
From Auto-tuning One Size Fits All
to Self-designed and Learned Data-intensive Systems

Stratos Idreos
Harvard University

Tim Kraska
MIT

ABSTRACT
We survey new opportunities to design data systems, data
structures and algorithms that can adapt to both data and
queryworkloads. Data keeps growing, hardware keeps chang-
ing and new applications appear ever more frequently. One
size does not fit all, but data-intensive applications would
like to balance and control memory requirements, read costs,
write costs, as well as monetary costs on the cloud. This calls
for tailored data systems, storage, and computation solutions
that match the exact requirements of the scenario at hand.
Such systems should be “synthesized” quickly and nearly
automatically, removing the human system designers and
administrators from the loop as much as possible to keep
up with the quick evolution of applications and workloads.
In addition, such systems should “learn” from both past and
current system performance and workload patterns to keep
adapting their design.
We survey new trends in 1) self-designed, and 2) learned

data systems and how these technologies can apply to re-
lational, NoSQL, and big data systems as well as to broad
data science applications. We focus on both recent research
advances and practical applications of this technology, as
well as numerous open research opportunities that come
from their fusion. We specifically highlight recent work on
data structures, algorithms, and query optimization, and
how machine learning inspired designs as well as a detailed
mapping of the possible design space of solutions can drive
innovation to create tailored systems. We also position and
connect with past seminal system designs and research in
auto-tuning, modular/extensible, and adaptive data systems
to highlight the new challenges as well as the opportunities
to combine past and new technologies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3314034

ACM Reference Format:
Stratos Idreos and Tim Kraska. 2019. From Auto-tuning One Size
Fits All to Self-designed and Learned Data-intensive Systems. In
2019 International Conference on Management of Data (SIGMOD ’19),
June 30-July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3299869.3314034

1 PART 1: NEW REQUIREMENTS FOR
DATA INTENSIVE SYSTEMS

Data systems have always come with large sets of knobs.
Such knobs allow a system to assume multiple forms with
different performance properties and can be set appropri-
ately depending on the workload, and hardware. Typically, a
DBA or an auto-tuning tool decide the right setup assuming
some knowledge of the workload. Overall, this paradigm has
worked great for several decades but it increasingly becomes
problematic for many cases of modern applications.

RapidlyChanging SystemRequirements.Todaymore
than ever, we want to build, or change and adapt a data sys-
tem quickly such that we can keep up with the needs of ever
changing applications and hardware. New applications or
new features in existing applications, with newworkload pat-
terns, appear frequently. A single system is not capable of ef-
ficiently supporting diverse workloads. This is a problem for
several increasingly pressing reasons. First, new applications
appear many of which introduce new workload patterns
that were not typical before. Second, existing applications
keep redefining their services and features which affects
their workload patterns directly and in many cases renders
the existing underlying storage decisions sub-optimal or
even bad. Third, hardware keeps changing which affects the
CPU/bandwidth/latency balance; maximum performance re-
quires low-level storage design changes. These problems boil
down to the one size does not fit all problem which holds
for overall system design [59] and for the storage layer [8].
Especially, in today’s cloud-based world even slightly sub-
optimal designs by 1% translate to a massive loss in energy
utilization and thus costs [41].

Knobs are not Enough. While the knobs exposed by
modern systems do allow them to change their behavior, the
problem is that the range of behaviors they can assume is
still largely limited by the original design decisions made
by the engineers. The range of behaviors is limited by what
the original designers could foresee and efficiently engineer.

https://doi.org/10.1145/3299869.3314034
https://doi.org/10.1145/3299869.3314034

For example, a row-store system with a knob that allow it
to fine tune its performance such as tuning the buffer pool
size or choosing the right set of indexes will not be able to
ever match the behavior of a column-store in analytics or the
behavior of a key-value store in fast data ingestion. This is
because, at its core it will still be defined by the good and the
bad properties of its fundamental design choices. In this way,
even though we have seen a plethora of innovative solutions
in automatically tuning knobs of systems with works in the
area of offline and online tuning as well as solutions that
allow to adaptively and smoothly make some of these deci-
sion with works in the area of adaptive indexing, still those
solutions are trapped within an overall system architecture
that is defined strictly upfront and it is not easy to change
or adapt; e.g., a column-store with adaptive indexing can
build indexes automatically but is still defined by the main
performance characteristics of a column-store architecture
and it will not be a great solution for workloads that do not
fit this overall design.

