
Overview of Data Exploration Techniques

Stratos Idreos, Olga Papaemmanouil, Surajit Chaudhuri

not always sure
what we are looking for
(until we find it)

data exploration

data has always been big
volume velocity variety veracity

user interaction

middleware

database kernel

content structure

45 min

45 min

45 min

user interaction

middleware

kernel

visualization

interfaces

prefetching

approximation

sampling

adaptive[
indexing,
loading,
storage]

…

…

Part 3*

*for Part1 and 2 please look at the websites of the tutorial co-authors

database kernel

data data index

al
go

rit
hm

s/
op

er
at

or
s

applications

sql

disk

memory

cpu

caches gpu

timeline

storage indexes query

expert users - idle time - workload knowledge

too many preparation options
lead to complex installation

schema load

users/applications
declarative interface

ask what you want

db system

DBA

db administrator 1

users/applications

data system 1

db administrator 2

data system 2

…

need to choose
the proper system

how can we prepare if we
do not know what we are up against?

(loading, indexing, storage, …)

data systems kernels tailored
for data exploration

no preparation - easy to use - fast

how can we prepare if we
do not know what we are up against?

(loading, indexing, storage, …)

adaptive
indexing

adaptive
loading

adaptive
storage

vision
declarative
and flexible

systems
sampling

dbTouch

tune= create proper indices offline
performance 10-100X

load tune query

indexing

tune= create proper indices offline
performance 10-100X

but it depends on the workload!
which indices to build?
on which data parts?
and when to build them?

load tune query

indexing

what can go wrong?

not enough idle time to finish proper tuning

by the time we finish tuning, the workload changes

big data V’s volume velocity variety veracity

not enough space to index all data

not enough money - energy - resources

what can go wrong?

not enough idle time to finish proper tuning

by the time we finish tuning, the workload changes

big data V’s volume velocity variety veracity

not enough space to index all data

not enough money - energy - resources

database cracking

database cracking

idle time
workload
knowledge

external
tools

human
control

database cracking
auto-tuning database kernels

incremental, adaptive, partial indexing

idle time
workload
knowledge

external
tools

human
control

database cracking
auto-tuning database kernels

incremental, adaptive, partial indexing

indexing

initialization querying

idle time
workload
knowledge

external
tools

human
control

database cracking
auto-tuning database kernels

incremental, adaptive, partial indexing

indexing

initialization querying

idle time
workload
knowledge

external
tools

human
control

database cracking
auto-tuning database kernels

incremental, adaptive, partial indexing

indexing

initialization querying

idle time
workload
knowledge

external
tools

human
control

every query is treated as an advice
on how data should be stored

A B C D

...

...

relation1/table1

column-store database
a fixed-width and dense array per attribute

Database Cracking CIDR 2007

A B C D

...

...

