {}
5: if 𝑖 mod 2 = 1 then // layer positive

6: construct 𝐿𝑖 w/ space 𝑠 (𝛼𝑖) ∗ |𝑆𝑝 |
7: for 𝑥𝑝 ∈ 𝑆𝑃 do
8: 𝐿𝑖 .insert(𝑥𝑝)
9: for 𝑥𝑛 ∈ 𝑆𝑁𝑓

do
10: if 𝐿𝑖 (𝑥𝑛) = 1 then
11: 𝑆𝑟 = 𝑆𝑟 ∪ {𝑥𝑛 }
12: 𝑆𝑁𝑓

= 𝑆𝑟

13: else // layer negative

14: allocate 𝐿𝑖 w/ space 𝑠 (𝛼𝑖) ∗ |𝑆𝑁𝑓
|

15: for 𝑥𝑛 ∈ 𝑆𝑁𝑓
do

16: 𝐿𝑖 .insert(𝑥𝑛)
17: for 𝑥𝑝 ∈ 𝑆𝑝 do
18: if 𝐿𝑖 (𝑥𝑝) = 1 then
19: 𝑆𝑟 = 𝑆𝑟 ∪ {𝑥𝑝 }
20: 𝑆𝑃 = 𝑆𝑟
21: return F

Stacked Filters also needworkload knowledge similarly to classifier-

based filters. Later on we describe in detail how much knowledge

is needed, and how to gather it (even adaptively). For now, we de-

note workload knowledge abstractly as𝑊 , and feed this into an

optimization algorithm which returns 1) a set of frequently queried

negatives, denoted by 𝑁𝑓 , and 2) the number of layers 𝑇𝐿 and false

positive rate of each layer 𝛼1, . . . , 𝛼𝑇𝐿 .

Querying a Stacked Filter.Algorithm 2 formalizes the description

given in the example for querying a Stacked Filter. Querying for

an element 𝑥 starts with the first layer and goes through the layers

in ascending order. At every layer, if the element is accepted by

the layer, it continues to the next layer. If an element is rejected

by a layer containing positive elements (called a positive layer),

it is rejected by the Stacked Filter. Conversely, if an element is

rejected by a layer containing negative elements (negative layer), it

is accepted by the Stacked Filter. If the element reaches the end of

the stack, i.e. it was accepted by every layer, then the Stacked Filter

accepts the element. We now show this algorithm is correct, and

explain how the algorithm differently affects positives, frequently

queried negatives, and infrequently queried negatives.

Querying a Positive. Stacked Filters maintain the crucial property

of having no false negatives. During construction, every positive

element 𝑥𝑝 is added into each positive layer until it either hits the

end of the stack, or is rejected by a negative layer. Querying the

Stacked Filter for 𝑥𝑝 follows the same path. Either 𝑥𝑝 makes it to the

end of the stack and is accepted by the Stacked Filter, or it is rejected

Algorithm 2 Query(𝑥)

Input: 𝑥 : the element being queried

1: // Iterate through the layers until one rejects 𝑥 .

2: for 𝑖 = 1 to𝑇𝐿 do
3: if 𝐿𝑖 (𝑥) = 0 then
4: if 𝑖 mod 2 = 1 then
5: return reject // Layer positive, reject x

6: else
7: return accept // Layer negative, accept x

8: return accept // No layer rejected, accept 𝑥

by some negative layer and thus accepted by the Stacked Filter.

Figure 1 shows how this process works for the positive element 𝑝1.

Querying a Negative. For an infrequently queried negative ele-

ment 𝑥𝑖 ∈ 𝑁 \𝑁𝑓 , it is in neither 𝑃 nor𝑁𝑓 and so has high likelihood

of being rejected by both positive and negative layers. As a result,

the majority of infrequently queried negatives are rejected at 𝐿1,

and the majority of false positives occur from elements rejected at

𝐿2. Frequently queried negatives are a false positive for the Stacked

Filter only if they are a false positive for each positive layer. This

drives the FPR of frequently queried negatives towards 0, as their

false positive rate decreases exponentially in the number of layers.

Figure 1 shows how this process works for infrequently queried

negatives 𝑛4 and 𝑛5 as well as frequently queried negative 𝑛2.

Item Insertion andDeletion. Stacked Filters retain the supported
operations of the query-agnostic filters they use. If the underlying

query-agnostic filter supports insertion, then so does the Stacked

Filter. The same is true for deletion of positives.

Insertion of an element after construction follows the same path

as an insertion during the original construction of the filter. The

positive element alternates between inserting itself into every posi-

tive filter, and checking itself against every negative filter, stopping

at the first negative filter which rejects the element. This process

works even in the case that the element was previously a frequently

queried negative. The deletion algorithm follows the same pattern

as the insertion algorithm, except it deletes instead of inserts the

element at every positive layer.

4 METRIC EQUATIONS
We now present the metric equations and derivations for Stacked

Filters. These equations are then used in Section 5 to show how to

tune Stacked Filters for optimal performance, and in Section 7 to

show how Stacked Filters outperform state-of-the-art filters. We

show that compared to query-agnostic filters, Stacked Filters are as

robust, while improving drastically in EFPR and size.

Notation. Stacked Filters metrics are written as a function of 𝛼 =

(𝛼1, . . . , 𝛼𝑇𝐿) plus an additional dummy 𝛼0 = 1 which is used for

readability. To distinguish them from the metrics for the base filter,

metrics for Stacked Filters are denoted with a prime at the end,

so for instance, the size and EFPR of a Stacked Filter are 𝑠 ′(𝛼)
and 𝐸𝐹𝑃𝑅′(𝛼). The metrics are variations on either an exponential

function or geometric series. To make this clear by immediate

inspection, we will often consider that all 𝛼𝑖 values have the same

value 𝛼 (this also makes 𝛼 and 𝑇𝐿 easier to optimize in Section 5).

4.1 Stacked Filters EFPR
To calculate the total EFPR for a Stacked Filter, we introduce a new

variable𝜓 which captures the probability that a negative element

from query distribution 𝐷 is in 𝑁𝑓 , i.e.𝜓 = P(𝑥 ∈ 𝑁𝑓 |𝑥 ∈ 𝑁).
Frequently Queried Negatives. For 𝑥 ∈ 𝑁𝑓 , a Stacked Filter

returns 1 if and only if it makes it to the end of the stack. This

occurs only if it is a false positive on each positive layer and so the

probability of this happening is

P(𝐹 (𝑥) = 1|𝑥 ∈ 𝑁𝑓) =
(𝑇𝐿−1)/2∏︂

𝑖=0

𝛼2𝑖+1

Infrequently Queried Negatives. For 𝑥 ∈ 𝑁𝑖 , its total false posi-

tive probability is the sum of the probability that it is rejected by

each negative layer, plus the probability it makes it through the

entire stack. For negative layer 2𝑖 , the probability of rejecting this

element is

∏︁
2𝑖−1
𝑗=1 𝛼 𝑗 · (1−𝛼2𝑖), where the first factor is the probabil-

ity of making it to layer 2𝑖 and the second factor is the probability

that this layer rejects 𝑥 . Summing up these terms and adding in the

probability of making it through the full stack, we have

P(𝐹 (𝑥) = 1|𝑥 ∈ 𝑁𝑖) =
𝑇𝐿∏︂
𝑖=1

𝛼𝑖 +
(𝑇𝐿−1)/2∑︂

𝑖=1

(
2𝑖−1∏︂
𝑗=1

𝛼 𝑗) (1 − 𝛼2𝑖)

Expected False Positive Rate. Since 𝑁𝑖 and 𝑁𝑓 partition 𝑁 , the

EFPR of a Stacked Filter is

𝜓

(𝑇𝐿−1)/2∏︂
𝑖=0

𝛼2𝑖+1 + (1 −𝜓)
(︁ 𝑇𝐿∏︂
𝑖=1

𝛼𝑖 +
(𝑇𝐿−1)/2∑︂

𝑖=1

(
2𝑖−1∏︂
𝑗=1

𝛼 𝑗) (1 − 𝛼2𝑖)
)︁

If all 𝛼 values are equal, then this is equal to

𝐸𝐹𝑃𝑅 = 𝜓𝛼
𝑇𝐿+1
2 + (1 −𝜓) 𝛼 + 𝛼𝑇𝐿+1

1 + 𝛼
(1)

Thus, the FPR for frequently queried negatives is exponential in

the number of layers and goes quickly to 0, whereas infrequently

queried negatives have EFPR close to the FPR of the first layer.

4.2 Stacked Filter Sizes
Size of a Stacked Filter Given the FPR at Each Layer. For every
positive layer after the first, an element from 𝑃 is added to the layer

if it appears as a false positive in every previous negative layer.

Thus, the size of all positive layers in bits per positive element is

(𝑇𝐿−1)/2∑︂
𝑖=0

𝑠 (𝛼2𝑖+1) · (
𝑖∏︂
𝑗=0

𝛼2𝑗)

Similarly, negatives appear in a negative layer if they are false

positives for every prior positive layer and so the size of all negative

layers (using the traditional metric bits per positive element) is

(𝑇𝐿−1)/2∑︂
𝑖=1

𝑠 (𝛼2𝑖) ·
|𝑁𝑓 |
|𝑃 | · (

𝑖∏︂
𝑗=1

𝛼2𝑗−1)

The total space for a Stacked Filter is the sum of these two equations.

Because 𝛼𝑖 values are small, the products in parenthesis go to 0

quickly in both equations and so the total size of a Stacked Filter is

dominated by its first layer.

Size When Each Layer has Equal FPR. In the case that all 𝛼

values are the same, we can use a geometric series bound on both

arguments above, giving

𝑠 ′(𝛼) ≤ 𝑠 (𝛼) · (1

1 − 𝛼
+
|𝑁𝑓 |
|𝑃 |

𝛼

1 − 𝛼
) (2)

where 𝑠 ′(𝛼) represents the size in bits per (positive) element.

Stochasticity of Size or Filter Behavior. When constructing

Stacked Filters, there are two choices when it comes to space. First,

all filters can have their memory allocated up front. Using this

method, size is fixed but if a higher proportion of elements makes

it through the initial layers of the stack, bad behavior can happen

at the subsequent filters in the stack. This happens in the form of

increased FPR (Bloom filters), failed construction (Cuckoo filters),

or long probe times (Quotient filters). Instead, our default is to allo-

cate size proportional to the number of items which make it to a

layer in the stack (see lines 6 and 14 of Algorithm 1). This makes the

size of a Stacked Filter random, however, for large sets the size of a

Stacked Filter concentrates sharply around its mean. In particular,

P(|𝑠 ′ − 𝐸 [𝑠 ′] | ≥ 𝑘𝐸 [𝑠 ′]) ≤

1

|𝑃 | ·
𝛼𝑚𝑎𝑥

𝑘2
· (𝑠 (𝛼𝑚𝑖𝑛) (1 − 𝛼𝑚𝑖𝑛)
𝑠 (𝛼𝑚𝑎𝑥) (1 − 𝛼𝑚𝑎𝑥)

)2 ·
(1 + |𝑁𝑓 |

|𝑃 |)

(1 + |𝑁𝑓 |
|𝑃 | 𝛼𝑚𝑖𝑛)2

where 𝛼𝑚𝑖𝑛 , 𝛼𝑚𝑎𝑥 are the lowest, highest FPRs of any layer in the

Stacked Filter. The proof can be found in Technical Report Section

11.3.1 [16]. The leading
1

|𝑃 | term ensures that for large sets the

chance of deviating away from the expected set size is negligible.

4.3 Stacked Filter Robustness
The First Layer Provides Robustness. Any element in 𝑁 is ei-

ther in 𝑁𝑖 or 𝑁𝑓 , and so its probability of being a false positive is

either P(𝐹 (𝑥) = 1|𝑥 ∈ 𝑁𝑖) or P(𝐹 (𝑥) = 1|𝑥 ∈ 𝑁𝑓). Since elements

of 𝑁𝑖 have a higher chance of being a false positive, the EFPB of a

Stacked Filter is P(𝐹 (𝑥) = 1|𝑥 ∈ 𝑁𝑖). For a Stacked Filter, an easy

bound on this is the FPR of the first layer. Since the majority of the

size of a Stacked Filter is in its first layer, worst case performance

is similar to a query-agnostic filter (of the same size).

Performance Change Under Workload Shift.While EFPB pro-

vides worst case bounds, the EFPR equation shows what happens

under the common case of more mild workload drifts. For an initial

query distribution 𝐷 with corresponding𝜓 , which changes to 𝐷 ′

and corresponding𝜓 ′
, the change in EFPR from 𝐷 to 𝐷 ′

depends

only on the change in𝜓 to𝜓 ′
. In particular, the change in EFPR is

(𝜓 ′ −𝜓) ·
(︁
P(𝐹 (𝑥) = 1|𝑥 ∈ 𝑁𝑓) − P(𝐹 (𝑥) = 1|𝑥 ∈ 𝑁𝑖)

)︁
Thus, the performance in terms of EFPR for a Stacked Filter de-

creases linearly with the change in the proportion of queries aimed

at frequently queried negatives.

4.4 Stacked Filter Computational Costs
Like the previous derivations, the resulting equations for query

computation time and construction time are modified geometric

series. We give here bounds on the resulting equations specifically

for all𝛼𝑖 equal to𝛼 . The derivations for exact equationswith general

𝛼𝑖 and an arbitrary number of layers are in Technical Report Section

11.2 [16]. All equations are in terms of average computational cost

and given as the number of base filter operations required.

Construction. The construction cost of Stacked Filters is

|𝑃 | (𝑐𝑖 + 𝑐𝑞)
1

1 − 𝛼
+ |𝑁𝑓 |𝑐𝑞 + |𝑁𝑓 | (𝑐𝑖 + 𝑐𝑞)

𝛼

1 − 𝛼
Like in the previous subsections, filters after the first add only

negligible costs to construction to Stacked Filters when 𝛼 is small.