Self-designed andLearned Systems.The grant research
challenge is whether we can easily or even automatically de-
sign systems given a problem. This would allow us to quickly
spin off systems for new applications, features and hardware.
And it can lead to systems that are able to drastically change
their behavior as workload and hardware evolve. While this
is clearly a very ambitious goal there are many intermediate
steps in terms of removing the dependency on human-based
decisions that critically restrict the sets of behaviors a system
can assume. In particular, in this tutorial we survey recent
innovations on:

(1) self-designed systems [26, 31] which know the possible
design choices and their combinations for critical sys-
tem design components such as data storage, and can
choose the most appropriate design among drastically
different choices

(2) learned systems [42, 43] which replace critical sys-
tem components, restricted by human-made decisions,
with models that capture numerous behaviors, making
it easier to assume different performance properties.

Collectively these directions open the door for systems that
can manipulate their storage and other critical components
such as the choice of query processing algorithms, optimiza-
tion strategies, memory requirements, in drastically more
ways than past systems.

Tutorial Structure. The tutorial consists of three parts.
The first part goes over the overall problem setting as de-
scribed in this section. The second part discusses major re-
search and industry trends from the past several decades
that enabled systems to assume different forms or be easily
extensible. In particular, we cover 1) auto-tuning (offline,
and online) which allows systems to choose the right set of

indexes given a workload, 2) adaptive indexing which allows
systems to incrementally adapt and build their indexes as
the workload evolves, 3) generalized indexing which allows
engineers to easily support new data types in an existing
system, as well as 4) modular systems which allow for eas-
ily swapping in and out major system components that add
functionality. In the third part, we survey self-designed and
learned-systems. We explain 1) the new opportunities they
bring compared to past solutions, 2) how they can be ap-
plied to solve practical problems across many classes of data-
intensive applications, and 3) the new research opportunities
that arise from their fusion with each other and with past
work.

2 PART 2: ONE SIZE FITS ALL SYSTEMS
Offline Indexing. Offline indexing [13, 32] is the earliest
approach on self-tuning database systems. Nowadays, all ma-
jor database products offer auto-tuning tools to automate the
database physical design. Auto-tuning tools mainly rely on
“what-if analysis” and close interaction with the optimizer to
decide which indices are potentially more useful for a given
workload. Offline indexing requires heavy involvement of a
database administrator (DBA). Specifically, a DBA invokes
the tool and provides its input, i.e., a representative workload.
The tool analyzes the given workload and recommends an
appropriate physical design.

Online Indexing. With online indexing the system con-
tinuously monitors the workload and the physical design is
periodically reevaluated. System COLT [47] was one of the
first online indexing approaches. COLT [55] continuously
monitors the workload and periodically in specific epochs,
i.e., every N queries, it reconsiders the physical design. The
recommended physical designmight demand creation of new
indices or dropping of old ones. COLT requires many calls
to the optimizer to obtain cost estimations. A “lighter” ap-
proach, i.e., requiring less calls to the optimizer, was proposed
later [11]. Soft indices [47] extended the previous online ap-
proaches by building full indices on-the-fly concurrently
with queries on the same data, sharing the scan operator.
The main limitation of online indexing is that reorganization
of the physical design can be a costly action that a) requires
a significant amount of time to complete and b) requires a lot
of resources. This means that online indexing is appropriate
mainly for moderately dynamic workloads where the query
patterns do not change very frequently. Otherwise, it may
be that by the time we finish adapting the physical design,
the workload has changed again, leading to a suboptimal
performance.