relation1/table1

column-store database
a fixed-width and dense array per attribute

Database Cracking CIDR 2007

13
16
4
9
2

12
7
1

19
3

14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

Database Cracking CIDR 2007

13
16
4
9
2

12
7
1

19
3

14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

Database Cracking CIDR 2007

13
16
4
9
2

12
7
1

19
3

14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

sort

1
2
3
4
6
7
8
9
11
12
13
14
16
19

Database Cracking CIDR 2007

13
16
4
9
2

12
7
1

19
3

14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

sort

1
2
3
4
6
7
8
9
11
12
13
14
16
19

binary
search

Database Cracking CIDR 2007

13
16
4
9
2

12
7
1

19
3

14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

sort

1
2
3
4
6
7
8
9
11
12
13
14
16
19

binary
search re

su
lt

Database Cracking CIDR 2007

13
16
4
9
2

12
7
1

19
3

14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

sort

1
2
3
4
6
7
8
9
11
12
13
14
16
19

binary
search re

su
lt

time
+

knowledge

Database Cracking CIDR 2007

13
16
4
9
2
12
7
1
19
3
14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

Database Cracking CIDR 2007

13
16
4
9
2
12
7
1
19
3
14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

4
9
2
7
1
3
8
6
13
12
11
16
19
14

piece1:
A<=10

Database Cracking CIDR 2007

13
16
4
9
2
12
7
1
19
3
14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

4
9
2
7
1
3
8
6
13
12
11
16
19
14

piece1:
A<=10

piece2:
10<A<14

Database Cracking CIDR 2007

13
16
4
9
2
12
7
1
19
3
14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

4
9
2
7
1
3
8
6
13
12
11
16
19
14

piece1:
A<=10

piece2:
10<A<14

piece3:
A>=14

Database Cracking CIDR 2007

13
16
4
9
2
12
7
1
19
3
14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

4
9
2
7
1
3
8
6
13
12
11
16
19
14

piece1:
A<=10

piece2:
10<A<14

piece3:
A>=14

re
su

lt

Database Cracking CIDR 2007

13
16
4
9
2
12
7
1
19
3
14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

4
9
2
7
1
3
8
6
13
12
11
16
19
14

piece1:
A<=10

piece2:
10<A<14

piece3:
A>=14

re
su

lt

gain knowledge on how data is organized

Database Cracking CIDR 2007

13
16
4
9
2
12
7
1
19
3
14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

4
9
2
7
1
3
8
6
13
12
11
16
19
14

piece1:
A<=10

piece2:
10<A<14

piece3:
A>=14

dynamically/on-the-fly within the select-operator

re
su

lt

gain knowledge on how data is organized

Database Cracking CIDR 2007

13
16
4
9
2
12
7
1
19
3
14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

4
9
2
7
1
3
8
6
13
12
11
16
19
14

piece1:
A<=10

piece2:
10<A<14

piece3:
A>=14

Q2:
select R.A
from R
where R.A>7
 and R.A<=16

dynamically/on-the-fly within the select-operator
Database Cracking CIDR 2007

13
16
4
9
2
12
7
1
19
3
14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

4
9
2
7
1
3
8
6
13
12
11
16
19
14

piece1:
A<=10

piece2:
10<A<14

piece3:
A>=14

Q2:
select R.A
from R
where R.A>7
 and R.A<=16

dynamically/on-the-fly within the select-operator
Database Cracking CIDR 2007

13
16
4
9
2
12
7
1
19
3
14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

4
9
2
7
1
3
8
6
13
12
11
16
19
14

piece1:
A<=10

piece2:
10<A<14

piece3:
A>=14

4
2
1
3
6
7
9
8
13
12
11
14
16
19

piece1: A<=7

piece2: 7<A<=10
Q2:
select R.A
from R
where R.A>7
 and R.A<=16

dynamically/on-the-fly within the select-operator
Database Cracking CIDR 2007

13
16
4
9
2
12
7
1
19
3
14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

4
9
2
7
1
3
8
6
13
12
11
16
19
14

piece1:
A<=10

piece2:
10<A<14

piece3:
A>=14

4
2
1
3
6
7
9
8
13
12
11
14
16
19

piece1: A<=7

piece2: 7<A<=10

piece3: 10<A<14
Q2:
select R.A
from R
where R.A>7
 and R.A<=16

dynamically/on-the-fly within the select-operator
Database Cracking CIDR 2007

13
16
4
9
2
12
7
1
19
3
14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

4
9
2
7
1
3
8
6
13
12
11
16
19
14

piece1:
A<=10

piece2:
10<A<14

piece3:
A>=14

4
2
1
3
6
7
9
8
13
12
11
14
16
19

piece1: A<=7

piece2: 7<A<=10

piece3: 10<A<14

piece4: 14<=A<=16

piece5: A>16

Q2:
select R.A
from R
where R.A>7
 and R.A<=16

dynamically/on-the-fly within the select-operator
Database Cracking CIDR 2007

13
16
4
9
2
12
7
1
19
3