The majority of the cost above comes from 1) 𝑐𝑖 · |𝑃 | for constructing
the first layer and 2) 𝑐𝑞 · (|𝑁𝑓 | + |𝑃 |) for querying the first layer.

Query Costs. The costs for querying a Stacked Filter for a positive,
frequently queried negative, and infrequently queried negative are:

𝑐 ′𝑞,𝑃 ≤ 2

1 − 𝛼
𝑐𝑞, 𝑐𝑞,𝑁𝑓

≤ 1 + 2𝛼

1 − 𝛼
𝑐𝑞, 𝑐 ′𝑞,𝑁𝑖

≤ 1

1 − 𝛼
𝑐𝑞 (3)

For small 𝛼 , the cost of querying negative elements is essentially

identical to querying a single filter. The cost of querying positive

elements is about 2× the cost of a single filter as they make it

through the first layer with certainty before being rejected at layer

2 with high probability.

5 OPTIMIZING STACKED FILTERS
Sections 3 and 4 introduced Stacked Filters given their parameters:

the set of frequent negatives, the FPRs of each layer, and the number

of layers. We now complete the picture of how Stacked Filters are

constructed. This is done in two stages: first we go from a sample

of past queries to a workload model, and then we go from a model

of the workload to the choice of Stacked Filters parameters.

5.1 Modeling the Workload
Like classifier-based filters, Stacked Filters require workload knowl-

edge in the form of a sample of past queries. This set of past queries

can have multiple sources depending on the application. For in-

stance, it can be: 1) publicly available, as in the case of URL blacklist-

ing [28] with popular non-spam websites and their query frequen-

cies collected by OpenPageRank [2], 2) collected by the application

by default, as is the case for web indexing and document search

[24], where query term frequencies are collected and stored, or 3)

can be collected by the system by choice, as is the case for most

data systems including key-value stores [41].

After collecting the set of sample queries, Stacked Filters create

a model to identify frequently queried elements. They do this by

creating a smoothed histogram of the empirical query frequencies.

More specifically, each element observed in the set of sample queries

is put into a set 𝑁𝑠𝑎𝑚𝑝 . Then, the proportion of queries at elements

outside 𝑁𝑠𝑎𝑚𝑝 is estimated by looping over all possible subsets

of 𝑄 − 1 queries from the set of 𝑄 sample queries, and seeing for

what proportion of subsets the Qth query value is not present in

the set of 𝑄 − 1 queries. If we denote this value by ℓ , then for each

𝑥𝑖 ∈ 𝑁𝑠𝑎𝑚𝑝 , its query frequency is estimated as
(1−ℓ)
𝑄

·∑︁𝑄

𝑗=1
1𝑞 𝑗=𝑥𝑖 .

Our optimization algorithms below then choose some of the values

in 𝑁𝑠𝑎𝑚𝑝 to be in 𝑁𝑓 , creating the frequent negatives set.

5.2 Optimization Algorithms
The final step in constructing Stacked Filters is to use the workload

model to choose 𝑁𝑓 ,𝑇𝐿 , and {𝛼𝑖 }𝑇𝐿𝑖=1. The optimization algorithms

which do so depend on the base filter being used and fall into

two categories. In the first, the query-agnostic filter can take on

any value of 𝛼 , which is a good approximation for filters such as

Bloom Filters. In the second, the possible 𝛼 values are of the form

2
−𝑘

for 𝑘 ∈ N, which is true or a very close approximation for

fingerprint based filters such as Cuckoo and Quotient Filters. For

both methods, we assume that the base filter has a size equation

of the form 𝑠 (𝛼) = − log
2
(𝛼)+𝑐
𝑓

with 𝑐 ≥ 0, 𝑓 ≥ 1. This holds true

or is a very close approximation for all major filters in practice

including Bloom, Cuckoo, and Quotient filters, and additionally

covers the equation for the theoretical lower bound on size for

query-agnostic filters. Throughout the section, optimization is given

in terms of minimizing EFPR with respect to a constraint on size.

Optimization of size with respect to a bound on EFPR is similar.

Additional constraints on the EFPB or expected number of filter

checks may be added by only minor modifications.

5.2.1 Outer Loop: Sweeping over 𝑁𝑓 . For both continuous and

discrete FPR filters, there is an outer loop which chooses sets of 𝑁𝑓

to optimize and an inner optimization which optimizes the Stacked

Filter given 𝑁𝑓 . The best performing value of 𝑁𝑓 is then used.

To choose 𝑁𝑓 , we make use of the workload model and choose

𝑁𝑓 to be a subset of 𝑁𝑠𝑎𝑚𝑝 . The 𝜓 (𝑁𝑓) value is the sum of the

estimated query frequencies of each value chosen to be in 𝑁𝑓 .

Because EFPR is a monotonically decreasing function of 𝜓 , for a

fixed size 𝑁𝑓 it is optimal to greedily choose the negative elements

queried most. Thus we can order 𝑁𝑠𝑎𝑚𝑝 by the element’s query

frequencies and then sweep over various sizes for 𝑁𝑓 , always using

the most frequently queried elements of 𝑁𝑠𝑎𝑚𝑝 to be in 𝑁𝑓 . The

following theorem shows we can choose the size of 𝑁𝑓 efficiently.

Its proof, and the proof of all other theorems in this paper, is given

in the Technical Report [16].

Theorem 1. Given an oracle returning the optimal EFPR for a
given set 𝑁𝑓 , finding the optimal EFPR across all values of |𝑁𝑓 | to
within 𝜖 requires 𝑂 (1𝜖) calls to the oracle.

The core idea of the theorem is that values of |𝑁𝑓 | that are
close together have solutions with optimal EFPR close to each other.

Using the theorem, our algorithm starts with a “current"𝑁𝑓 of size 0.

It then increases |𝑁𝑓 | to a strategically chosen larger value, making

sure the skipped values of |𝑁𝑓 | could have EFPR no more than 𝜖

lower than the checked values, and runs the optimization with the

new fixed 𝜓 and |𝑁𝑓 |. It continues to do so until |𝑁𝑓 | = |𝑁𝑠𝑎𝑚𝑝 |,
and returns the setup giving the best observed EFPR.

5.2.2 Inner Optimization: Continuous FPR Filters. The inner opti-
mization loop for continuous filters has 𝑁𝑓 and𝜓 given and works

in two steps. First, we assume that all layers have the same FPR and

optimize the filter as if it had infinitely many layers. Second, we

truncate the infinite layer Stacked Filter to a small finite layered one

that is close in performance to the infinite layer one. An optional

third step modifies the procedure to search filters with varying 𝛼

values across layers, but we note that this procedure is optional as

it generally does not improve the EFPR.

Step 1: Fixed𝑁𝑓 , Infinite Equal FPR Layers. Take the equations
of Section 4 with FPR equal across layers and let 𝑇𝐿 → ∞. The

equations for EFPR, size, and EFPB converge to 𝑠 ′(𝛼) = 𝑠 (𝛼) ·

(1

1−𝛼 + |𝑁𝑓 |
|𝑃 |

𝛼
1−𝛼), 𝐸𝐹𝑃𝑅(𝛼) = (1 −𝜓) 𝛼

1+𝛼 , and 𝐸𝐹𝑃𝐵 = 𝛼
1−𝛼 , and

the equations for computation converge to Equation (3).

By inspection, the equations for EFPR, EFPB, and computation

monotonically increase with 𝛼 . Thus attempts to minimize the EFPR

or satisfy EFPB or computation constraints should all lower 𝛼 . For

the size equation, the following theorem holds.

Theorem 2. The function 𝑠 ′(𝛼) = − log
2
(𝛼)+𝑐
𝑓

· (1

1−𝛼 + |𝑁𝑓 |
|𝑃 |

𝛼
1−𝛼)

is quasiconvex on (0,1) when 𝑐 ≥ 0, 𝑓 > 0.
Quasi-convex functions have unique global minima, and as a

result, the size equation can be minimized via gradient descent.

Specifically, we use gradient descent with backtracking line-search

to choose the step size. To minimize EFPR using size as a constraint,

at a given time step if we are below the size constraint we decrease𝛼 .

Otherwise, we use the gradient of size with respect to 𝛼 to decrease

the size. If for the given𝑁𝑓 one or more constraints is not satisfiable,

we return an exception.

Step 2: Truncating to a Finite Stack. When performing trun-

cation, we measure the difference in each metric equation using

infinite 𝑇𝐿 and an increasing finite value of 𝑇𝐿 and stop when the

difference is below 𝜖 for all metric equations. Because each metric

equation is either an exponentially decreasing function of 𝑇𝐿 or a

geometric series in 𝑇𝐿 , the convergence to the infinite layer values

is on the order of 𝑂 (𝛼𝑇𝐿/2), and so usually 5 or 7 layers suffice.

Algorithm Analysis. By using
𝜖
3
in both the outer loop over 𝑁𝑓

and both steps 1 and 2, the overall algorithm is an 𝜖 approximation

to the best possible EFPR for a Stacked Filter with 𝛼 fixed across

layers. Its runtime is𝑂 (𝜖−1+|𝑁𝑠𝑎𝑚𝑝 |) and its empirical optimization

times for Stacked Bloom Filters at 10 bits per element are listed in

Table 2 under “Bloom, fixed 𝛼". The workload, described in detail in

Section 8.2, is the synthetic integer dataset with a Zipf distribution

with [= 1, and |𝑁𝑠𝑎𝑚𝑝 | = 5 · 107.
For both this algorithm as well as the subsequent two, we note

the runtime has two regions. When 𝜖 is small, the runtime is ap-

proximately linear in |𝑁𝑠𝑎𝑚𝑝 |. As 𝜖 grows, it becomes the primary

cost of algorithmic runtime and the runtime is linear in 𝜖−1.
Varying FPRs Across Layers. When allowing the 𝛼𝑖 values to

change across layers, we are faced with a non-convex optimization

objective and constraint, even when fixing 𝑇𝐿 (this can be seen

by taking second derivatives). To perform optimization, at each

checked value of 𝑁𝑓 we first run the optimization using equal

FPR across layers. We then polish the resulting filter by using the

gradient-free algorithm COBYLA [36] to modify the FPRs of each

layer. While this method very occasionally achieves improvements

over the fixed FPR per layer method, it generally does not, as seen

in Table 2. Additionally, an alternative strategy of discretizing the

search space for the FPRs at each layer and using the optimization

routines described in Section 5.2.3 also did not in general improve

upon the equal FPR per layer solution. Thus we view this final

polishing as optional in the optimization of continuous FPR filters.

5.2.3 Inner Optimization: Fingerprint Based Filters. For fingerprint
based filters, the discrete number of fingerprint bits makes search

easier. The main idea of our approach is to use breadth first search

expanding the number of fingerprint bits used at each layer, work-

ing two layers at a time: one positive and one negative. At each

pair of layers, derived bounds on which possible fingerprint lengths

Bloom, fixed 𝛼 Bloom, varied 𝛼 Cuckoo

𝜖 EFPR Time EFPR Time EFPR Time

10
−2

0.00175 775`𝑠 0.00175 47 ms 0.00203 12 ms

10
−3

0.00173 781`𝑠 0.00173 328 ms 0.00190 13 ms

10
−4

0.00172 1.01 ms 0.00172 2.9 s 0.00184 44 ms

10
−5

0.00172 3.7 ms 0.00172 26.7 s 0.00184 367 ms

Table 2: Optimization is efficient and tunably optimal

can lead to an optimal solution of each layer are used, constraining

the number of options expanded. Eventually, each search path ter-

minates, either because its choices already created too many false

positives, it used all the available space budget, or the number of

queries which would reach the current layer of the chosen stack

is less than 𝜖 . The full algorithm, its explanation, and proofs of its

theoretical properties are given in the Technical Report [16].

Theoretically, the algorithm is guaranteed to return a filter with

𝐸𝐹𝑃𝑅 ≤ 𝐸𝐹𝑃𝑅∗ + 𝜖 , where 𝐸𝐹𝑃𝑅∗ is the EFPR of the best possible

filter satisfying all constraints. We can bound the runtime of the

algorithm theoretically by𝑂 (|𝑁𝑠𝑎𝑚𝑝 |+𝜖−3). Additionally, the proof
of the runtime bound does not rely on several key optimizations

of the algorithm, and the experimental run time of the algorithm

behaves more like 𝑂 (𝜖−1). Thus, the algorithmic run time is both

tunable and efficient, as can be seen in Table 2 for Cuckoo Filters.

6 INCREMENTAL CONSTRUCTION
AND ADAPTIVITY

So far we assumed that workload knowledge can be collected and

that workloads are static or drift slowly. While this holds for many

filter use cases such as URL Blacklisting [28] and Web Indexing

[24], there are many other applications where workloads change

quickly, in which case continuously gathering workload knowledge

is expensive. To address these use cases, we introduce Adaptive

Stacked Filters (ASFs) which require knowledge about workload

shape (such as how skewed they are), but do not require the gath-

ering of a set of negative queries. Crucial to the design of ASFs is

the idea of incremental construction, which allows ASFs to process

queries immediately, learn frequent negatives during query evalua-

tion, and gain benefits from stacking before finishing construction.

Mirroring how we described Stacked Filters, we explain first the

structure of ASFs given their parameters, then how to collect work-

load knowledge, and finally how to optimize their parameters.

Incremental Construction.ASFs start by constructing 𝐿1 and use
this to answer incoming queries until more layers are constructed.

