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not always sure  
what we are looking for  
(until we find it)

data exploration

data has always been big
volume velocity variety veracity
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timeline

storage indexes query

expert users - idle time - workload knowledge

too many preparation options  
lead to complex installation

schema load



users/applications
declarative interface 

ask what you want

db system

DBA



db administrator 1

users/applications

data system 1

db administrator 2

data system 2

…

need to choose  
the proper system



how can we prepare if we  
do not know what we are up against? 

(loading, indexing, storage, …) 



data systems kernels tailored  
for data exploration

no preparation - easy to use - fast

how can we prepare if we  
do not know what we are up against? 

(loading, indexing, storage, …) 
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performance 10-100X
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tune= create proper indices offline
performance 10-100X

but it depends on the workload!
which indices to build? 
on which data parts? 
and when to build them?

load tune query

indexing



what can go wrong?

not enough idle time to finish proper tuning

by the time we finish tuning, the workload changes

big data V’s volume velocity variety veracity

not enough space to index all data

not enough money - energy - resources
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database cracking
auto-tuning database kernels 

incremental, adaptive, partial indexing

indexing

initialization querying

idle time
workload 
knowledge

external 
tools

human 
control

every query is treated as an advice 
on how data should be stored
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10 20 30 40 50 60

select [15,55]

select [15,55]pieces become smaller and smaller

touch at most two pieces at a time
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10K queries later,  
Full Index still has not  

amortized the initialization costs
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cracking databases

updates 
(SIGMOD07)

>1 
columns

storage-
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(SIGMOD09)

benchmarking 
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concurrency 
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(PVLDB12)
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(CIDR07)
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(HP Labs)
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load tune query

loading

copy data inside the database
database now has full control

slow process…
not all data might be needed all the time

Adaptive Loading, CIDR 11
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database vs. unix tools

1 file, 4 attributes,  
1 billion tuples

DB
Awk

single query cost (secs)

break down db cost

but writing/maintaining scripts does not scale

loading is a major bottleneck
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adaptive loading

load/touch only what is needed 
and only when it is needed

Adaptive Loading, CIDR 11



tokenizing - parsing - no indexing - no statistics 

challenge: fast raw data access

but raw data access is expensive

Adaptive Loading, CIDR 11
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query plan
scanscan

files cache
access raw data 

adaptively on-the-fly

selective parsing  
file indexing  
file splitting  

online statistics

loading

Adaptive Loading, CIDR 11
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ABSTRACT
Modern state-of-the-art database systems are designed around a
single data storage layout. This is a fixed decision that drives the
whole architectural design of a database system, i.e., row-stores,
column-stores. However, none of those choices is a universally
good solution; different workloads require different storage layouts
and data access methods in order to achieve good performance.

In this paper, we present the H2O system which introduces two
novel concepts. First, it is flexible to support multiple storage
layouts and data access patterns in a single engine. Second, and
most importantly, it decides on-the-fly, i.e., during query process-
ing, which design is best for classes of queries and the respective
data parts. At any given point in time, parts of the data might
be materialized in various patterns purely depending on the query
workload; as the workload changes and with every single query,
the storage and access patterns continuously adapt. In this way,
H2O makes no a priori and fixed decisions on how data should be
stored, allowing each single query to enjoy a storage and access
pattern which is tailored to its specific properties.

We present a detailed analysis of H2O using both synthetic bench-
marks and realistic scientific workloads. We demonstrate that while
existing systems cannot achieve maximum performance across all
workloads, H2O can always match the best case performance with-
out requiring any tuning or workload knowledge.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design - Access meth-
ods; H.2.4 [Database Management]: Systems - Query Processing

General Terms
Algorithms, Design, Performance

Keywords
Adaptive storage; adaptive hybrids; dynamic operators

1. INTRODUCTION
Big Data. Nowadays, modern business and scientific applica-

tions accumulate data at an increasingly rapid pace. This data ex-
plosion gives birth to new usage scenarios and data analysis op-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2610502.
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Figure 1: Inability of state-of-the-art database systems to main-
tain optimal behavior across different workload patterns.

portunities but it also significantly stresses the capabilities of cur-
rent data management engines. More complex scenarios lead to
the need for more complex queries which in turn makes it increas-
ingly more difficult to tune and set-up database systems for modern
applications or to maintain systems at a well-tuned state as an ap-
plication evolves.