14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

4
9
2
7
1
3
8
6
13
12
11
16
19
14

piece1:
A<=10

piece2:
10<A<14

piece3:
A>=14

4
2
1
3
6
7
9
8
13
12
11
14
16
19

piece1: A<=7

piece2: 7<A<=10

piece3: 10<A<14

piece4: 14<=A<=16

piece5: A>16

Q2:
select R.A
from R
where R.A>7
 and R.A<=16

dynamically/on-the-fly within the select-operator

re
su

lt

Database Cracking CIDR 2007

13
16
4
9
2
12
7
1
19
3
14
11
8
6

column A
Q1:
select R.A
from R
where R.A>10
 and R.A<14

4
9
2
7
1
3
8
6
13
12
11
16
19
14

piece1:
A<=10

piece2:
10<A<14

piece3:
A>=14

4
2
1
3
6
7
9
8
13
12
11
14
16
19

piece1: A<=7

piece2: 7<A<=10

piece3: 10<A<14

piece4: 14<=A<=16

piece5: A>16

Q2:
select R.A
from R
where R.A>7
 and R.A<=16

dynamically/on-the-fly within the select-operator

re
su

lt

the more we crack, the more we learn

Database Cracking CIDR 2007

Database Cracking CIDR 2007

select [15,55]

Database Cracking CIDR 2007

select [15,55]

Database Cracking CIDR 2007

10 20 30 40 50 60

select [15,55]

Database Cracking CIDR 2007

10 20 30 40 50 60

select [15,55]

select [15,55]

Database Cracking CIDR 2007

10 20 30 40 50 60

select [15,55]

select [15,55]

Database Cracking CIDR 2007

10 20 30 40 50 60

select [15,55]

select [15,55]pieces become smaller and smaller

touch at most two pieces at a time

Database Cracking CIDR 2007

100K random selections
random selectivity
random value ranges
in a 10 million integer column

set-up
Scan

Full Index

Crack

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

R
e
sp

o
n
se

 t
im

e
 (

se
cs

)

Query sequence (x1000)

continuous adaptation

Database Cracking CIDR 2007

100K random selections
random selectivity
random value ranges
in a 10 million integer column

almost no
initialization overhead

set-up
Scan

Full Index

Crack

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

R
e
sp

o
n
se

 t
im

e
 (

se
cs

)

Query sequence (x1000)

continuous adaptation

Database Cracking CIDR 2007

100K random selections
random selectivity
random value ranges
in a 10 million integer column

almost no
initialization overhead

continuous improvement

set-up
Scan

Full Index

Crack

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

R
e
sp

o
n
se

 t
im

e
 (

se
cs

)

Query sequence (x1000)

continuous adaptation

Database Cracking CIDR 2007

100K random selections
random selectivity
random value ranges
in a 10 million integer column

almost no
initialization overhead

continuous improvement

set-up
Scan

Full Index

Crack

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

R
e
sp

o
n
se

 t
im

e
 (

se
cs

)

Query sequence (x1000)

continuous adaptation

Database Cracking CIDR 2007

10K random selections
selectivity 10%
random value ranges
in a 30 million integer column

Database Cracking CIDR 2007

set-up

 0.004

 200

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

C
u
m

u
la

tiv
e
 a

ve
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 (

se
cs

)

Query sequence

Scan

Full Index

Crack

continuous adaptation

10K random selections
selectivity 10%
random value ranges
in a 30 million integer column

Database Cracking CIDR 2007

set-up

 0.004

 200

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

C
u
m

u
la

tiv
e
 a

ve
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 (

se
cs

)

Query sequence

Scan

Full Index

Crack

continuous adaptation

10K random selections
selectivity 10%
random value ranges
in a 30 million integer column

10K queries later,
Full Index still has not

amortized the initialization costs

Database Cracking CIDR 2007

set-up

 0.004

 200

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

C
u
m

u
la

tiv
e
 a

ve
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 (

se
cs

)

Query sequence

Scan

Full Index

Crack

continuous adaptation

A
table1

A B C D

...

...

table1

A B C D

...

...

table1

select R.A from R where R.A>10 and R.A<14

A B C D

...

...

table1

select R.A from R where R.A>10 and R.A<14

select max(R.A),max(R.B),max(S.A),max(S.B) from R,S
where v1 <R.C<v2 and v3 <R.D<v4
and v5 <R.E<v6 and k1 <S.C<k2 and k3 <S.D<k4 and k5 <S.E<k6
and R.F = S.F

A B C D

...