They also allocate an empty 𝐿2. During query processing, when a

false positive occurs, it is added to 𝐿2. Then, when 𝐿2 is full (in that

it either hits its load factor for Cuckoo and Quotient filters or has

half its bits set for Bloom filters), the ASF brings in the positive set,

queries it against 𝐿2 and adds the false positives on 𝐿2 to a new 𝐿3.

Processing then continues using the layers up until 𝐿3, gaining the

benefits in terms of EFPR that come with extra layers. Additionally,

construction on layers 𝐿4 and 𝐿5 can begin (if they exist), and uses

the same procedure. Since 𝑁𝑓 is captured during query processing,

it does not need to be gathered before the construction of the ASF.

This is the primary benefit of ASFs over Stacked Filters: they require

only the workload shape (to figure out how big each layer should

be) but not which values are important.

Rank-Frequency Workload Knowledge. To create ASFs, we

need a rank-frequency distribution of the negative query work-

load. This is akin to the workload knowledge of Section 5.1, but

instead of describing the query frequencies of actual values, the

distribution describes the query frequencies of the value at each

rank, where rank is itself defined by ordering elements’ query fre-

quencies. A classic example of this type of distribution is the Zipf

distribution, which models how often the first and second most

popular values occur without reference to the actual values.

The rank-frequency distribution can be calculated in many differ-

ent ways. We do so using a set of past queries to make a smoothed

histogram as described in Section 5.1. ASFs assume that the work-

load shape is relatively static even if the values are not, and under

this case, ASFs rebuild themselves without performing a new analy-

sis of the workload. For instance, YouTube video queries and other

periodic workloads are a good example of a case where this holds:

queries for popular videos on a given week follow consistent pat-

terns even if which videos are popular changes each week [12]. In

this case, an ASF being rebuilt and adapting to new frequent values

knows what shape to take before it knows the new frequent values.

Optimizing Collection vs Exploitation. We optimize ASFs in

two different ways, depending on the nature of the workload. The

first uses the optimization procedures of base Stacked Filters assum-

ing we pick the most frequently queried negatives and allocates

the exact same filter. It then creates the filter incrementally during

query processing instead of all at once.

The above process builds the best eventual ASF but can face

many queries before achieving a fully built ASF. For this reason,

we additionally create a second approach which assumes that ASFs

are 3 layers and focuses on building a fully built ASF very quickly.

This form of optimization takes as input an estimate of how long

the filter will last and then chooses a number of queries to observe

when building the second layer, denoted by 𝑁𝑜 . The value of 𝑁𝑜

determines the expected values of𝜓 and |𝑁𝑓 |:

𝐸 [𝜓] =
∑︂

𝑥 ∈𝑁𝑠𝑎𝑚𝑝

𝑓 (𝑥) (1 − (1 − 𝑓 (𝑥))𝑁𝑜)

𝐸 [𝑁𝑓] = (ℓ · 𝑁𝑜) +
∑︂

𝑥 ∈𝑁𝑠𝑎𝑚𝑝

(1 − (1 − 𝑓 (𝑥))𝑁𝑜)

where here we recall that ℓ is the estimate of what portion of queries

fall on values outside our sample. The optimization then weights

the EFPR using just 𝐿1 for 𝑁𝑜 queries vs. the EFPR of the ASF

using all 3 layers on the rest of the queries. To choose the best

configuration, we perform grid search on 𝑁𝑜 . At each value of

𝑁𝑜 , we either calculate or estimate𝜓 and |𝑁𝑓 |, depending on the

size of 𝑁𝑠𝑎𝑚𝑝 , and perform optimization of the three layers using

discrete search for both continuous FPR filters and integer-length

fingerprint filters (see Technical Report Sec. 11.5 for details [16]).

Monitoring and Adapting. To maintain robust performance, if

the elements in 𝑁𝑓 become less frequently queried over time, this

needs to be rectified. To address this, the ASF monitors its perfor-

mance and initiates a rebuild whenever the FPR differs by more

than 50% from its expected FPR. The ASF initially tries a rebuild

assuming that the popularity of particular values has changed but

not the rank-frequency distribution; the layers after the first of the

ASF are dropped and the procedure for construction starts from

𝐿1. If this does not fix performance, a remodeling of the workload

happens, and the filter is re-optimized and rebuilt from scratch.

Positive SetAdaptivity.ASFs address the common use casewhere

the positive set is static but the frequent negatives are changing.

This is common for read-only datasets such as the levels of an LSM

tree, and it is common in general for filters because filters are not

easily adaptive to changes in data size. However, in cases where

new items are frequently seen, filters need to be able to adapt. We

explore several preliminary strategies for this in Technical Report

Section 11.6 [16].

7 BETTER SIZE-FPR TRADEOFFS
With Stacked Filters and their adaptive counterparts described fully,

we ask the following critical question: when are Stacked Filters

better than query-agnostic filters and by how much? In terms of

their trade-off between EFPR and size, the following theorems an-

swer this question using only summary properties of the workload:

namely a choice of |𝑁𝑓 | and𝜓 (𝑁𝑓). Along with each theorem, we

present a visualization of its results, which can be used by systems

designers to estimate the benefits of Stacked Filters on their work-

load a priori to spending the time to gather workload knowledge.

Each theorem holds exactly in the case that 𝛼 is a continuous

parameter for the base query-agnostic filter, and we discuss how

the theorems apply to integer length fingerprint filters at the end

of this section. The first theorem shows when a Stacked Filter is

strictly better than a query-agnostic filter, as opposed to when a

1-layer filter is best.

Theorem 3. Let the positive set have size |𝑃 |, let the distribution
of our negative queries be 𝐷 , and let 𝛼 be a desired expected false
positive rate. If there exists any set 𝑁𝑓 ,𝜓 = P𝐷 (𝑥 ∈ 𝑁𝑓 |𝑥 ∈ 𝑁), and
0 ≤ 𝑘 ≤ 𝜓 such that

|𝑁𝑓 |
|𝑃 | ≤

ln
1

1−𝑘
ln

1−𝑘
𝛼 + 𝑐

· 1 − 𝑘 − 𝛼

𝛼
− 1

then a Stacked Filter (optimized using Section 5 and given access to
any 𝑁𝑓 satisfying the constraint) achieves the EFPR 𝛼 using fewer
bits than a query-agnostic filter.

Figures 2a and 2b use this theorem to create visualizations of

which workloads Stacked Filters are certainly better than query-

agnostic filters. Figure 2a shows this for a desired EFPR of 𝛼 = 0.03;

any workload with a set 𝑁𝑓 such that |𝑁𝑓 |,𝜓 (𝑁𝑓) is above the line
has a Stacked Filter which is strictly better than a Bloomfilter. Figure

2b shows this trend for more alpha values. Even at a high desired

𝛼 of 0.05, Stacked Filters cover a sizeable number of workloads;

many workloads contain a negative set half the size of their positive

set, and which contain 25% of all negative queries. As the desired

EFPR decreases, Stacked Filters cover almost all real workloads; for

instance at a desired EFPR of 𝛼 = 0.01, if |𝑁𝑓 | = |𝑃 |, then only 7% of

negative queries need to be at values in 𝑁𝑓 for the Stacked Filter to

be more space efficient. At even lower values, the amount needed

becomes negligible and almost any workload sees improvements.

Estimating Space Savings from Stacked Filters. Using the op-
timization routines of the prior sections and given values for |𝑁𝑓 |
and 𝜓 (𝑁𝑓), it becomes possible to estimate the space savings of

using a Stacked Filter as compared to a query-agnostic filter for

any desired EFPR. Namely, we can optimize the size of a Stacked

Figure 2: Analytical equations can predict both when Stacked Filters are better, and by how much.

Filter with equal FPRs across layers while requiring that its EFPR

is less than a query-agnostic filter:

𝑠 (𝛼) −min

𝛼𝐿

𝑠 (𝛼𝐿) (
1

1 − 𝛼𝐿
+
|𝑁𝑓 |
|𝑃 |

𝛼𝐿

1 − 𝛼𝐿
)

𝑠 .𝑡 . 𝛼𝐿 ∈ (0, 𝛼

1 −𝜓
]

Figure 2c uses this to graph how a combination of

|𝑁𝑓 |
|𝑃 | and 𝜓

produces a reduction in filter size using Stacked Bloom Filters at a

desired EFPR of 𝛼 = 0.01. For each fixed value of

|𝑁𝑓 |
𝑃

, the graph

contains three parts: in the first part, it is not advantageous to build

Stacked Filters and a query-agnostic filter is built. For all values of

|𝑁𝑓 |
|𝑃 | , this is a small area and covers workloads with no frequently

queried negative elements. In the second part, Stacked Filters have

superlinear improvement in𝜓 , with improvement starting at 0 bits

per element saved and going up to 7 bits per element saved. At the

tail end of the graphs, the improvement stops even as𝜓 increases.

This is the point where
𝛼

1−𝜓 crosses the minimal 𝛼𝐿 value for size.

After, the Stacked Filter can choose larger false positive rates at

each layer while having the same EFPR as the query-agnostic filter,

but this larger 𝛼𝐿 value increases size. Instead, the Stacked Filter

keeps the minimal 𝛼𝐿 value for size and the Stacked Filter produces

both a space benefit and has lower EFPR than the input 𝛼 .

Integer Length Fingerprint Filters. The above equations and

theory assumed that all FPRs were possible at each layer. For in-

teger length fingerprint filters, this is not the case and the theory

does not hold exactly; however, the general trajectory remains the

same. Additionally, experimentally the results for integer length

fingerprint filters are often better than the continuous FPR approx-

imations suggest. This is because query-agnostic filters also suffer

from limitations on the FPRs they can choose; often given more

size as a budget there isn’t enough space to add a full bit for every

positive element. In these cases, Stacked Filters can often make use

of this space to build layers deeper in the stack, and the added flex-

iblity of being able to use space on any layer in the stack provides

additional improvements over the theory above.

8 EXPERIMENTAL ANALYSIS
Wenow experimentally demonstrate that Stacked Filters offer better

false positive rates compared to query-agnostic Filters for the same

size, or they offer the same false positive rate at a smaller size. We

also show that Stacked Filters are more computationally efficient,

robust, and are more generally applicable than classifier-based

filters while offering similar false positive rates and sizes.

Filter Implementations.All filters use CityHash as the hash func-
tion [35]. The Counting Quotient Filter (CQF) and Cuckoo Filter

(CF) implementations are taken from the original papers [20, 34]. In

the original implementation, CQF is constrained to have the filter

size be a power of two to allow for operations such as resizing

and merging. This is not relevant to our testing, so we removed

this restriction. For CF, the implementation provided only sup-

ports certain signature lengths, so we implemented a fix to allow

all integer signature lengths. For classifier-based filters, we use

Learned Bloom Filters [28] with text data using a 16 dimensional

character-level GRU as in the original paper, and integer data using

a shallow feed-forward neural network. Additionally, we compare

with Sandwiched Learned Filters (SLF) [32], which uses the same

model as the Learned Filter but has a query-agnostic pre-filter as

well as a backup filter (Bloom filters). For Stacked Filter layers we

use the same implementations as in the query agnostic filters. For

most experiments we use Bloom Filters and we refer to the filter as

Stacked Bloom Filter but we also show results with other filters.

Experimental Infrastructure. All experiments are run on a ma-

chine with an Intel Core-i7 i7-9750H (2.60GHz with 6 cores), 32 GB

of RAM, and a Nvidia GeForce GTX 1660 Ti graphics card. Each

experimental number reported is the average of 25 runs.

Datasets. We use three diverse datasets:

(1) URL Blacklisting: The URL Blacklisting application was used

to introduce Learned Filters [28]. As the dataset in [28] is not

publicly available, we instead use two open-source databases,

Shalla’s Blacklists [1] as a positive set of dangerous URLs, and the

top 10 million websites from the Open Page Rank Initiative[2] as

a negative set of safe URLs, with the probability of querying a

safe URL proportional to its PageRank.

(2) Packet Filtering: Packet filtering is a common application for

filters and was used to evaluate Counting Quotient Filters [34].

Following their lead, we use the benchmark Firehose [3] which

simulates an environment where some subset of packets are

labeled suspicious and need to be filtered. The benchmark is run

under its default settings.