Adaptive Indexing andLayouts.Adaptive indexing [27]
is a lightweight approach in self-tuning databases. Adap-
tive indexing addresses the limitations of offline and on-
line indexing for dynamic workloads; it reacts to workload
changes by building or refining indices partially and incre-
mentally as part of query processing. That is, no DBA or
offline processing is needed. By reacting to every single
query with lightweight actions, adaptive indexing manages
to instantly adapt to a changing work load. As more queries
arrive, the more the indices are refined and the more perfor-
mance improves. Recently this area has received consider-
able attention with numerous works that study adaptivity
with regards to base storage in relational systems, NoSQL
systems, updates, concurrency, and time-series data manage-
ment [2, 3, 7, 15, 18, 22, 23, 27, 28, 33, 46, 53, 54, 56, 57, 60].
Typically, in these lines of work the layout adapts to incom-
ing requests. Similarly works on tuning via experiments [9],
learning [4], and tuning via machine learning [1, 24] can
adapt parts of a design using feedback from tests.
While auto-tuning and adaptivity provided the ability to

achieve many different performance properties for the same
system, they do not fundamentally change the properties of
a system since it still moves within a narrow design space
defined strictly by its original design.
Modular/Extensible Systems and System Synthesizers.
Modular systems [52] is an idea that has been explored in
many areas of computer science: in database systems in
particular the concept has been studied for easily adding data
types [20, 21, 50, 51, 58] with minimal implementation effort,
or plug and play features and whole system components
with clean interfaces [10, 12, 14, 36, 44, 45]. Modularity is
a very promising direction for systems building and data-
intensive systems in particular (because there is no single
perfect storage design). However, in practice we have only
seen so far systems with “large” components which do not
really allow a system to drastically change its behavior but
rather to support or not specific features.
Generalized Tree Indexes. A great example of extensibil-
ity is the work on Generalized Search Tree indexes (GiST)
[5, 6, 25, 37–40]. GiST aims to make it easy to extend data
structures used for indexing and tailor them to specific prob-
lems and data with minimal effort. It is a template, an ab-
stract index definition that allows designers and developers
to implement a large class of indexes. The original proposal
focused on record retrieval only but later work added support
for concurrency [38], a more general API [5], improved per-
formance [37], selectivity estimation on generated indexes
[6] and even visual tools that help with debugging [39, 40].

3 PART 3: SELF-DESIGNED AND
LEARNED SYSTEMS

Self-designed Systems. Self-designed systems rely on the
notion of mapping the possible space of critical design de-
cisions in a system. For example, the Data Calculator intro-
duced the design space of key-value storage [31]. The design
space is defined by all designs that can be described as com-
binations and tunings of the “first principles of design”. A
first principle is a fundamental design concept that cannot
be broken into additional concepts, e.g., for data structure de-
sign: fence pointers, links, temporal partitioning, and so on.
The intuition is that, over the past decades, researchers have
invented numerous fundamental design concepts such that
a plethora of new valid designs with interesting properties
can be synthesized out of those. The design space presented
in [31] is shown to cover state-of-the-art designs, but it also
reveals that a massive number of additional storage designs
can be derived. As an analogy consider the periodic table of
elements in chemistry; it categorized existing elements, but
it also predicted unknown elements and their properties. In
the same way, we can create the periodic table of data struc-
tures [30] which describes more key-value store designs than
stars on the sky. Similar efforts have created design spaces
in cache coherency protocols for database servers [19] and
the design of parallel algorithms [49].