...

table1

select R.A from R where R.A>10 and R.A<14

select max(R.A),max(R.B),max(S.A),max(S.B) from R,S
where v1 <R.C<v2 and v3 <R.D<v4
and v5 <R.E<v6 and k1 <S.C<k2 and k3 <S.D<k4 and k5 <S.E<k6
and R.F = S.F

updates
joins

concurrency control

...

cracking databases

updates
(SIGMOD07)

>1
columns

storage-
restrictions
(SIGMOD09)

benchmarking
(TPCTC10)

robustne

concurrency
control

(PVLDB12)

algorithms
(PVLDB11)

basics
(CIDR07)

multi-cores
(SIGMOD15)

hadoop
(Yale/Saarland)

b-trees
(HP Labs)

>1 columns
(SIGMOD09)

robustness
(PVLDB12)

adaptive
storage

(SIGMOD14)

time-series
(SIGMOD14)

cracking tangram

A B C D
table 1

table 2

as queries arrive...base data

A B C D

cracking tangram

A B C D
table 1

table 2

as queries arrive...

A B C D
table 1

A B C D
table 2

base data

A B C D

cracking tangram

A B C D
table 1

table 2

as queries arrive...
partial materialization

A B C D
table 1

A B C D
table 2

base data

A B C D

cracking tangram

A B C D
table 1

table 2

as queries arrive...
partial materialization

partial indexing
A B C D

table 1

A B C D
table 2

base data

A B C D

cracking tangram

A B C D
table 1

table 2

as queries arrive...
partial materialization

partial indexing
continuous adaptation

A B C D
table 1

A B C D
table 2

base data

A B C D

cracking tangram

A B C D
table 1

table 2

as queries arrive...
partial materialization

partial indexing
continuous adaptation

storage adaptation

A B C D
table 1

A B C D
table 2

base data

x

xx
A B C D

cracking tangram

A B C D
table 1

table 2

as queries arrive...
partial materialization

partial indexing
continuous adaptation

storage adaptation

A B C D
table 1

A B C D
table 2

base data

A B C D

cracking tangram

A B C D
table 1

table 2

as queries arrive...
partial materialization

partial indexing
continuous adaptation

storage adaptation
no tuple reconstruction

A B C D
table 1

A B C D
table 2

base data

A B C D

cracking tangram

A B C D
table 1

table 2

as queries arrive...
partial materialization

partial indexing
continuous adaptation

storage adaptation
no tuple reconstruction

adaptive alignment

A B C D
table 1

A B C D
table 2

base data

A B C D

cracking tangram

A B C D
table 1

table 2

as queries arrive...
partial materialization

partial indexing
continuous adaptation

storage adaptation
no tuple reconstruction

adaptive alignment

A B C D
table 1

A B C D
table 2

base data

A B C D

cracking tangram

A B C D
table 1

table 2

as queries arrive...
partial materialization

partial indexing
continuous adaptation

storage adaptation
no tuple reconstruction

adaptive alignment

A B C D
table 1

A B C D
table 2

base data

sort in cachesA B C D

cracking tangram

A B C D
table 1

table 2

as queries arrive...
partial materialization

partial indexing
continuous adaptation

storage adaptation
no tuple reconstruction

adaptive alignment

A B C D
table 1

A B C D
table 2

base data

sort in caches
 crack joins

A B C D

cracking tangram

A B C D
table 1

table 2

as queries arrive...
partial materialization

partial indexing
continuous adaptation

storage adaptation
no tuple reconstruction

adaptive alignment

A B C D
table 1

A B C D
table 2

base data

sort in caches
 crack joins

A B C D

lightweight locking

q1
q2

cracking tangram

A B C D
table 1

table 2

as queries arrive...
partial materialization

partial indexing
continuous adaptation

storage adaptation
no tuple reconstruction

adaptive alignment

A B C D
table 1

A B C D
table 2

base data

sort in caches
 crack joins

A B C D

lightweight locking

stochastic cracking

query
random

adaptive
indexing

adaptive
loading

adaptive
storage

vision
declarative
and flexible

systems
sampling

dbTouch

load tune query

loading

copy data inside the database
database now has full control

slow process…
not all data might be needed all the time

Adaptive Loading, CIDR 11

database vs. unix tools

1 file, 4 attributes,
1 billion tuples

DB
Awk

single query cost (secs)