(3) Synethetic Integers: To more finely control experimental settings,

we also use synthetic data. The data set consists of 1 million pos-

itive elements using randomly generated integer keys. Negative

queries on the dataset come from a set of 100 million negative

elements, also with randomly generated keys, and follow a Zip-

fian distribution. The skew of the negative query distribution is

a controlled parameter [taking values between 0.5 and 1.25. For

all experiments and graphs where [is not listed, [= 0.75.

e) f) g) h)

0

1

2

3

4

5

6

7

8

9

1 1 1 1

7.8

4.4

2.5

1.6

79 115 133 14068 62 27 10

4 6 8 10 12 14
Bits Per Positive Element

10 5

10 4

10 3

10 2

10 1

F
a
ls

e
 P

o
si

ti
v
e
 R

a
te

Stacked Filter
Query Agnostic Filter
Learned Filter (GPU)

DiskFilter

Sandwiched LF (GPU)

8 10 12 14
Bits Per Positive Element

0

10

20

30

40

50

R
e
l.
 F

ilt
e
r

+
H

D
D

 L
a
te

n
cy

1 1 1 1

14

25

14

26

4.2

8.4

19

47

3.8
6.4 6 6.2

a) b) c) d)10 Bits 14 Bits 10 Bits 14 Bits
PositiveNegative

FI
re

h
o
se

i) j) k) 8 10 12 14
Bits Per Positive Element

0

2

4

6

8

10

12

R
e
l.
 F

il
te

r
+

 H
D

D
 L

a
te

n
c
y

1 1 1 11.3 1.5
1.9

6.8

2

3

7

27

1.5

2.7 2.8

11

l)

S
y
n
th

e
ti

c

4 6 8 10 12 14
Bits Per Positive Element

10 5

10 4

10 3

10 2

10 1

Fa
ls

e
 P

o
si

ti
v
e
 R

a
te

η=.5

η=.75

η=1

η=1.25

0.00

0.02

0.04

0.06

0.08

0.10

Q
u
e
ry

 T
im

e
 (

s)

.03 .03

.09 .1

.03 .03

.06

.08

24 24 24 24

.09

.04

24 24

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Q
u
e
ry

 T
im

e
 (

s)

.05 .05

.1

.12

.05 .05

.06

.08

24 24 24 24

.1

.06

24 24

4 6 8 10 12 14
Bits Per Positive Element

10 5

10 4

10 3

10 2

10 1

F
a
ls

e
 P

o
si

ti
v
e
 R

a
te

Learned Filter
Sandwiched Filter
Stacked Filter

QA Filter

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Q
u
e
ry

 T
im

e
 (

s)

.14 .13
.25 .27

.13 .13 .14 .17

24 24 24 2421

2

24 24

U
R

L
B

la
ck

lis
ti

n
g

8 10 12 14
Bits Per Positive Element

0

100

200

300

400

500

R
e
l.
 F

il
te

r
+

 H
D

D
 L

a
te

n
c
y

1 1 1 1

125 130
96 105

240

471

1013 1028

142

361

421

353

8 10 12 14
Bits Per Positive Element

0

5

10

15

20

25

R
e
l.
 F

il
te

r
+

 S
S

D
 L

a
te

n
c
y

1 1 1 1

19

13

2.9
1.4

603 711 740 721

22

17

6

2

R
e
l.
 F

il
te

r
+

 S
S

D
 L

a
te

n
c
y

R
e
l.
 F

il
te

r
+

 S
S

D
 L

a
te

n
c
y

8 10 12 14

8 10 12 14
Bits Per Positive Element

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 1 1 1

1.3

1.5
1.7

2.5

18 52 145 396

1.5

2.6

2.4

2.7

Bits Per Positive Element

10 Bits 14 Bits 10 Bits 14 Bits
PositiveNegative

10 Bits 14 Bits 10 Bits 14 Bits
PositiveNegative

Figure 3: Stacked Bloom Filters achieve a similar EFPR to Learned Bloom Filters while maintaining a 170x throughput advan-
tage and beat both query-agnostic and learned filters in overall performance on typical workloads.

For each dataset, we simulate having incomplete information about

the query distribution by giving Learned, Sandwiched Learned, and

Stacked Filters only the higher frequency half of the negative set

for training. We also varied this amount from between 10% to 80%

of the training data and saw the same relative results.

8.1 Evaluating Total Filter Performance
The overall performance of a filter can be broken down into two

pieces, 1) the overhead incurred by the filter checks and 2) the cost

of unnecessary operations incurred by false positives. While 1) is a

characteristic of just the filter, 2) depends both on the FPR of the

filter and the cost of the operations the filter protects against. Thus,

we fix memory and measure FPR and probe (computation) time.

We then translate these two metrics into total filter performance

for the common case of protecting against base data accesses on

persistent hardware using a slower HDD (favoring lower FPRs) and

a faster NVMe SSD (favoring lower computational rates).

Workload Knowledge Improves FPRs. Figures 3a, e, and i show
the false positive rates for all filters across all three datasets. Here

we use Bloom filters for both the query-agnostic filter and the Stack

Filter. We see that Stacked Bloom Filters is the clear winner across

all workloads. Learned Filters are closer for the URL Blacklisting

scenario which is a favorable scenario for learning but still Stacked

Filters provide a better FPR for most memory budgets. For other

workloads, Learned Filters give similar or slightly worse FPR than

traditional query-agnostic filters while Stacked Filters provide a

drastic benefit.

Across all three workloads, the negative query distribution has

frequently queried elements and so Stacked Filters can find a “small"

set of negative elements that contain a large portion of the query

workload (we need only 𝑁𝑓 to not be dramatically larger than 𝑃).

Under these conditions, deeper stacks have only marginal overhead

compared to a single layer and so Stacked Filters allocate almost

all their space budget to the first layer. This way, they achieve

essentially the same FPR as query-agnostic filters on infrequent

negatives and at the same time, eliminate all false positives from fre-

quently queried negatives. Stacked Filters improve upon the FPR of

query-agnostic Bloom Filters by 5-100×, as seen in Figures 3a, e, and
i. Alternatively, Stacked Filters can reduce their size significantly

while achieving the same FPRs as query-agnostic filters.

Learned and Sandwiched Learned Filters’ performance depends

heavily on the dataset. With URL Blacklisting (Fig. 3a) where keys

have semantic meaning and are correlated with their appearance

in the positive or negative set, Learned and Stacked filters achieve

similar results. When the keys have less semantic meaning such as

in Firehose (Fig. 3e) or the synthetic integer data (Fig. 3i), Learned

Filters’ performance degrades and becomes worse than a standard

Bloom Filter. Overall, the evaluation of Learned Filters depends on

1) how correlated keys are with their positive/negative set member-

ship, and 2) how complicated their decision boundaries are for the

dataset (this affects computational performance as well). Figure 3a

shows that even on tasks that are considered good fit for Learned

Filters, their performance can be matched by Stacked Filters.

8 9 10 11 12 13 14
Bits Per Positive Element

10 5

10 4

10 3

10 2

Fa
ls

e
 P

o
si

ti
v
e
 R

a
te

8 9 10 11 12 13 14
Bits Per Positive Element

η=.5
η=.75

η=1

η=1.25

η=.5

η=.75

η=1

η=1.25

a) b)

Cuckoo Filter Quotient Filter

Query Agnostic Filter
Stacked Filter

Figure 4: Stacking provides robust performance benefits
across a variety of underlying filter types.

Hash-Based Filters Dominate Classifier-Based Filters Com-
putationally. Figures 3b, f, and j depict the computational perfor-

mance of each filter. Noticeably, Learned Filters have computational

performance that is orders of magnitude slower than hash-based

filters, with the difference between 90-190×. In comparison, Stacked

Filters have computational performance more in line with query-

agnostic filters, with the difference between 1-2×. For queries on
negative elements, the Bloom Filter and Stacked Bloom Filter have

essentially identical computational cost, and for queries on pos-

itive elements, the Stacked Filter probe is about 1.5× the cost of

the Bloom Filter probe. For Sandwiched Learned Filters, their per-

formance is a weighted combination of hash-based filters and the

classifier; overall, they are at least 3× more expensive and can be

as much as 90× more computationally expensive.

Stacked Filters Maximize Overall Performance. As Figures 3
c-g-k and d-h-l show, Stacked Filters strike the best balance be-

tween decreased false positive rates and affordable computational

speeds, resulting in the best overall performance across both hard

disk and SSD. Compared to query-agnostic filters, both have fast

hash-based computational performance but Stacked Filters have

significantly fewer false positives; as a result, they provide total

workload costs which are 1.4-130× lower. In comparison to the

classifier-based Filters, Stacked Filters are better or equal in terms

of false positive rates and better by orders of magnitude in compu-

tational performance, resulting in 1.5-1028× lower total workload

costs.

8.2 Stacking Improves Diverse Filter Types
Figures 4a, and b show that Stacked Filters benefits generalize across

diverse filter types used for the stacked layers. More specifically,

Figure 4 shows the performance of Stacked Cuckoo and Stacked

Quotient Filters on the synthetic integer dataset. This is the same

experiment as for Stacked Bloom Filters in Figure 3i. Collectively

these three graphs all show the same benefits, which is that Stacked

Filters achieve lower false positive rates compared to their query-

agnostic counter-parts as workloads are more skewed. This is be-

cause more skewed workloads query their frequent negatives more

often and because at lower FPRs the first layer in a Stacked Filter

culls almost all elements, making subsequent layers in the Stack

cheaper to build (as can be seen in Equation (2)). Further, while

not shown here, the computational costs of Stacked Cuckoo and

Stacked Quotient Filters follow the same patterns as seen in Figures

3b, f, and j, leading to similar benefits in terms of total throughput.

8.3 Stacked Filters are Workload-Robust
We now demonstrate that Stacked Filters retain the robustness of

query-agnostic filters, bringing an additional benefit over classifier-

based filters. We focus on two facets of robustness: maintaining

performance under shifting workloads and providing utility for a

variety of workloads. We use the synthetic integer dataset with

size 𝑠 = 10, and Bloom filters for both the query-agnostic and the

Stacked filter.

Robust toWorkload Shifts. Figure 5a shows how Stacked Filters’

performance adapts to workload changes with diverse values for [.

We vary the workload by reducing the value of 𝜓 from its initial

value to a value of 0. This captures scenarios where the frequently

queried negative values are changing over time, and so Stacked

Filters are no longer optimized for the most frequently queried

negatives. For Stacked Filters, regardless of the skew of their initial

distribution, drastic workload shifts are needed to become worse

than query-agnostic filters, with query-agnostic filters being better

only after the frequently queried negative set loses more than 60%

of its initial set. Even in the extreme case that every frequently

queried element from when the Stacked Filter was built is no longer

queried (𝜓 = 0), the Stacked Filter is never more than 50% worse

than a query-agnostic filter.

Robust to Workload Misspecification. Figure 5b shows the be-
havior when the sample queries used to build the filter come from

a different distribution than the future workload. Here the queries

come from the integer dataset with [= 0.75, however, during work-

load modeling, we used [values from 0.15 to 1.35. Figure 5b shows

that even when the modeled workload is significantly different from

the true workload, the Stacked Filter retains most of its performance

and outperforms query-agnostic filters.

Robust toWorkload Type. Because Stacked Filters rely on taking
advantage of frequently queried negative values, uniform work-

loads are the most difficult ones. However, if |𝑁 | is relatively small,

every negative element is still frequently queried. Figure 5c shows

that Stacked Bloom Filters outperform query agnostic Bloom fil-

ters when |𝑁 | is a reasonable multiple of |𝑃 |, anywhere up to 25×.
Since the uniform distribution is the worst distribution possible

for Stacked Filters, this shows that Stacked Filters are better than

query-agnostic filters for all small universe sizes.

Easy to Reconstruct. While Stacked Filters are effective under

shifting workloads, they need to be rebuilt to regain their best

performance. Figure 5d shows that the construction cost grows

slowly with the number of the frequently queried negatives, is

significantly faster than classifier-based filters, and is comparable to

query-agnostic filters. Because Stacked Filters can be reconstructed

quickly, they can handle periodic bulk updates. Such a strategy is

key for handling workloads with dynamic positive data.

8.4 Incrementally Adapting to Workload Shifts
We now show that Adaptive Stacked Filters (ASFs) are capable of

adapting quickly to changing workload patterns improving on the

(good) worst case guarantees of base Stacked Filters. We use the

synthetic integer dataset with Zipf parameter 1, let 𝑠 = 10 bits per

element, and use Bloom Filters for both the query-agnostic and

Stacked Filter. The ASF is optimized using the 3-layer approach.

QA Fil

η=
1

η=.5

η=
1.2

5

a) c)

3500

3600

3700

0 2 4 6 8 10
0.00

0.25

0.50

0.75

1.00

Negative Elements Stored (Millions)

C
o
n
st

ru
c
ti

o
n
 T

im
e
 (

se
c
)

d)b)
0.2 0.4 0.6 0.8 1.0 1.2

Zipf Parameter Used in Optimization

S
ta

ck
e
d
/Q

A
 F

ilt
e
r

E
F
P
R

0.004

0.005

0.006

0.007

0.008

0.009

E
FP

R

Stacked Filter
QA FilterStacked Filter

QA Filter

0 10 20 30 40 50 60
Negative Universe Size (Multiples of |P|)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

E
F
P
R

Stacked Filter
QA Filter

Stacked Filter
QA Filter
Learned Filter

Actual Zipf =.75

Figure 5: Stacked Filters are robust to workload shifts, skew, noisy data, and can be rebuilt quickly.

ASF QA

0
1

2
3

4
5

6
La

te
nc

y
on

 1
07

SS
D

 Q
ue

rie
s

(S
ec

) Building L1

Filter (1-Layer)

Disk (1-Layer)

Building L3

Filter (3-Layer)

Disk (3-Layer)

FPR

ASF 1-Layer QA Filter ASF 3-Layer Static SF

.0101 .0087 .0028 .0017

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Queries Processed 1e7

0

2

4

6

8

10

12

14

16

18

Ti
m

e
El

ap
se

d
(S

ec
)

Phase 1 Phase 2

a) b)

c)

Figure 6: High performance without workload knowledge.

Fast IncrementalConstruction. Figure 6a shows the performance

of an ASF and a query-agnostic filter on a static workload of 10

million queries, with the filters protecting against data accesses to

an SSD. The height of each bar shows the total time taken to process

the queries, and the colors inside each bar show the breakdown of

how that time is spent. Overall, the ASF results in better perfor-

mance over the workload compared with the query-agnostic filter,

as its gains in FPR after the 3rd filter is built more than compensate

for the cost to build 𝐿3 and its slightly worse performance when

using only 𝐿1.

Adapting to Shifting Workloads. Figure 6b shows that ASFs

work well for shifting workloads. Phase 1 of the experiment repli-

cates the previous experiment; then, in phase 2, the query frequency

distribution remains a Zipf with parameter [= 1 but the popular-

ity of the elements is flipped so that the previously least popular

element is now the most popular and vice versa. The figure details

how long the ASF and query-agnostic filter take to process each

workload. Additionally, the colored bars show what phase the ASF

is in during query processing at the time of each query.