A self-designed system uses the design space to automat-
ically generate designs that fit best a target workload and
hardware. To do that we need to know how the various
points in the space differ in terms of the performance prop-
erties they give to the resulting system. For example, learned
cost models [31] is a method that enables learning the costs
of fundamental access patterns (random access, scan, sorted
search) out of which we can synthesize the costs of complex
algorithms for a given data structure specification. These
costs can, in turn, be used by machine learning algorithms
that iterate over machine generated data structure specifi-
cations to label designs, and to compute rewards, deciding
which specification to try out next. For example, early results
using genetic algorithms [29] and dynamic programming
[31] show the strong potential of such approaches to automat-
ically discover close to optimal storage designs. In addition,
design continuums [16, 17, 26] is another direction which
allows for accurate fast search for the best design. A design
continuum is a performance hyperplane that connects a spe-
cific subset of designs within the set of all possible designs.
Design continuums are effectively a projection of the design
space, a “pocket” of designs where we can identify unifying
properties among its members. Early results show that there
is a design continuum that covers B-tree, LSM-tree, and Log
+ index key-value stores [26].

Learned Systems. In learned systems traditional core
data system components are replaced with models. For ex-
ample a learned index [43] replaces the index part of a data
structure with a model. The model may be anything from a
simple linear model, a hierarchy of models, to an arbitrarily
complex neural network. In turn, the data structure may be
the structure used for base storage, secondary indexing or
any other data structure needed in the system. Models cap-
ture data properties that in many cases are hard to capture
with a generic one size fits all data structure design that has
predefined workloads it supports well. In addition, a model
in most cases will require much less data to represent the
index information needed in a data structure, resulting in
a design with much less memory footprint than standard
designs. This is important especially in cloud environments
where the amount of memory is a significant cost factor. In
addition, replacing key-based metadata in an index with a
model, effectively shifts the cost of traversing an index from
memory bound to CPU bound which favors modern hard-
ware. Early results with learned indexes [43] show that it
is possible to match or even outperform traditional indexes
while having a much smaller memory footprint.

The principle of replacing traditional system components
with models can be applied in numerous areas of data sys-
tems design. For example recent work on learned cardinality
estimation [35] shows promising results on tackling one of
the oldest problems in database optimization which routinely
leads to bad query plans due to stale statistics. In addition,
recent work on learned optimizers shows promising results
in optimizing complex query plans with many joins [48].
SageDB is a recent system proposal for a holistic design of a
data system where learned components are a first class citi-
zen in its design [42]. Models can help in many more areas,
e.g., they can even be used as data representation method to
store old data or to perform approximate processing [34].

ResearchOpportunities.The new opportunitywith self-
designed and learned systems is the ability to design data
systems that can provide a wider range of performance be-
haviors compared to past designs that relied only on auto-
tuning and adaptivity. For example, a self-designed system
can assume any behavior as long as it is part of its design
space while a learned system can assume any behavior that
the models can support. In both cases we can assume many
more behaviors than what a fixed a priori design can do.
There are numerous open research problems with both di-
rections, e.g., for self-designed systems: efficient search of
the optimal design, quick and efficient code generation of
the target design, easy extensibility to expand the supported
design space, and for learned systems: efficient storage of
models, efficient execution of complex models with mod-
ern hardware, robustness and interpetability of performance
results.

Further, there are exciting research and practical opportu-
nities that arise from the fusion of learned and self-designed
systems as well as workload-triggered adaptivity [27], and
modern takes on auto-tuning with machine learning [1]. The
long term agenda is toward building systems that have mod-
els and design spaces as first class citizens while being able
to adapt to query workloads as well as auto-tune any knobs
exposed. In practice all systems expose knobs sooner or later,
e.g., to accommodate special performance or feature needs
that arise after the system goes on production.

Applications: Relational, Big Data, Data Science. In
the last part of the tutorial we touch on how the new direc-
tions described can apply across numerous data-intensive
areas beyond relational systems. We discuss NoSQL systems
(e.g, LSM-trees, B-trees, and Log+index systems), as well
as broad data science applications such as statistics-heavy
processing and machine learning systems. Effectively, all
these areas have in common the need to process ever grow-
ing amounts of data. The data storage and exact processing
algorithms supported need to vary depending on the exact ac-
cess patterns desired by the high level algorithms/workloads
and by the hardware. As data grows, even the slightest sub-
optimality in these decisions can cost anything from hours to
days in processing. The new ideas presented in this tutorial
showcase open research problems towards being able to gen-
erate close to optimal storage systems for such data-intensive
applications.