Adaptive Loading, CIDR 11

database vs. unix tools

1 file, 4 attributes,
1 billion tuples

DB
Awk

single query cost (secs)

break down db cost

Adaptive Loading, CIDR 11

database vs. unix tools

1 file, 4 attributes,
1 billion tuples

DB
Awk

single query cost (secs)

break down db cost

loading is a major bottleneck

Adaptive Loading, CIDR 11

database vs. unix tools

1 file, 4 attributes,
1 billion tuples

DB
Awk

single query cost (secs)

break down db cost

but writing/maintaining scripts does not scale

loading is a major bottleneck

Adaptive Loading, CIDR 11

adaptive loading

load/touch only what is needed
and only when it is needed

Adaptive Loading, CIDR 11

tokenizing - parsing - no indexing - no statistics

challenge: fast raw data access

but raw data access is expensive

Adaptive Loading, CIDR 11

query plan

Adaptive Loading, CIDR 11

query plan
scan

Adaptive Loading, CIDR 11

query plan
scan

db

Adaptive Loading, CIDR 11

query plan
scanscan

loading

Adaptive Loading, CIDR 11

query plan
scanscan

files
access raw data

adaptively on-the-fly

loading

Adaptive Loading, CIDR 11

query plan
scanscan

files cache
access raw data

adaptively on-the-fly

loading

Adaptive Loading, CIDR 11

query plan
scanscan

files cache
access raw data

adaptively on-the-fly

selective parsing
file indexing
file splitting

online statistics

loading

Adaptive Loading, CIDR 11

three graphs from paper

NoDB, SIGMOD 2012

three graphs from paper

NoDB, SIGMOD 2012

three graphs from paper

NoDB, SIGMOD 2012

three graphs from paper

NoDB, SIGMOD 2012

three graphs from paper

NoDB, SIGMOD 2012

three graphs from paper

reducing data-to-query time

NoDB, SIGMOD 2012

adaptive
indexing

adaptive
loading

adaptive
storage

vision
declarative
and flexible

systems
sampling

dbTouch

rows & columns

row-store column-store
A B C D A B C D

H20, SIGMOD 14

H2O: A Hands-free Adaptive Store

Ioannis Alagiannis? Stratos Idreos‡ Anastasia Ailamaki?

?Ecole Polytechnique Fédérale de Lausanne
{ioannis.alagiannis, anastasia.ailamaki}@epfl.ch

‡Harvard University
stratos@seas.harvard.edu

ABSTRACT
Modern state-of-the-art database systems are designed around a
single data storage layout. This is a fixed decision that drives the
whole architectural design of a database system, i.e., row-stores,
column-stores. However, none of those choices is a universally
good solution; different workloads require different storage layouts
and data access methods in order to achieve good performance.

In this paper, we present the H2O system which introduces two
novel concepts. First, it is flexible to support multiple storage
layouts and data access patterns in a single engine. Second, and
most importantly, it decides on-the-fly, i.e., during query process-
ing, which design is best for classes of queries and the respective
data parts. At any given point in time, parts of the data might
be materialized in various patterns purely depending on the query
workload; as the workload changes and with every single query,
the storage and access patterns continuously adapt. In this way,
H2O makes no a priori and fixed decisions on how data should be
stored, allowing each single query to enjoy a storage and access
pattern which is tailored to its specific properties.

We present a detailed analysis of H2O using both synthetic bench-
marks and realistic scientific workloads. We demonstrate that while
existing systems cannot achieve maximum performance across all
workloads, H2O can always match the best case performance with-
out requiring any tuning or workload knowledge.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design - Access meth-
ods; H.2.4 [Database Management]: Systems - Query Processing

General Terms
Algorithms, Design, Performance

Keywords
Adaptive storage; adaptive hybrids; dynamic operators

1. INTRODUCTION
Big Data. Nowadays, modern business and scientific applica-

tions accumulate data at an increasingly rapid pace. This data ex-
plosion gives birth to new usage scenarios and data analysis op-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2610502.