While phase 1 shows as before that the ASF performs well on

static workloads, phase 2 shows that the ASF can adapt to shifts in

workload. The ASF does so by recognizing at the start of phase 2

that a shift has occurred and signaling a rebuild. Then, performance

continues as in a static phase: the ASF learns the new workload

pattern quickly by incrementally building layer 2, then builds layer

3 and capitalizes on the reduced false positive rate once that occurs.

Ultimately, across both phases, ASFs process the workload 1.6×
faster than query-agnostic filters.

Breaking Down ASF Performance. Figure 6c breaks down the

benefits of ASFs and compares them with static Stacked Filters. The

table repeats a trend seen throughout the paper: the first layer of

a Stacked Filter is nearly as performant as a query-agnostic filter.

Then, as the ASF builds its 3rd layer its FPR drops to nearly 1/4 of its

previous value and is 3× more performant than the query-agnostic

filter. Finally, we see that compared to a static Stacked Filter on

phase 1, ASF is about 1.6× worse, so if workloads are sufficiently

static, then a static Stacked Filter is best.

9 RELATEDWORK
Sandwiched Learned Filters. Sandwiched Learned Filters (SLFs)

are an extension of Learned Bloom Filters which use a preliminary

filter before querying the classifier [32]. Similarly to our findings,

the use of a sequence of filters brings increased space efficiency

and reduced false positive rates. However, SLFs remain centered

around a computationally expensive model, whereas Stacked Filters

achieve performance similar to hash-based filters. In addition, Sta-

cked Filters extend to arbitrary heights, while extending SLFs to

more layers would need to take into account the difficulties arising

from using a series of dependent ML models.

Filters that Use Frequent Negatives. There is a limited existing

literature on Bloom Filters which use knowledge of the negative set

in construction to create better false positive rates. Most of these

require different assumptions than Stacked Filters such as 1) being

able to store the whole negative set [10, 30] or 2) allowing some

false negatives [19]. The closest in functionality would be Adaptive

Cuckoo Filters [33], which correct false positives at the cost of extra

space. Compared to Stacked Filters, they more easily adapt to the

workload but have a worse FPR-size tradeoff.

Filter Variations. Many designs have been proposed to solve the

standard filtering problem and work to lower the FPR vs. size trade-

off of filters [4, 6, 20, 44]. Other filter designs aim at building better

filters in terms of their system throughput and optimize their com-

putation or memory accesses [9, 15, 26, 27, 29, 31, 34, 37]. This work

is all complementary to Stacked Filters as increasing the efficiency

of each base filter creates better Stacked Filters.

10 CONCLUSION
Stacked Filters learn to structurally take advantage of workload

knowledge via hashing, as opposed to learning to separate keys

from non-keys based on semantic information via a classifier. They

eschew intra-key similarity in order to focus on succinct hash-based

memorization of frequent negatives. This provides provably good

properties in terms of computation, robustness, and false positive

rate. By taking into account workload knowledge, Stacked Filters

also provide better FPR/space tradeoffs than query-agnostic filters,

providing a good balance of the best properties of both query-

agnostic and Learned filters.

REFERENCES
[1] Shalla secure services kg. http://www.shallalist.de.

[2] Top 10millionwebsites: Openpagerank. "https://www.domcop.com/openpagerank/what-

is-openpagerank".

[3] K. Anderson and S. Plimpton. Firehose streaming benchmarks, 2015.

"https://firehose.sandia.gov/".

[4] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kuszmaul, D. Med-

jedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok. Don’t thrash: how to

cache your hash on flash. Proceedings of the VLDB Endowment, 5(11):1627–1637,
2012.

[5] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970.

[6] A. D. Breslow and N. S. Jayasena. Morton filters: Faster, space-efficient cuckoo

filters via biasing, compression, and decoupled logical sparsity. Proceedings of
the VLDB Endowment, 11(9):1041–1055, 2018.

[7] A. Broder, M. Mitzenmacher, and A. B. I. M. Mitzenmacher. Network applications

of bloom filters: A survey. In Internet Mathematics, pages 636–646, 2002.
[8] J. Bruck, J. Gao, and A. Jiang. Weighted bloom filter. pages 2304 – 2308, 08 2006.

[9] M. Canim, G. A. Mihaila, B. Bhattacharjee, C. A. Lang, and K. A. Ross. Buffered

bloom filters on solid state storage. In ADMS@ VLDB, pages 1–8, 2010.
[10] L. Carrea, A. Vernitski, and M. Reed. Yes-no bloom filter: A way of representing

sets with fewer false positives. arXiv preprint arXiv:1603.01060, 2016.
[11] L. Carter, R. Floyd, J. Gill, G. Markowsky, andM.Wegman. Exact and approximate

membership testers. In Proceedings of the tenth annual ACM symposium on Theory
of computing, pages 59–65. ACM, 1978.

[12] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. Analyzing the video pop-

ularity characteristics of large-scale user generated content systems. IEEE/ACM
Transactions on networking, 17(5):1357–1370, 2009.

[13] Z. Dai and A. Shrivastava. Adaptive learned bloom filter (ada-bf): Efficient

utilization of the classifier, 2019.

[14] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey: Optimal navigable key-value

store. In Proceedings of the 2017 ACM International Conference on Management of
Data, pages 79–94. ACM, 2017.

[15] B. Debnath, S. Sengupta, J. Li, D. J. Lilja, and D. H. Du. Bloomflash: Bloom

filter on flash-based storage. In 2011 31st International Conference on Distributed
Computing Systems, pages 635–644. IEEE, 2011.

[16] K. Deeds, B. Hentschel, and S. Idreos. Technical report: Stacked filters, 2020.

http://daslab.seas.harvard.edu/publications/

StackedFilters.pdf.

[17] F. Deng and D. Rafiei. Approximately detecting duplicates for streaming data

using stable bloom filters. In Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 25–36. ACM, 2006.

[18] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor. Longest prefix matching

using bloom filters. In Proceedings of the 2003 conference on Applications, tech-
nologies, architectures, and protocols for computer communications, pages 201–212.
ACM, 2003.

[19] B. Donnet, B. Baynat, and T. Friedman. Retouched bloom filters: allowing net-

worked applications to trade off selected false positives against false negatives.

In Proceedings of the 2006 ACM CoNEXT conference, page 13. ACM, 2006.

[20] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher. Cuckoo filter:

Practically better than bloom. In Proceedings of the 10th ACM International on
Conference on emerging Networking Experiments and Technologies, pages 75–88.
ACM, 2014. https://github.com/efficient/cuckoofilter.

[21] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable wide-

area web cache sharing protocol. IEEE/ACM Transactions on Networking (TON),
8(3):281–293, 2000.

[22] D. Geneiatakis, N. Vrakas, and C. Lambrinoudakis. Utilizing bloom filters for

detecting flooding attacks against sip based services. computers & security,
28(7):578–591, 2009.

[23] A. Gervais, S. Capkun, G. O. Karame, and D. Gruber. On the privacy provisions

of bloom filters in lightweight bitcoin clients. In Proceedings of the 30th Annual
Computer Security Applications Conference, pages 326–335. ACM, 2014.

[24] B. Goodwin, M. Hopcroft, D. Luu, A. Clemmer, M. Curmei, S. Elnikety, and Y. He.

Bitfunnel: Revisiting signatures for search. In SIGIR ’17 Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, 2017.

[25] T. M. Graf and D. Lemire. Xor filters: Faster and smaller than bloom and cuckoo

filters, 2019.

[26] T. Gubner, D. Tomé, H. Lang, and P. Boncz. Fluid co-processing: Gpu bloom-

filters for cpu joins. In Proceedings of the 15th International Workshop on Data
Management on New Hardware, page 9. ACM, 2019.

[27] A. Iacob, L. Itu, L. Sasu, F. Moldoveanu, and C. Suciu. Gpu accelerated information

retrieval using bloom filters. In 2015 19th International Conference on System
Theory, Control and Computing (ICSTCC), pages 872–876. IEEE, 2015.

[28] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned index

structures. In Proceedings of the 2018 International Conference on Management of
Data, pages 489–504. ACM, 2018.

[29] H. Lang, T. Neumann, A. Kemper, and P. Boncz. Performance-optimal filtering:

Bloom overtakes cuckoo at high throughput. Proceedings of the VLDB Endowment,
12(5):502–515, 2019.

[30] H. Lim, J. Lee, and C. Yim. Complement bloom filter for identifying true posi-

tiveness of a bloom filter. IEEE communications letters, 19(11):1905–1908, 2015.
[31] L. Ma, R. D. Chamberlain, J. D. Buhler, and M. A. Franklin. Bloom filter perfor-

mance on graphics engines. In 2011 International Conference on Parallel Processing,
pages 522–531. IEEE, 2011.

[32] M. Mitzenmacher. A model for learned bloom filters and optimizing by sand-

wiching. In Advances in Neural Information Processing Systems, pages 464–473,
2018.

[33] M. Mitzenmacher, S. Pontarelli, and P. Reviriego. Adaptive cuckoo filters. ACM
J. Exp. Algorithmics, 25, Mar. 2020.

[34] P. Pandey, M. A. Bender, R. Johnson, and R. Patro. A general-purpose

counting filter: Making every bit count. In Proceedings of the 2017 ACM In-
ternational Conference on Management of Data, pages 775–787. ACM, 2017.

https://github.com/splatlab/cqf.

[35] G. Pike and J. Alakuijala. Cityhash, Jan 2011.

https://github.com/google/cityhash/blob/master/src/city.h.

[36] M. J. D. Powell. A Direct Search Optimization Method That Models the Objective
and Constraint Functions by Linear Interpolation, pages 51–67. 1994.

[37] F. Putze, P. Sanders, and J. Singler. Cache-, hash-and space-efficient bloom

filters. In International Workshop on Experimental and Efficient Algorithms, pages
108–121. Springer, 2007.

[38] D. L. Quoc, I. E. Akkus, P. Bhatotia, S. Blanas, R. Chen, C. Fetzer, and T. Strufe. Ap-

proxjoin: Approximate distributed joins. In ACM Symposium of Cloud Computing
(SoCC) 2018, 2018.

[39] J. W. Rae, S. Bartunov, and T. P. Lillicrap. Meta-learning neural bloom filters.

arXiv preprint arXiv:1906.04304, 2019.
[40] S. Ramesh, O. Papapetrou, and W. Siberski. Optimizing distributed joins with

bloom filters. In International Conference on Distributed Computing and Internet
Technology, pages 145–156. Springer, 2008.

[41] RocksDB. Rocksdb trace, replay, analyzer, and workload generation,

2020. "https://github.com/facebook/rocksdb/wiki/RocksDB-Trace,-Replay,-

Analyzer,-and-Workload-Generation".

[42] H. Stranneheim, M. Käller, T. Allander, B. Andersson, L. Arvestad, and J. Lun-

deberg. Classification of dna sequences using bloom filters. Bioinformatics,
26(13):1595–1600, 2010.

[43] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz. Theory and practice of bloom fil-

ters for distributed systems. IEEE Communications Surveys & Tutorials, 14(1):131–
155, 2012.

[44] M. Wang, M. Zhou, S. Shi, and C. Qian. Vacuum filters: More space-efficient and

faster replacement for bloom and cuckoo filters. Proc. VLDB Endow., 13(2):197–210,
Oct. 2019.

[45] X. Wang, Y. Ji, Z. Dang, X. Zheng, and B. Zhao. Improved weighted bloom filter

and space lower bound analysis of algorithms for approximated membership

querying. In M. Renz, C. Shahabi, X. Zhou, and M. A. Cheema, editors, Database
Systems for Advanced Applications, pages 346–362, Cham, 2015.

"

11 PROOFS
11.1 Proof of Size Concentration Bounds

Theorem 4. Let 𝑠 ′ be the size of a filter using Algorithm 1, and
assume that a Stacked Filter of𝑇𝐿 layers false positive rate 𝛼𝑖 for each
layer 𝑖 ∈ {1, . . . ,𝑇𝐿}. Let 𝛼𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝛼𝑖 ≤ 1

2
and 𝛼𝑚𝑖𝑛 = min𝑖 𝛼𝑖 .

Then
P(|𝑠 ′ − 𝐸 [𝑠 ′] | ≥ 𝑘𝐸 [𝑠 ′]) ≤

1

|𝑃 | ·
1

𝑘2
· (𝑠 (𝛼𝑚𝑖𝑛) (1 − 𝛼𝑚𝑖𝑛)
𝑠 (𝛼𝑚𝑎𝑥) (1 − 𝛼𝑚𝑎𝑥)

)2 ·
(1 + |𝑁𝑓 |

|𝑃 |)𝛼𝑚𝑎𝑥

(1 + |𝑁𝑓 |
|𝑃 | 𝛼𝑚𝑖𝑛)2

Proof. The result is an application of Chebyshev’s inequality.

Start by letting 𝑋
𝑛,𝑗

𝑁
, 𝑗 ∈ {1, . . . , |𝑁𝑓 |} denote the event that item 𝑗

of the set 𝑁𝑓 made it to negative layer 𝑛 in construction. Similarly,

𝑋
𝑛,𝑗

𝑃
denote the event positive item 𝑗 made it to positive layer 𝑛.

Since 𝑠 ′, 𝑠 are in bits per positive element, we have

𝑠 ′ =
1

|𝑃 |

|𝑃 |∑︂
𝑗=1

(𝑇𝐿+1)/2∑︂
𝑖=1

𝑠 (𝛼2𝑖−1)𝑋 𝑖, 𝑗

𝑃
+

|𝑁𝑓 |∑︂
𝑗=1

(𝑇𝐿−1)/2∑︂
𝑖=1

𝑠 (𝛼2𝑖)𝑋 𝑖, 𝑗

𝑁

By using 𝛼𝑚𝑎𝑥 in the size equation and 𝛼𝑚𝑖𝑛 for the condi-

tional chance of making it to the next layer, we have 𝐸 [𝑠 ′] ≥

𝑠 (𝛼𝑚𝑎𝑥)
1+

|𝑁𝑓 |
|𝑃 | 𝛼𝑚𝑖𝑛

1−𝛼𝑚𝑖𝑛
.