The Fixed Storage Layout Problem. The way data is stored
defines how data should be accessed for a given query pattern and
thus it defines the maximum performance we may get from a da-
tabase system. Modern state-of-the-art database systems are de-
signed around a single data storage layout. This is a fixed de-
cision that drives the whole design of the architecture of a data-
base system. For example, traditional row-store systems store data
one row at a time [20] while modern column-store systems store
data one column at a time [1]. However, none of those choices is
a universally good solution; different workloads require different
storage layouts and data access methods in order to achieve good
performance. Database systems vendors provide different storage
engines under the same software suite to efficiently support work-
loads with different characteristics. For example, MySQL supports
multiple storage engines (e.g., MyISAM, InnoDB); however, com-
munication between the different data formats on the storage layer
is not possible. More importantly, each storage engine requires a
special execution engine, i.e., an engine that knows how to best
access the data stored on each particular format.

Example. Figure 1 illustrates an example of how even a well-
tuned high-performance DBMS cannot efficiently cope with vari-
ous workloads. In this example, we test 2 state-of-the-art commer-
cial systems, a row-store DBMS (DBMS-R) and a column-store
DBMS (DBMS-C). We report the time needed to run a single an-
alytical select-project-aggregate query in a modern machine. Fig-
ure 1 shows that none of those 2 state-of-the-art systems is a uni-
versally good solution; for different classes of queries (in this case
depending on the number of attributes accessed), a different system

no fixed optimal solution
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query cost

1 // Compiled equivalent of vectorized primitive
2 // Input: Column group R(a,b,c,d,e)
3 // For each tuple evaluate both predicates in one step
4 // Compute arithmetic expression for qualifying tuples
5 long q1_single_column_group(const int n,
6 const T⇤ res, T⇤ R, T⇤ val1, T⇤ val2) {
7 int i, j = 0;
8 const T ⇤ptr = R;
9 for ( i = 0 ; i < n; i++) {

10 if ( ptr[3] < ⇤val1 && ptr[4] > ⇤val2)
11 res[j++] = ptr[0] + ptr[1] + ptr[2];
12 ptr = getNextTuple(i);
13 }
14 return j;
15 }

Figure 5: Generated code for Q1 when all the data is stored in
a single column group.

1 // Compiled equivalent of vectorized primitives
2 // Input: Column groups R1(a,b,c) and R2(d,e)
3 // For each batch of tuples call
4 nsel = q1_sel_vector(n, sel, R2, val1, val2);
5 q1_compute_expression(nsel, res, R1, sel);
6
7 // Compute arithmetic expression using the positions from sel
8 void q1_compute_expression(const int n,
9 const T⇤ res, T⇤ R1, int⇤ sel) {

10 int i = 0;
11 const T ⇤ptr = R1;
12 if (sel == NULL) {
13 for ( i = 0 ; i < n; i++) {
14 res[i] = ptr[0] + ptr[1] + ptr[2];
15 ptr = getNextTuple(i); }
16 } else {
17 for ( i = 0 ; i < n; i++) {
18 ptr = getNextTuple(sel, i);
19 res[sel[i]] = ptr[0] + ptr[1] + ptr[2]; }
20 }
21 }
22
23 // Compute selection vector sel for both predicates in R2(d,e)
24 int q1_sel_vector(const int n,
25 const T⇤ sel, T⇤ R2, T⇤ val1, T⇤ val2) {
26 int i, j = 0;
27 const T ⇤ptr = R2;
28 for ( i = 0 ; i < n; i++) {
29 if ( ptr[0] < ⇤val1 && ptr[1] > ⇤val2)
30 sel[j++] = i;
31 ptr = getNextTuple(i);
32 }
33 return j;
34 }

Figure 6: Generated code for Q1 when the needed attributes
are stored into two different column groups.

complex arithmetic expressions, perform type casting, etc. The
code generation procedure takes as input the needed data layouts
from the data layout manager and the set of attributes required by
the query, selects the proper template and generates as an output
the source code of the access operator. The source code is com-
piled using an external compiler into a library and then, the new
library is dynamically linked and injected in the query execution
plan. To minimize the overhead of code generation, H2O stores
newly generated operators into a cache. If the same operator is re-
quested by a future query, H2O accesses it directly from the cache.
The available query templates in H2O support select-project-join
queries and can be extended by writing new query operators.

Example. Figures 5 and 6 show two dynamically compiled
equivalents of vectorized primitives for access operators for two
different data layouts.