0

10

20

30

40

2 10 20 30 40 50 60 70 80 90 100Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Attributes Accessed (%)

DBMS-C
DBMS-R

Figure 1: Inability of state-of-the-art database systems to main-
tain optimal behavior across different workload patterns.

portunities but it also significantly stresses the capabilities of cur-
rent data management engines. More complex scenarios lead to
the need for more complex queries which in turn makes it increas-
ingly more difficult to tune and set-up database systems for modern
applications or to maintain systems at a well-tuned state as an ap-
plication evolves.

The Fixed Storage Layout Problem. The way data is stored
defines how data should be accessed for a given query pattern and
thus it defines the maximum performance we may get from a da-
tabase system. Modern state-of-the-art database systems are de-
signed around a single data storage layout. This is a fixed de-
cision that drives the whole design of the architecture of a data-
base system. For example, traditional row-store systems store data
one row at a time [20] while modern column-store systems store
data one column at a time [1]. However, none of those choices is
a universally good solution; different workloads require different
storage layouts and data access methods in order to achieve good
performance. Database systems vendors provide different storage
engines under the same software suite to efficiently support work-
loads with different characteristics. For example, MySQL supports
multiple storage engines (e.g., MyISAM, InnoDB); however, com-
munication between the different data formats on the storage layer
is not possible. More importantly, each storage engine requires a
special execution engine, i.e., an engine that knows how to best
access the data stored on each particular format.

Example. Figure 1 illustrates an example of how even a well-
tuned high-performance DBMS cannot efficiently cope with vari-
ous workloads. In this example, we test 2 state-of-the-art commer-
cial systems, a row-store DBMS (DBMS-R) and a column-store
DBMS (DBMS-C). We report the time needed to run a single an-
alytical select-project-aggregate query in a modern machine. Fig-
ure 1 shows that none of those 2 state-of-the-art systems is a uni-
versally good solution; for different classes of queries (in this case
depending on the number of attributes accessed), a different system

no fixed optimal solution

H20, SIGMOD 14

rows & columns

row-store column-store
A B C D A B C D

H20, SIGMOD 14

rows & columns

row-store column-store
A B C D A B C D

H20, SIGMOD 14

hybrid-store
A B C D

which layout is best?

H20, SIGMOD 14

A B C D

which layout is best?

H20, SIGMOD 14

A B C D A B C D

which layout is best?

H20, SIGMOD 14

A B C D A B C D A B C D

…

which layout is best?

H20, SIGMOD 14

A B C D A B C D

too many combinations to maintain in parallel

A B C D

…

query cost

1 // Compiled equivalent of vectorized primitive
2 // Input: Column group R(a,b,c,d,e)
3 // For each tuple evaluate both predicates in one step
4 // Compute arithmetic expression for qualifying tuples
5 long q1_single_column_group(const int n,
6 const T⇤ res, T⇤ R, T⇤ val1, T⇤ val2) {
7 int i, j = 0;
8 const T ⇤ptr = R;
9 for (i = 0 ; i < n; i++) {

10 if (ptr[3] < ⇤val1 && ptr[4] > ⇤val2)
11 res[j++] = ptr[0] + ptr[1] + ptr[2];
12 ptr = getNextTuple(i);
13 }
14 return j;
15 }

Figure 5: Generated code for Q1 when all the data is stored in
a single column group.

1 // Compiled equivalent of vectorized primitives
2 // Input: Column groups R1(a,b,c) and R2(d,e)
3 // For each batch of tuples call
4 nsel = q1_sel_vector(n, sel, R2, val1, val2);
5 q1_compute_expression(nsel, res, R1, sel);
6
7 // Compute arithmetic expression using the positions from sel
8 void q1_compute_expression(const int n,
9 const T⇤ res, T⇤ R1, int⇤ sel) {

10 int i = 0;
11 const T ⇤ptr = R1;
12 if (sel == NULL) {
13 for (i = 0 ; i < n; i++) {
14 res[i] = ptr[0] + ptr[1] + ptr[2];
15 ptr = getNextTuple(i); }
16 } else {
17 for (i = 0 ; i < n; i++) {
18 ptr = getNextTuple(sel, i);
19 res[sel[i]] = ptr[0] + ptr[1] + ptr[2]; }
20 }
21 }
22
23 // Compute selection vector sel for both predicates in R2(d,e)
24 int q1_sel_vector(const int n,
25 const T⇤ sel, T⇤ R2, T⇤ val1, T⇤ val2) {
26 int i, j = 0;
27 const T ⇤ptr = R2;
28 for (i = 0 ; i < n; i++) {
29 if (ptr[0] < ⇤val1 && ptr[1] > ⇤val2)
30 sel[j++] = i;
31 ptr = getNextTuple(i);
32 }
33 return j;
34 }