For the variance part, we have that 𝑋
𝑚,𝑗

𝐶1

⊥⊥ 𝑋
𝑚′, 𝑗 ′

𝐶2

unless 𝐶1 =

𝐶2 and 𝑗 = 𝑗 ′ by our method of construction. Thus

Var[𝑠 ′] ≤ (𝑠 (𝛼𝑚𝑖𝑛)2
|𝑃 |)

(︁
Var[

𝑇𝐿+1
2∑︂

𝑖=1

𝑋
𝑖,1
𝑃
] +

|𝑁𝑓 |
|𝑃 | Var[

𝑇𝐿−1
2∑︂

𝑖=1

𝑋
𝑖,1
𝑁
]
)︁

To break down the summation, we use Eve’s law. Letting F𝑛
𝑁

be

the filtration containing all events up to negative layer 𝑛, we have

Var[
𝑛∑︂
𝑖=1

𝑋
𝑖,1
𝑁
] = 𝐸 [Var[

𝑛∑︂
𝑖=1

𝑋
𝑖,1
𝑁

| F𝑛−1𝑁] + Var[𝐸 [
𝑛∑︂
𝑖=1

𝑋
𝑖,1
𝑁
] | F𝑛−1𝑁]

≤ (1 − 𝛼𝑚𝑎𝑥)𝛼𝑛𝑚𝑎𝑥 + Var[
𝑛−2∑︂
𝑖=1

𝑋
𝑖,1
𝑁

+ (1 + 𝛼𝑚𝑎𝑥)𝑋𝑛−1,1
𝑁

]

From here, one can use Eve’s law recursively to expand the expres-

sion on the right until reaching an expression only involving 𝑋 0

𝑁
.

Evaluating this gives:

Var[
𝑛∑︂
𝑖=1

𝑋𝑛
𝑁] ≤

𝑛∑︂
𝑗=1

(
𝑗∑︂

𝑖=0

𝛼𝑖)2 · 𝛼𝑛−𝑗𝑚𝑎𝑥 · (𝛼𝑚𝑎𝑥) (1 − 𝛼𝑚𝑎𝑥)

≤ 𝛼𝑚𝑎𝑥

(1 − 𝛼𝑚𝑎𝑥)2
We note that this makes intuitive sense as it is less variance than

a geometric series using success parameter (1 − 𝛼𝑚𝑎𝑥). A similar

result holds for Var[∑︁𝑋
𝑛,1
𝑃

], and combining these two results with

the variance expression above, the expected value expression above,

and using Chebyshev’s inequality gives the desired result. □

11.2 Derivation of Computational Costs
Construction. For both positives and frequently queried negatives,
the construction algorithm is best analyzed in pairs, wherein the

same number of elements are inserted at one layer and queried

against the next. For positives, every element is inserted into 𝐿1 and

checked against𝐿2. The false positives from𝐿2 are then inserted into

𝐿3 and checked against 𝐿4, and so on. The total cost, in terms of base

filter operations, is |𝑃 | (𝑐𝑖 +𝑐𝑞)+ |𝑃 |𝛼2 (𝑐𝑖 +𝑐𝑞)+ |𝑃 |𝛼2𝛼4 (𝑐𝑖 +𝑐𝑞)+
In more concise notation, this is

|𝑃 | (𝑐𝑖 + 𝑐𝑞)
(︁ 𝑇𝐿−1

2
−1∑︂

𝑖=0

𝑖∏︂
𝑗=0

𝛼2𝑖
)︁
+ |𝑃 |𝑐𝑖

𝑇𝐿−1
2∏︂

𝑗=0

𝛼2𝑖

where the final term comes from the last layer insertions.

For negative layers, the analysis is similar, but the paired layers

are instead 2 and 3, 4 and 5, and so on, with frequently queried

negatives having the first layer unpaired instead of the last. The

number of operations to insert negatives is

|𝑁𝑓 |𝑐𝑞 + |𝑁𝑓 | (𝑐𝑖 + 𝑐𝑞)

𝑇𝐿−1
2∑︂

𝑖=0

𝑖∏︂
𝑗=1

𝛼2𝑗−1

The total construction cost is the sum of the operations for positive

and frequently queried negative elements.

In the case that the 𝛼 values are all equal, the total cost can be

bounded using geometric series by

|𝑃 | (𝑐𝑖 + 𝑐𝑞)
1

1 − 𝛼
+ |𝑁 |𝑐𝑞 + |𝑁 | (𝑐𝑖 + 𝑐𝑞)

𝛼

1 − 𝛼
In this case, comparing against the cost for a single base filter of

𝑐𝑖 · |𝑃 |, the overhead is seen to be the cost of querying a base filter

for both every positive and frequently queried negative element

once, plus a small overhead from stacking.

Query Costs. The analysis of querying a Stacked Filter for a posi-

tive or frequently queried negative is almost exactly the same as

the analysis for constructing a Stacked Filter, except that inserts

are replaced with queries. For instance, when querying a positive,

it queries 𝐿1 and 𝐿2 with certainty, 𝐿3 and 𝐿4 with probability 𝛼2,

𝐿3 and 𝐿4 with probability 𝛼2𝛼4 and so on. The resulting equations

for positive and frequently queried negative elements are

𝑐 ′𝑞,𝑃 = 2𝑐𝑞 (
∑︂𝑇𝐿−3

2

𝑖=0

∏︂𝑖

𝑗=0
𝛼2𝑖) + 𝑐𝑞

∏︂𝑇𝐿−1
2

𝑗=0
𝛼2𝑖

𝑐 ′𝑞,𝑁𝑓
= 𝑐𝑞 + 2𝑐𝑞

∑︂𝑇𝐿−1
2

𝑖=0

∏︂𝑖

𝑗=1
𝛼2𝑗−1

For an infrequently queried negative element, it can be rejected

by both positive and negative layers. Thus, the probability of it

reaching layer 𝑖 is the product of the false positive rates for layers

1, . . . , 𝑖 − 1

𝑐 ′𝑞,𝑁𝑖
= 𝑐𝑞 (

𝑇𝐿∑︂
𝑖=0

𝑖∏︂
𝑗=0

𝛼𝑖)

Letting the FPRs at each layer be equal and using geometric

series bounds, we have:

𝑐 ′𝑞,𝑃 ≤ 2

1 − 𝛼
𝑐𝑞, 𝑐𝑞,𝑁𝑓

≤ 1 + 𝛼

1 − 𝛼
𝑐𝑞, 𝑐 ′𝑞,𝑁𝑖

≤ 1

1 − 𝛼
𝑐𝑞

11.3 Proofs
11.3.1 Proof of Quasiconvexity. Note: can cite paper "Beyond Con-

vexity: Stochastic Quasi-Convex Optimization" for theoretical con-

vergence to local minimum in some convergence speed.

Theorem 5. The size function 𝑠 (𝛼) = − log
2
(𝛼)

𝑓
∗ (1

1−𝛼 + |𝑁𝑓 |
|𝑃 |

𝛼
1−𝛼)

is quasiconvex on (0,1) for 𝑓 > 0.

Proof. For functions of a single variable, a sufficient condition

for quasiconvexity is that 𝑠 ′ starts negative, has at most one root,

and is then positive after (in the case a root exists). We use this to

prove the quasiconvexity of 𝑠 . For notational convenience, we will

replace

|𝑁𝑓 |
|𝑃 | with 𝑁 , and note 𝑁 > 0.

We have

𝑠 ′(𝛼) = 𝑁𝛼2 + (1 − 𝑁)𝛼 − (𝑁 + 1)𝛼 ln𝛼 − 1

((1 − 𝛼)2𝛼 ln 2)
Let 𝑓 be the numerator of 𝑠 ′, i.e. 𝑁𝛼2+ (1−𝑁)𝛼 − (𝑁 +1)𝛼 ln𝛼 −1),
and note the denominator is positive for 𝛼 ∈ (0, 1). It follows that
sign(𝑠 ′) = sign(𝑓), and therefore it is enough to show 𝑓 starts

negative and either has no roots, or has one root and is positive for

all values after its root.

First, as 𝛼 → 0, 𝑓 (𝛼) → −1, so 𝑓 starts negative. Second, we

note the functional forms of 𝑓 ′, 𝑓 ′′:
𝑓 ′(𝛼) = 2𝑁 (𝛼 − 1) − (𝑁 + 1) ln𝛼

𝑓 ′′(𝛼) = 2𝑁 − 𝑁 + 1

𝛼
By inspection, 𝑓 ′′(𝛼) has one root in R, and so by Rolle’s Theorem,

𝑓 ′(𝛼) has at most two roots in R. 𝑓 ′(1) = 0, so it has at most one

other root. Since lim𝛼→0 𝑓
′(𝛼) = ∞, then if the other root is after 1,

𝑓 is monotonically increasing on (0, 1) and we are done. Otherwise,
𝑓 ′ has a single root 𝛼1 ∈ (0, 1). It follows that 𝑓 cannot have a root

in [𝛼1, 1) since 𝑓 (1) = 0 and 𝑓 (𝛼2) = 0 for 𝛼2 ∈ [𝛼1, 1) would imply

the existence of another root for 𝑓 ′.
Since 𝑓 ′(𝛼) > 0 : ∀𝛼 ∈ (0, 𝛼1), it follows that if 𝑓 has a root in

𝛼∗ ∈ (0, 𝛼1), then 𝑓 (𝛼) > 0 : ∀𝛼 ∈ (𝛼∗, 1). This is what we set out
to show and so 𝑠 is quasiconvex. □

Theorem 6. The function 𝑠 (𝛼) = − log
2
(𝛼)+𝑐
𝑓

∗ (1

1−𝛼 + |𝑁𝑓 |
|𝑃 |

𝛼
1−𝛼)

is quasiconvex on (0,1) when 𝑐 ≥ 0, 𝑓 > 0.

Proof. As before let 𝑁 =
|𝑁𝑘 |
|𝑃 | . Take the derivative of 𝑠 , note

the denominator is positive, and form 𝑓𝑐 from the numerator of

𝑠 ′, which in this case is 𝑁𝛼2 + (1 − 𝑁)𝛼 − (𝑁 + 1)𝛼 ln𝛼 − 1 +
(𝑁 + 1)𝑐𝛼 ln 2. As in the proof of Theorem 5, sign(𝑓𝑐) = sign(𝑠 ′).
Additionally, note that 𝑓𝑐 is equal to 𝑓 from the previous problem

plus an additional positive term: (𝑁 + 1)𝑐𝛼 ln 2.

In the case that 𝑓 is an increasing function on (0, 1), then so

is 𝑓𝑐 and we are done. Otherwise, let 𝑓 ′ have a root 𝛼1. Then on

(0, 𝛼1) both 𝑓 and 𝑓𝑐 are increasing functions and so have at most

one root. On (𝛼1, 1), 𝑓 > 0 and so 𝑓𝑐 > 0; thus both have 0 roots

in (𝛼1, 1). Finally, we note that 𝑙𝑖𝑚𝛼→0 𝑓𝑐 (𝛼) = −1 and 𝑓𝑐 (1) =

(𝑁 + 1) ∗ 𝑐 ∗ ln 2 > 0. Thus 𝑓𝑐 starts negative, has exactly one root,

and is then positive. The same is therefore true of 𝑠 ′ and so 𝑠 (𝛼) is
quasiconvex. □

11.3.2 Sweep over 𝑁 Proof.

Theorem 7. Given an oracle returning the optimal EFPR for a
given set 𝑁𝑓 satisfying all constraints, finding the optimal EFPR
across all values of |𝑁𝑓 | to within 𝜖 requires 𝑂 (1𝜖) calls to the oracle.

Proof. For 𝑖 ∈ {1, 2}, let 𝑁𝑖 be the set of 𝑛𝑖 most heavily queried

elements, let 𝜓𝑖 = 𝑃 (𝑥 ∈ 𝑁𝑖 |𝑥 ∈ 𝑁), let 𝐸𝐹𝑃𝑅∗
𝑖
be the best EFPR

using𝑁𝑖 satisfying all constraints, and let 𝑃𝑖 (𝑥) be shorthand for the
chance 𝑥 is a false positive using the Stacked Filter giving 𝐸𝐹𝑃𝑅∗

𝑖
.

Then

𝐸𝐹𝑃𝑅∗
2
= 𝜓2𝑃2 (𝑥 |𝑥 ∈ 𝑁𝑓) + (1 −𝜓2)𝑃2 (𝑥 |𝑥 ∈ 𝑁𝑢)
= 𝜓1𝑃2 (𝑥 |𝑥 ∈ 𝑁𝑓) + (1 −𝜓1)𝑃2 (𝑥 |𝑥 ∈ 𝑁𝑢)
+ (𝜓2 −𝜓1) (𝑃2 (𝑥 |𝑥 ∈ 𝑁𝑓) − 𝑃2 (𝑥 |𝑥 ∈ 𝑁𝑢))

≥ 𝐸𝐹𝑃𝑅∗
1
− (𝜓2 −𝜓1)𝑃2 (𝑥 |𝑥 ∈ 𝑁𝑢)

≥ 𝐸𝐹𝑃𝑅∗
1
− (𝜓2 −𝜓1)

As a result, we can start at |𝑁𝑓 | = 0 elements and scan the most

frequently queried elements in order. When more than 𝜖 difference

exists in the 𝜓 values between the last call to the oracle and the

current 𝑁𝑓 , then we call the oracle again. By the above statements,

this produces an EFPR within an 𝜖 amount of the best EFPR possible

across all possible sets for 𝑁𝑓 . □

Both Algorithm 3 and the algorithm for optimizing continu-

ous FPR Stacked Filters use less optimization subroutines than

the proof above, although the number is still 𝑂 (1𝜖). The change
comes modifying the final line of the proof, using the fact that if

𝐸𝐹𝑃𝑅∗
2
≤ 𝛼 , where 𝛼 is the FPR of a 1-layer Stacked Filter, then

𝑃2 (𝑥 |𝑥 ∈ 𝑁𝑢) ≤ 𝛼
1−𝜓2

.