Figure 5 shows the generated code when all the accessed at-
tributes for Q1 (a,b,c,d,e) are stored in the same column group.
The on-the-fly code takes as input the group of columns, the con-
stant values val1 and val2 used for the predicate evaluation and an

output buffer for storing the result of the expression a+ b+ c for
the qualifying tuples. For each tuple H2O evaluates in one step the
two predicates for the conditional statement (Line 9) pushing down
the selection to the scan operator. If both predicates are true then
the arithmetic expression in the select clause is computed. The
code is tailored for the characteristics of the available data layout
and query. It fully utilizes the attributes in the data layout and thus
avoids unnecessary memory accesses. Additionally, it is CPU effi-
cient (the filter and the arithmetic expression are computed without
any overhead) while it does not require any intermediate results.
This code can be part of a more complex query plan.

The second on-the-fly code in Figure 6 is generated assuming
two available groups of columns R1(a,b,c) and R2(d,e) storing
the attributes in the select and where clause respectively. Since
there are two groups of columns we can adopt a different execution
strategy to optimize performance. In this case, the generated code
exploits the two column groups by initiating a column-store like
execution strategy. The query is computed using two functions;
one for tuple selection and one for computing the expression. Ini-
tially, a selection vector containing the IDs of the qualifying tuples
is computed. The selection vector is again computed in one step
by evaluating the predicates together. The code that computes the
arithmetic expression takes as parameter the selection vector, ad-
ditionally to the group of columns and the values val1 and val2.
Then, it evaluates the expression only for the tuple with these IDs
and thus, avoiding unnecessary computation. On the other hand,
the materialization of the selection vector is required.

3.5 Query Cost Model
To select the optimal combination of data layout and execution

strategy, H2O evaluates different access methods for the available
data layouts and estimates the expected execution cost. The query
cost estimation is computed using the following formula:

q(L) =
|L|

Â
i=1

max(costIO
i ,costCPU

i ) (2)

For a given query q and a set of data layouts L, H2O considers the
I/O and CPU cost for accessing the layouts during query process-
ing. The cost model assumes that disk I/O and CPU operations
overlap. In practice, when data is read from disk, disk accesses
dominate the overall query cost since disk access latency is orders
of magnitude higher than main-memory latency.

H2O distinguishes between row-major and column-major lay-
outs. Groups of columns are modeled similarly to the row-major
layouts. The cost of sequential I/O is calculated as the amount of
data accessed (e.g., number of tuples multiplied by the average tu-
ple width for a row) divided by the bandwidth of the hard disk
while the cost of random I/O additionally considers block accesses
and read buffers (e..g, through a buffer pool).

H2O estimates the CPU cost based on the number of cache misses
incurred when a data layout is processed. Data cache misses have
significant impact (due to cache misses cause CPU-stalls) on query
processing [5] and thus, they can provide a good indication regard-
ing the expected execution cost of query plans. A data cache miss
occurs when a cache line has to be fetched from a higher level in
the memory hierarchy, stalling the current instruction until needed
data is available. For a given query Q and a given data layout L
the cost model computes the number of data cache misses based
on the data layout width, the number of tuples and the number of
data words accessed for an access pattern following an approach
similar to [16]. The cost of accessing intermediate results is also
considered. This is important since not all execution strategies in
H2O generate intermediate results.

for a given query we can know which layout is best 
the one that will cause the fewer cache misses
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if we know all queries up front we can choose the layouts

adaptive storage: 
continuously adapt layouts based on incoming queries

H20, SIGMOD 14 



but computing all possible combinations is expensive…

1. deal only with attributes referenced in queries 

2. handle select clause separately from where clause 

3. start from pure column-store and build up 

4. stop when no improvement possible

query
select A+B+C+D from R where A<10 and E>10
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just touch the data you need

this is not about query building
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select R.a from R 
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select R.a from R 

db
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what does this mean for db kernels?
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from touch to query processing

touch location (x)
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storage

row ID=(tuples*x)/size
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visual objects samples hierarchy
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sampling outside the engine 

Kernel

sampling logic/query rewrite

application

Aqua, VLDB 1999  
BlinkDB, Eurosys 2013 
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SciBORG, CIDR 2011 
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sampling with SciBORG 

SciBORG, CIDR 2011 
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vision: being able to define system components in a higher 
level language without significant performance penalty

building systems declaratively 

RodentStore, CIDR 2009 
Abstraction without regrets, IEEE Data Engin. Bulletin/PVLDB 2014
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should allow us to find fast which queries to ask
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