Figure 6: Generated code for Q1 when the needed attributes
are stored into two different column groups.

complex arithmetic expressions, perform type casting, etc. The
code generation procedure takes as input the needed data layouts
from the data layout manager and the set of attributes required by
the query, selects the proper template and generates as an output
the source code of the access operator. The source code is com-
piled using an external compiler into a library and then, the new
library is dynamically linked and injected in the query execution
plan. To minimize the overhead of code generation, H2O stores
newly generated operators into a cache. If the same operator is re-
quested by a future query, H2O accesses it directly from the cache.
The available query templates in H2O support select-project-join
queries and can be extended by writing new query operators.

Example. Figures 5 and 6 show two dynamically compiled
equivalents of vectorized primitives for access operators for two
different data layouts.

Figure 5 shows the generated code when all the accessed at-
tributes for Q1 (a,b,c,d,e) are stored in the same column group.
The on-the-fly code takes as input the group of columns, the con-
stant values val1 and val2 used for the predicate evaluation and an

output buffer for storing the result of the expression a+ b+ c for
the qualifying tuples. For each tuple H2O evaluates in one step the
two predicates for the conditional statement (Line 9) pushing down
the selection to the scan operator. If both predicates are true then
the arithmetic expression in the select clause is computed. The
code is tailored for the characteristics of the available data layout
and query. It fully utilizes the attributes in the data layout and thus
avoids unnecessary memory accesses. Additionally, it is CPU effi-
cient (the filter and the arithmetic expression are computed without
any overhead) while it does not require any intermediate results.
This code can be part of a more complex query plan.

The second on-the-fly code in Figure 6 is generated assuming
two available groups of columns R1(a,b,c) and R2(d,e) storing
the attributes in the select and where clause respectively. Since
there are two groups of columns we can adopt a different execution
strategy to optimize performance. In this case, the generated code
exploits the two column groups by initiating a column-store like
execution strategy. The query is computed using two functions;
one for tuple selection and one for computing the expression. Ini-
tially, a selection vector containing the IDs of the qualifying tuples
is computed. The selection vector is again computed in one step
by evaluating the predicates together. The code that computes the
arithmetic expression takes as parameter the selection vector, ad-
ditionally to the group of columns and the values val1 and val2.
Then, it evaluates the expression only for the tuple with these IDs
and thus, avoiding unnecessary computation. On the other hand,
the materialization of the selection vector is required.

3.5 Query Cost Model
To select the optimal combination of data layout and execution

strategy, H2O evaluates different access methods for the available
data layouts and estimates the expected execution cost. The query
cost estimation is computed using the following formula:

q(L) =
|L|

Â
i=1

max(costIO
i ,costCPU

i) (2)

For a given query q and a set of data layouts L, H2O considers the
I/O and CPU cost for accessing the layouts during query process-
ing. The cost model assumes that disk I/O and CPU operations
overlap. In practice, when data is read from disk, disk accesses
dominate the overall query cost since disk access latency is orders
of magnitude higher than main-memory latency.

H2O distinguishes between row-major and column-major lay-
outs. Groups of columns are modeled similarly to the row-major
layouts. The cost of sequential I/O is calculated as the amount of
data accessed (e.g., number of tuples multiplied by the average tu-
ple width for a row) divided by the bandwidth of the hard disk
while the cost of random I/O additionally considers block accesses
and read buffers (e..g, through a buffer pool).