11.3.3 Proof of Theorem 3. We restate Theorem 3 here for conve-

nience:

Theorem 8. Assume the equation for the size of a base filter in
bits per positive element is of the form 𝑠 (𝛼𝑖) =

− log
2
(𝛼𝑖)+𝑐
𝑓

. Let the
positive set have size |𝑃 |, let the distribution of our negative queries be
𝐷 , and let 𝛼 be a desired EFPR. If there exists any set 𝑁𝑓 ,𝜓 = P𝐷 (𝑥 ∈
𝑁𝑓 |𝑥 ∈ 𝑁), and 𝑘 ≤ 𝜓 such that

|𝑁𝑓 |
|𝑃 | ≤

ln
1

1−𝑘
ln

1−𝑘
𝛼 + 𝑐

· 1 − 𝑘 − 𝛼

𝛼
− 1

then a Stacked Filter (optimized using Section 5 and given access to
any 𝑁𝑓 satisfying the constraint) achieves the EFPR 𝛼 using fewer
bits than a query-agnostic filter.

Proof. We limit ourselves to Stacked Filters which have an equal

FPR 𝛼𝐿 at each layer. In this case, we have that the EFPR of the

filter is

𝜓𝛼
𝑇𝐿−1/2
𝐿

+ (1 −𝜓) [(1 − 𝛼𝐿) ∗ (𝛼𝐿 + 𝛼3𝐿 + ... + 𝛼𝑇𝐿−2) + 𝛼𝑇𝐿]
For some 𝑁 , 𝑇𝐿 ≥ 𝑁 implies this is less than (1 − 𝜓)𝛼𝐿 . Thus, a
Stacked Filter of length 𝑁 and 𝛼𝐿 ≤ 𝛼

1−𝜓 has an EFPR less than 𝛼 .

Our goal is then to show that there exists a Stacked Filter with

𝛼𝐿 ≤ 𝛼
1−𝜓 which has size less than

− ln(𝛼)+𝑐
𝑓

. From Section 4, we

have that the size of a Stacked Filter is bounded above by

𝑠 (𝛼𝐿)
(︃

1

1 − 𝛼𝐿
+
|𝑁𝑓 |
|𝑃 |

𝛼𝐿

1 − 𝛼𝐿

)︃
Plugging in our equations for the size of a base filter, a Stacked

Filter is better than a traditional filter if 0 ≤ 𝛼𝐿 ≤ 𝛼
1−𝜓 and

− ln𝛼𝐿 + 𝑐
𝑓 ln 2

(︃
1

1 − 𝛼𝐿
+
|𝑁𝑓 |
|𝑃 |

𝛼𝐿

1 − 𝛼𝐿

)︃
≤ − ln𝛼 + 𝑐

𝑓 ln 2
(4)

We now let 𝛼𝐿 = 𝛼
1−𝑘 , and our EFPR equation gives the restraint

0 ≤ 𝑘 ≤ 𝜓 . We further break apart our equation for size into two

parts: our goal will be to show that
1

1−𝛼𝐿
+ |𝑁𝑓 |

|𝑃 |
𝛼𝐿

1−𝛼𝐿
≤ 1 + 𝑏, and

that (1 +𝑏) − ln𝛼𝐿+𝑐
𝑓 ln 2

≤ − ln𝛼+𝑐
𝑓 ln 2

. If both equations are satisfied, then

(4) is satisfied as well.

Part 1: (1+𝑏) − ln𝛼𝐿+𝑐
𝑓 ln 2

≤ − ln𝛼+𝑐
𝑓 ln 2

: Plugging in 𝛼𝐿 = 𝛼
1−𝑘 and solving

this inequaliity gives: 𝑏 ≤ − ln 1−𝑘
− ln

𝛼
1−𝑘 +𝑐

.

Part 2:
1

1−𝛼𝐿
+ |𝑁𝑓 |

|𝑃 |
𝛼𝐿

1−𝛼𝐿
≤ 1 + 𝑏: Rearranging, we get

|𝑁𝑓 |
|𝑃 | ≤

𝑏
𝛼𝐿

− 1 − 𝑏. We now set 𝑏 = ln 1−𝑘
ln

𝛼
1−𝑘

, satisfying the inequality above,

Algorithm 5 createNewOptObj

Input: 𝑓1, 𝑓2: fingerprint sizes of new positive and negative layer

Input: optObj: prior optimization object

1: 𝛼1, 𝛼2 = 2
𝑐−𝑓1 , 2𝑐−𝑓2

2: newOpt.s = (optObj.s - 𝑓1 - objObj.
|𝑁𝑓 |
|𝑃 | × 𝛼1 × 𝑓2)/𝛼2;

3: newOpt.𝜓 =
𝑜𝑝𝑡𝑂𝑏 𝑗 .𝜓

𝑜𝑝𝑡𝑂𝑏 𝑗 .𝜓+(1−𝑜𝑝𝑡𝑂𝑏 𝑗 .𝜓)×𝛼2

4: newOpt.

|𝑁𝑓 |
|𝑃 | = optObj.

|𝑁𝑓 |
|𝑃 | × 𝛼1

𝛼2

// prop is the proportion of negative queries which reach the end of

the stack

5: newOpt.prop = optObj.prop ×𝛼1 × (obtObj.𝜓 + (1 − optObj.𝜓) × 𝛼2)
6: newOpt.FPR = optObj.FPR + (1 − optObj.𝜓 × 𝛼1 × (1 − 𝛼2))
7: newOpt.fingerprints = optObj.fingerprints +{𝑓1, 𝑓2 }
8: return newOpt

Algorithm 3 Optimization of fingerprint-based filters

Input: 𝜓𝑑𝑖𝑠𝑡 : a function translating |𝑁𝑓 | into a𝜓 value

Input: 𝑠 : a size constraint in bits/element

Input: 𝜖 : a slack from optimum

1: FPR_1L = FPR_SINGLE_LAYER(size)

2: bestFPR, bestSetup = FPR_1_Layer, {𝛼1𝐿 }

// remove constant load factor 𝑓 .

// Size eq. becomes 𝑠 (𝛼) = − log
2
(𝛼) + 𝑐

3: 𝑠′ = 𝑠
𝑓

4: lastPsi = 0

5: for |𝑁𝑓 | = ⌈ |𝑃 |
1000

⌉ to |𝑁𝑠𝑎𝑚𝑝 | do
6: newPsi =𝜓𝑑𝑖𝑠𝑡 (𝑁𝑓)
7: if 𝑛𝑒𝑤𝑃𝑠𝑖 − 𝑙𝑎𝑠𝑡𝑃𝑠𝑖 ·min(1, 𝐹𝑃𝑅_1𝐿

1−𝑛𝑒𝑤𝑃𝑠𝑖
) ≥ 𝜖

2
then

8: FPR, setup = optNFixed(s’, newPsi,

|𝑁𝑓 |
|𝑃 | ,

𝜖
2
)

9: lastPsi = newPsi

10: if FPR < bestFPR then
11: bestFPR, bestSetup = FPR, setup

12: return bestFPR, bestSetup

Algorithm 4 optNFixed

Input: 𝜓, 𝑠,
|𝑁𝑓 |
|𝑃 | , 𝜖

// construction values below correspond to order they appear in Algo-

rithm 5

1: startObject = OptObj(s,𝜓,
|𝑁𝑓 |
|𝑃 | , 1.0, 0.0)

2: queue = {startObject}

3: bestFPR, bestSetup = FPR_1_Layer, {𝛼1𝐿 }

// begin breadth first search

4: while !queue.empty() do
5: curObj = queue.pop()

// calculate FPR with this as final layer and check if best

6: addedFPR = 2
𝑐−⌊curObj.s⌋ × curObj.prop

7: if curObj.FPR + addedFPR < bestFPR then
8: bestFPR = curObj.FPR + addedFPR

9: bestSetup = curObj.fingerprints +{ ⌊curObj.s⌋ }
// check if prop. × FPR final layer less than 𝜖

// since best FPR is ≥ 0, implies best expansion within 𝜖

10: if addedFPR < 𝜖 then continue

// perform breadth first search. See text for bounds

11: for i = f1_min; i ≤ ⌊curObj.s⌋; i++ do
12: for j=c+1; j < f2_max; j++ do
13: queue.push(createNewOptObj(f1,f2,curObj))

14: return bestFPR, bestSetup

and plug in
𝛼
1−𝑘 for 𝛼𝐿 . The resulting equation is

|𝑁𝑓 |
|𝑃 | ≤

ln
1

1−𝑘
ln

1−𝑘
𝛼 + 𝑐

· 1 − 𝑘 − 𝛼

𝛼
− 1

as desired, with the constraint that 0 ≤ 𝑘 ≤ 𝜓 .

To see that the constructed Stacked Filter achieves this goal, note

that as 𝜖 → 0, the optimization schemes of Section 5 approach the

optimal filter using an equal FPR at all layers. □

11.4 Optimizing Integer length Fingerprint
Filters

The optimization algorithms for integer length fingerprint Stacked

Filters work similarly to continuous FPR filters. One routine loops

through possible values of |𝑁𝑓 |, always choosing greedily the most

heavily queried elements, and calls another routine to optimize a

Stacked Filter for a given 𝑁𝑓 and 𝜓 . The first routine does so in

a way so as to make sure that the skipped values can produce no

more than an 𝜖 better solution, as proven in Theorem 7.

11.4.1 Breadth First Search on Stacked Filters. Algorithms 4 and

5 deal with the optimization of an integer fingerprint filter given

𝑁𝑓 and 𝜓 . The description of the algorithm is split between the

pseudocode given and various steps described in the text here. For

integer-length fingerprint filters, the optimization algorithm uses

breadth first search on the discrete options available, and its goal is

to find a solution within 𝜖 of the best solution possible. The breadth

first search starts with an empty stack, and at each step expands

upon the current stack. It does so both by 1) finishing the current

stack with a positive layer of maximum size (lines 6-9 of Algorithm

4), which puts no new options onto the BFS queue and 2) looping

over the possible fingerprint lengths for 1 positive and 1 negative

layer (lines 11-13 of Algorithm 4), and adding each of these deeper

stacks onto the BFS queue.

A Brute Force Approach. As there are a discrete number of op-

tions for fingerprints at each layer (given our bounds on 𝑠), the BFS

will build all possible 1 layer stacks, then all possible 3 layer stacks,

then all possible 5 layer stacks, etc. Taking the best FPR solution

of each of these would result in the exact optimal solution of the

best Stacked Filter with 1 layers, 3 layers, 5 layers, etc. However,

the number of possible Stacked Filters grows exponentially with

the number of layers and so this is infeasibly slow even for just 7

or 9 layers. Additionally there isn’t any guarantee about how close

the found solution is to the optimal.

FromBrute Force to 𝜖-approximation.Amore efficient solution

is close each search path (i.e. a partially built stack) by building a

final positive layer in a way that preserves the performance of BFS.

In particular, we do so when using a final positive layer produces a

solution within 𝜖 EFPR of the best possible Stacked Filter starting

with the same initial layers as the current partially built stack.

Then, by aggregating the best seen result across all search paths,

the overall algorithm finds a Stacked Filter within 𝜖 EFPR of the

optimal.

Stopping Condition. A search path is stopped when the propor-

tion of negative queries which reach the end of the partial stack

multiplied by the FPR of a single layer built using all available

space budget is less than epsilon. As an example, assume we have

a four layer stack each with FPR 0.01, that the initial𝜓 = 0.5, that

𝜖 = 10
−5
, and that using all space left for the filter on a single

positive layer gives a final layer with FPR 0.01. The proportion of

queries which will reach the newly built 5th layer is 0.5 ∗ 0.012
+ 0.5 · 0.014 ≈ 5 · 10−4, where the first term is the proportion of

queries from 𝑁𝑓 and the second is the proportion from 𝑁𝑖 . The best

hypothetical Stacked Filter rejects all these queries, resulting in no

false positives from layer 5 onwards; a single layer stack would

have an approximate EFPR of 10
−2 · 5 · 10−4 = 5 · 10−6 from layer 5

onwards, which is less than 𝜖 different from rejecting all queries.

Thus it is suitably close to the best possible Stacked Filter starting

with four layers of FPR = 0.01, and so we choose the one layer stack

and terminate the search path. The stopping condition is lines 6-9

of Algorithm 4.

Expanding the Search. To perform the BFS, we need to figure

out which limited paths need to be searched to produce an optimal

solution. One obvious constraint is that all search paths should be

feasible; i.e. we should only choose fingerprint lengths for each

layer that do not go over the allowed filter size. A second obvious

constraint is that layers should have FPR less than 1, which gives

that the maximum FPR a filter has will be
1

2
.

A third set of constraints comes from the following bounds,

which is derived from the fact that the derivative of size with respect

to 𝛼1 should never be positive (as higher 𝛼1 values always lead to

worse EFPR, it makes no sense to use 𝛼1 values which have worse

EFPR and size). The second equation is just a rewritten version of

the first.