4 AUDIENCE AND OUTPUT
Audience. The target audience for this tutorial is students,
academics, researchers and software engineers with basic
knowledge on data structures, algorithms and data system
design. We assume basic understanding of fundamental data
structures such as B-trees, LSM-trees, and Hash-tables. In
addition, we assume basic knowledge of database system
architectures, their components and how they broadly in-
teract, e.g., a high level understanding of cost based opti-
mizers, execution engine, storage engine, row-stores, and
column-stores. The tutorial is self-contained in providing
all necessary background, no prior knowledge is needed on
auto-tuning, adaptive systems/indexing, self-designed and
learned systems.

Output. The target learning output is as follows:

(1) understanding the need of building new tailored sys-
tems that match the application needs

(2) understanding the long term technical limitations of
state-of-the-art knob-based systems

(3) exposure to the new research challenges with self-
designed and learned systems

(4) exposure to the new opportunities across diverse data-
intensive contexts: relational, NoSQL, and data science

5 PRESENTERS
Stratos Idreos is an associate professor of Computer Sci-
ence at Harvard University where he leads the Data Sys-
tems Laboratory. His research focuses on making it easy and
even automatic to design workload and hardware conscious
data structures and data systems with applications on rela-
tional, NoSQL, and broad data science and data exploration
problems. Stratos was awarded the ACM SIGMOD Jim Gray
Doctoral Dissertation award for his thesis on adaptive in-
dexing. He received the 2011 ERCIM Cor Baayen award as
“most promising European young researcher in computer
science and applied mathematics” from the European Re-
search Council on Informatics and Mathematics. He won the
2011 Challenges and Visions best paper award in the Very
Large Databases conference as well as “best of conference”
selections at VLDB 2012 and SIGMOD 2017. In 2015 he was
awarded the IEEE TCDE Rising Star Award from the IEEE
Technical Committee on Data Engineering for his work on
adaptive data systems. Stratos is also a recipient of the IBM
zEnterpise System Recognition Award, a Facebook Faculty
award, a NetApp Faculty award, and an NSF Career award.

Tim Kraska is an Associate Professor of Electrical Engi-
neering and Computer Science in MIT’s Computer Science
and Artificial Intelligence Laboratory. His research focuses
on building systems for machine learning, as well as using
machine learning for systems with a broad goal to replace
traditional bulky system components with efficient and suc-
cinct models. In addition, Tim works on democratizing data
science with tools for interactive and visual data exploration.
Before joining MIT, he was an Assistant Professor at Brown
University, spent time at Google Research, andwas a PostDoc
in the AMPLab at UC Berkeley after getting his Ph.D. from
ETH Zurich. Tim is a 2017 Alfred P. Sloan Research Fellow in
computer science and received the 2017 VMware Systems Re-
search Award, an NSF CAREER Award, an Air Force Young
Investigator award, two Very Large Data Bases (VLDB) con-
ference best-demo awards, and a best-paper award from the
IEEE International Conference on Data Engineering (ICDE).
Tim is also the winner of the 2018 VLDB early career award
for advancing systems research on interactive data analytics.

6 ACKNOWLEDGMENTS
This work is partially funded by the USA National Science
Foundation project IIS-1452595.

REFERENCES
[1] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan

Zhang. 2017. Automatic Database Management System Tuning
Through Large-scale Machine Learning. SIGMOD (2017).

[2] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki.
2014. H2O: A Hands-free Adaptive Store. SIGMOD (2014).

[3] Victor Alvarez, Felix Martin Schuhknecht, Jens Dittrich, and
Stefan Richter. 2014. Main Memory Adaptive Indexing for
Multi-Core Systems. DAMON (2014).