H2O estimates the CPU cost based on the number of cache misses
incurred when a data layout is processed. Data cache misses have
significant impact (due to cache misses cause CPU-stalls) on query
processing [5] and thus, they can provide a good indication regard-
ing the expected execution cost of query plans. A data cache miss
occurs when a cache line has to be fetched from a higher level in
the memory hierarchy, stalling the current instruction until needed
data is available. For a given query Q and a given data layout L
the cost model computes the number of data cache misses based
on the data layout width, the number of tuples and the number of
data words accessed for an access pattern following an approach
similar to [16]. The cost of accessing intermediate results is also
considered. This is important since not all execution strategies in
H2O generate intermediate results.

for a given query we can know which layout is best
the one that will cause the fewer cache misses

H20, SIGMOD 14

if we know all queries up front we can choose the layouts

adaptive storage:
continuously adapt layouts based on incoming queries

H20, SIGMOD 14

but computing all possible combinations is expensive…

1. deal only with attributes referenced in queries

2. handle select clause separately from where clause

3. start from pure column-store and build up

4. stop when no improvement possible

query
select A+B+C+D from R where A<10 and E>10

H20, SIGMOD 14

0"

1"

2"

3"

4"

5"

6"

7"

8"

0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50"

Q
ue

ry
&R
es
po

ns
e&
Ti
m
e&
(s
ec
)&

Query&Sequence&

Row.store" Column.store" Best.Hybrid" H2O"

H20, SIGMOD 14

adaptive
indexing

adaptive
loading

adaptive
storage

vision
declarative
and flexible

systems
sampling

dbTouch

load tune query

querying

SQL interface
correct and complete answers

dbTouch, CIDR 2013

load tune query

querying

SQL interface
correct and complete answers

complex and slow - not fit for exploration

dbTouch, CIDR 2013

just touch the data you need

dbTouch, CIDR 2013

just touch the data you need

this is not about query building
it is about query processing

dbTouch, CIDR 2013

cracking example

dbTouch CIDR 2013

what does this mean for db kernels?

dbTouch, CIDR 2013

select R.a from R

db

what does this mean for db kernels?

dbTouch, CIDR 2013

dbTouch
56 38 45 2

select R.a from R

db

process only
what you touch

what does this mean for db kernels?

dbTouch, CIDR 2013

from touch to query processing

touch location (x)

size(width)

storage

row ID=(tuples*x)/size

v

dbTouch, CIDR 2013

select avg(R.c)
where R.a=S.b and S.b<20

R.c

R.a

σ(<20)

R.a=S.b

S.b R.a

avg(R.c)

S.b

dbTouch, CIDR 2013

select avg(R.c)
where R.a=S.b and S.b<20

R.c

R.a

σ(<20)

R.a=S.b

S.b R.a

avg(R.c)

S.b

dbTouch, CIDR 2013

select avg(R.c)
where R.a=S.b and S.b<20

R.c

R.a

σ(<20)

R.a=S.b

S.b R.a

avg(R.c)

S.b

dbTouch, CIDR 2013

visual objects samples hierarchy

dbTouch, CIDR 2013

visual objects samples hierarchy

base data

initial sample

dbTouch, CIDR 2013

visual objects samples hierarchy

create incrementally and on demand

base data

initial sample

dbTouch, CIDR 2013

dbTouch, CIDR 2013

dbTouch, CIDR 2013

adaptive
indexing

adaptive
loading

adaptive
storage

vision
declarative
and flexible

systems
sampling

dbTouch

sampling outside the engine

Kernel

sampling logic/query rewrite

application

Aqua, VLDB 1999
BlinkDB, Eurosys 2013

sampling with SciBORG

SciBORG, CIDR 2011

Kernel

data

queries
maintain hierarchy of

biased samples

sampling with SciBORG

SciBORG, CIDR 2011

…
base

column

impression 1

impression 2

impression 3

continuously reorganized based on the workload

adaptive
indexing

adaptive
loading

adaptive
storage

vision
declarative
and flexible

systems
sampling

dbTouch

vision: being able to define system components in a higher
level language without significant performance penalty

building systems declaratively

RodentStore, CIDR 2009
Abstraction without regrets, IEEE Data Engin. Bulletin/PVLDB 2014

performance

ab
st

ra
ct

io
n

data systems today
allow us to answer queries fast

data systems for exploration
should allow us to find fast which queries to ask

db

db explore

+ approximate processing techniques

data systems today
allow us to answer queries fast

data systems for exploration
should allow us to find fast which queries to ask

db

db explore

+ approximate processing techniques

thank you!