𝛼1 <
|𝑃 |
|𝑁𝑓 |

· 1

ln 2

· 1

− log
2
𝛼2 + 𝑐

𝛼2 > 2

− |𝑃 |
|𝑁𝑓 |

1

ln 2

1

𝛼
1

+𝑐

The bounds on 𝛼1 and 𝛼2 then become the following bounds for

fingerprint sizes, where 𝑓1, 𝑓2 are the integer-valued fingerprint

sizes for elements in 𝐿1 and 𝐿2:

𝑓1 > ⌊− log
2

|𝑃 |
|𝑁𝑓 |

1

1 + 𝑐
1

ln 2

⌋ (5)

𝑓2 < ⌈ |𝑃 ||𝑁 |
1

ln 2

2
𝑓1−𝑐 ⌉ (6)

In the first equation we plugged in 𝛼2 ≤ 1

2
since we choose 𝛼1

before 𝛼2 in Algorithm 4. The ceiling and floor functions comes

from the fact that the problem is discrete.

Recursive Nature of BFS. One of the key insights of the BFS

algorithm is that optimizing a Stacked Filter starting at level 3 (i.e.

the first two levels are decided already) is equivalent to optimizing

a Stacked Filter at level 1. In particular, because the problem of

designing an optimal stack from layer 3 onwards is identical to

designing a stack from layer 1, the bounds above on 𝑓1 and 𝑓2 apply

each time we look into building 2 new layers, (using an updated

value of

|𝑁𝑓 |
|𝑃 | which represents the expected sizes of |𝑁𝑓 | and |𝑃 |

reaching this layer).

Algorithm 5 updates all the parameters for the next layer. That

is, it tracks parameters𝜓, 𝑠, and
|𝑁𝑓 |
|𝑃 | after going through 2 layers,

where these values represent their values conditioned on making it

to the current layer. For instance, the new𝜓 value represents what

proportion of queries reaching the current layer are from 𝑁𝑓 vs.

from𝑁𝑖 . The parameter ’prop’ tells what portion of negative queries

make it to this layer, and the FPR and fingerprints parameters keep

track of the already accrued false positives from negative layers

and the chosen fingerprint sizes so far.

Proof Sketch of Theorem ??. Since each search path terminates

within 𝜖 of its best possible EFPR, and Algorithm 3 chooses the best

EFPR amongst all search paths, then the overall algorithm is within

𝜖 of the best EFPR achievable by any Stacked Filter.

For the runtime analysis of Algorithm 3, we detail only the major

steps of the proof. The theorem is meant to show that the runtime

will not combinatorially explode. The actual runtime, which is of

more interest, is much closer to𝑂 (𝜖−1) for reasons to be explained.

The main ideas of the proof are:

(1) If at any point on a search path the product of the FPRs of all

positive layers is less than 𝜖 , we are done. This can be seen

easily since the proportion of negative queries is less than

the product of the FPRs of all positive layers.

(2) Thus, choosing lower values of 𝛼1 leads to faster progress to-

wards termination. Because 𝛼1 values decrease exponentially

(the options are
1

2
, 1
4
, · · ·), bounding the algorithm runtime

focuses on showing that not too many paths continually pick

large 𝛼1 values (or equivalently, small 𝑓1 values).

(3) High 𝛼1 values lead to a small number of choices for 𝛼2, as

seen in Equation 6. Additionally, the
|𝑃 |
|𝑁𝑓 | value two layers

deeper decreases proportionally by a factor
𝛼2

𝛼1

, so that 𝛼2

cannot continually be larger than 𝛼1 as this eventually drives

the bound in (6) to 0.

(4) Using this fact, it is possible to prove that for a fixed 𝑁𝑓 the

discrete optimization runs in time 𝑂 (𝜖−2 (|𝑁𝑓 |
|𝑃 |)

−2)
(5) To make the total algorithm runtime 𝑂 (𝜖−3), an additional

assumption is made that the optimal filter has

|𝑁𝑓 |
|𝑃 | > 1

1000
.

We find this to be true in practice all the time.

Explosion in 𝑠 along many paths. The previous theorem relied

only on the interplay between choices of 𝑓1 and 𝑓2 and the bound

from equation (6). However, the real reason the algorithm performs

efficiently is that a path terminates if the parameter 𝑠 explodes and

becomes large, as this means a single layer filter often has FPR < 𝜖 .

As a reminder, 𝑠 is in bits per element, so even as the algorithm

uses up space, if a negative layer choice eliminates many positive

elements, 𝑠 can rise dramatically. This is exactly what happens; if

we let 𝑠 ′ be the next value of s, then

𝑠 ′ = (2𝑓2−𝑐) · (𝑠 − 𝑓1 − 𝛼1 ·
|𝑁𝑓 |
|𝑃 | · 𝑓2)

For almost all values of 𝑠 and 𝑓1 (which decides 𝛼1), this equation

either has very few 𝑓2 values which are positive or the equation

grows nearly exponentially and so 𝑠 ′ explodes. Since the FPR is of

the form 2
𝑐
2
−𝑠
, growths in 𝑠 drive the FPRs of a 1 layer stack quickly

towards 0. For instance, at 𝑠 = 40, the FPR is around 10
−12

, which

is a lower FPR than essentially any filter requires in practice. The

result is that many search paths terminate essentially immediately,

and so far fewer Stacked Filter possibilities are added to the queue

than predicted by just the algorithmic analysis above.

2 4 6 8 10
of Collected Negatives (Millions)

0
1000
2000
3000
4000
5000
6000
7000

Op
t T

im
e

(M
s)

Opt w/Sampling
Opt w/Full Data

Figure 7: full sample

2 4 6 8 10
of Collected Negatives (Millions)

0.0030

0.0031

0.0032

0.0033

0.0034

0.0035

Fi
lte

r F
PR

Opt w/Sampling
Opt w/Full Data

Figure 8: w/ subsampling

11.5 3-Layer Optimization of Adaptive Stacked
Filters

This subsection details the process of optimizing a 3-layer ASF. As

input the optimization has a number of queries the filter is expected

to last, denoted by 𝐹𝑇𝑇𝐿 as well as a size budget 𝑠 . We start by

searching over a range of values for 𝑁𝑜 , with the search performed

logarithmically over values between 1000 and 𝐹𝑇𝑇𝐿 , i.e. each value

of 𝑁𝑜 checked is 1.4 times as big as the previous value.

The value of 𝑁𝑜 determines the expected values of𝜓 and |𝑁𝑓 |,
which are:

𝐸 [𝜓] =
∑︂

𝑥 ∈𝑁𝑠𝑎𝑚𝑝

𝑓 (𝑥) (1 − (1 − 𝑓 (𝑥)) |𝑁𝑜 |)

𝐸 [𝑁𝑓] = (ℓ · |𝑁𝑜 |) +
∑︂

𝑥 ∈𝑁𝑠𝑎𝑚𝑝

(1 − (1 − 𝑓 (𝑥)) |𝑁𝑜 |)

Recall that ℓ is the estimate of what portion of queries fall on values

outside our histogram. The equations pessimistically assume in the

second equation that all elements of 𝑁𝑓 which were not present

in the histogram sample will never again be queried, i.e. they are

one-off queries. If the universe of elements is not extremely large

or if the query pattern of the elements not present in the histogram

is skewed, then the true 𝐸 (𝜓) may be higher, and the true 𝐸 (𝑁𝑓)
may be smaller.

If the size of 𝑁𝑠𝑎𝑚𝑝 is large, then calculating exactly 𝐸 [𝜓] and
𝐸 [𝑁𝑓] can be expensive. Thus, when dataset sizes are larger than 1

million elements, we sample uniformly with replacement 100,000

values of 𝑁𝑠𝑎𝑚𝑝 and estimate 𝐸 [𝜓] and 𝐸 [𝑁𝑓] by:

𝐸 [𝜓] = (1 − ℓ) −
|𝑁𝑠𝑎𝑚𝑝 |
100, 000

100,000∑︂
𝑖=1

𝑓 (𝑥𝑖) · (1 − 𝑓 (𝑥𝑖) |𝑁𝑜 |

𝐸 [|𝑁𝑓 |] = (ℓ · 𝑁𝑜) +
|𝑁𝑠𝑎𝑚𝑝 |
100, 000

(︁ 100,000∑︂
𝑖=1

1 − (1 − 𝑓 (𝑥𝑖))𝑁𝑜
)︁

In the above estimations, wemake use of the fact that

∑︁
𝑥 ∈𝑁𝑠𝑎𝑚𝑝

𝑓 (𝑥) =
ℓ , and hence we only estimate the −𝑓 (𝑥) · (1 − 𝑓 (𝑥))𝑁𝑜

term. This

considerably reduces the variance of the estimate.

The optimization goal is to optimize the weighted sum of the

EFPR using only 𝐿1 for the first 𝑁𝑜 queries and the EFPR of the

ASF using all 3 layers on the rest of the queries. To do this, we

use discrete search on the FPRs of each layers for both continuous

FPR filters and integer-length fingerprint filters. For integer-length

fingerprint filters we check all fingerprint sizes on each layer which

are between [𝑐 + 1 and 𝑐 + 16] so that the FPRs are between
1

2
and

2
−16

, and return the best configuration satisfying the size constraint.

For the continuous FPR filters, we similarly use size bounds which

provide FPRs of
1

2
and 2

−16
on each layer, and then perform grid

search where we check sizes that are 0.1 bits per element apart.

As before, we return the best configuration that satisfies the size

constraint.

Figures 7 and 8 display the optimization times and FPRs for ASFs

on the synethetic integer dataset with and without sampling. The

dataset has 1 million positive values, 100 million negative values,

and a zipf of 1. The number of negative values in 𝑁𝑠𝑎𝑚𝑝 is the

dependent variable. In general, for small datasets the times are

comparable and execute in sub-second time. As the dataset size

grows, the sampling based approach becomes significantly faster

while maintaining similar accuracy.

11.6 Positive Set Adaptivity
In general, insertions is a very difficult area for all filters. For all,

they risk either blowing up their FPR (Bloom, Quotient) or rejecting

the insertion (Cuckoo) after they grow beyond their desired number

of elements 𝑛. However, Stacked Filters suffer from insertions more

acutely than query agnostic filters. Because the under-capacity

positive layers have a lower initial EFPR, many of the negative

elements which will eventually be false positives once the filter

is at capacity do not register as false positives initially. Therefore,

the Stacked Filter is unable to take advantage of its knowledge

of known negatives as effectively as would normally. For Bloom

Filters, there is a fairly easy fix. In general, one can insert negatives

into 𝐿2, 𝐿4, and so on if they are close to being false positives in

that they are 1 set bit away from being a false positive.

Figures 9 and 10 show the changes in FPR of a Stacked Filters

from additions into the filter with and without the one-bit adjust-

ment. In the experiment, we use the integer experiment from the

paper with an initial positive set of 1 million elements, a negative

universe of 100 million elements, 10 bits per positive element, and

a zipf parameter of .75. To perform the experiment, we start by

allocating a filter under the assumption that the filter can hold 1.25

million positive elements. We then insert half a million new positive

elements and test the incremental change in the EFPR of both the

Stacked Bloom Filter and query agnostic Bloom filter. The results

both show that Stacked Filters can struggle with new insertions

moreso than query-agostic filters, but also that with the adjust-

ment Stacked Filters remain more performant. For both Stacked

Filters and query-agnostic filters, the difference in FPR of the filter

between its low point and its high point is a full order of magnitude.

Because filters struggle with new items, a common approach is

to rebuild the filter on new updates. To assess whether this strategy

would be effective for Stacked Filters as well, we include the results

of an additional experiment in figure 11. This experiment compares

the latency of query agnostic filters and stacked filters on a work-

load consisting of a single bulk load followed by 10 million queries

against an SSD for a range of positive set sizes. All other conditions

are the same as they are in the above experiments. This shows

that for reasonable positive set sizes the stacked filter provides a

lower overall latency on a rebuild and query workload, implying

that they can be used effectively in filtering schemes which rely on

this paradigm. The graph also shows how Learned and Sandwiched

Learned Filters perform under such a scenario; in this case the slow

filter rebuild makes them a significantly harder to deploy option

when fast rebuilds are needed.

0.8 0.9 1.0 1.1 1.2
Percent Capacity Filled

0.002

0.003

0.006

0.01

0.02

0.03

EF
PR

Stacked Filter
QA Filter

Figure 9: Normal Stacked Filter Figure 10: With one bit adjustment

0.1 1.0 10.0
|P| (Millions)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Bu
ild

 +
 Q

ue
ry

 T
im

e
(s

ec
)

2.2
1.2

6.8
9.1 8.8

10

912 912 912912 912 912

Stacked BF
Traditional BF
Learned BF
Sandwiched BF

Figure 11: Rebuild + Query Time

	Abstract
	1 Learning Filters by Structure
	2 Notation and Metrics
	3 Stacked Filters
	4 Metric Equations
	4.1 Stacked Filters EFPR
	4.2 Stacked Filter Sizes
	4.3 Stacked Filter Robustness
	4.4 Stacked Filter Computational Costs

	5 Optimizing Stacked Filters
	5.1 Modeling the Workload
	5.2 Optimization Algorithms

	6 Incremental Construction and Adaptivity
	7 Better Size-FPR Tradeoffs
	8 Experimental Analysis
	8.1 Evaluating Total Filter Performance
	8.2 Stacking Improves Diverse Filter Types
	8.3 Stacked Filters are Workload-Robust
	8.4 Incrementally Adapting to Workload Shifts

	9 Related Work
	10 Conclusion
	References
	11 Proofs
	11.1 Proof of Size Concentration Bounds
	11.2 Derivation of Computational Costs
	11.3 Proofs
	11.4 Optimizing Integer length Fingerprint Filters
	11.5 3-Layer Optimization of Adaptive Stacked Filters
	11.6 Positive Set Adaptivity