[4] Michael R. Anderson, Dolan Antenucci, Victor Bittorf,
Matthew Burgess, Michael J. Cafarella, Arun Kumar, Feng Niu,
Yongjoo Park, Christopher Ré, and Ce Zhang. 2013. Brainwash:
A Data System for Feature Engineering. CIDR (2013).

[5] PaulMAoki. 1998. Generalizing "Search" in Generalized Search
Trees (Extended Abstract). ICDE (1998).

[6] Paul M Aoki. 1999. How to Avoid Building DataBlades That
Know the Value of Everything and the Cost of Nothing. SSDBM
(1999).

[7] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. 2016. Bridg-
ing the Archipelago between Row-Stores and Column-Stores
for Hybrid Workloads. SIGMOD (2016).

[8] Manos Athanassoulis, Michael S. Kester, Lukas M. Maas, Radu
Stoica, Stratos Idreos, Anastasia Ailamaki, andMark Callaghan.
2016. Designing Access Methods: The RUM Conjecture. EDBT
(2016).

[9] Shivnath Babu, Nedyalko Borisov, Songyun Duan, Herodotos
Herodotou, and Vamsidhar Thummala. 2009. Automated
Experiment-Driven Management of (Database) Systems. Ho-
tOS (2009).

[10] Don S Batory, J R Barnett, J F Garza, K P Smith, K Tsukuda,
B C Twichell, and T E Wise. 1988. GENESIS: An Extensible
Database Management System. TSE 14, 11 (1988), 1711–1730.

[11] Nicolas Bruno and Surajit Chaudhuri. 2005. Automatic physi-
cal database tuning. SIGMOD (2005).

[12] Michael J Carey and David J DeWitt. 1987. An Overview of
the EXODUS Project. IEEE DEBULL 10, 2 (1987), 47–54.

[13] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient
Cost-Driven Index Selection Tool for Microsoft SQL Server.
VLDB (1997).

[14] Surajit Chaudhuri and Gerhard Weikum. 2000. Rethinking
Database System Architecture: Towards a Self-Tuning RISC-
Style Database System. VLDB (2000).

[15] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017.
Monkey: Optimal Navigable Key-Value Store. SIGMOD (2017).

[16] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2018.
Optimal Bloom Filters and Adaptive Merging for LSM-Trees.
TODS (to appear (2018).

[17] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-
Time Trade-Offs for LSM-Tree Based Key-Value Stores via
Adaptive Removal of Superfluous Merging. SIGMOD (2018).

[18] Jens Dittrich and Alekh Jindal. 2011. Towards a One Size Fits
All Database Architecture. CIDR (2011).

[19] Michael J Franklin. 1993. Caching and Memory Management in
Client-Server Database Systems. Ph.D. Dissertation. University
of Wisconsin-Madison.

[20] David Goldhirsch and Jack A Orenstein. 1987. Extensibility
in the PROBE Database System. IEEE DEBULL 10, 2 (1987),
24–31.

[21] Goetz Graefe. 1994. Volcano - An Extensible and Parallel
Query Evaluation System. TKDE 6, 1 (feb 1994), 120–135.

[22] Goetz Graefe, Felix Halim, Stratos Idreos, Harumi Kuno, and
Stefan Manegold. 2012. Concurrency control for adaptive

indexing. PVLDB 5, 7 (2012), 656–667.
[23] Richard A Hankins and Jignesh M Patel. 2003. Data Morph-

ing: An Adaptive, Cache-Conscious Storage Technique. VLDB
(2003).

[24] Max Heimel, Martin Kiefer, and Volker Markl. 2015. Self-
Tuning, GPU-Accelerated Kernel Density Models for Multidi-
mensional Selectivity Estimation. SIGMOD (2015).

[25] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer.
1995. Generalized Search Trees for Database Systems. VLDB
(1995).

[26] Stratos Idreos, Niv Dayan,Wilson Qin, Mali Akmanalp, Sophie
Hilgard, Andrew Ross, James Lennon, Varun Jain, Harshita
Gupta, David Li, and Zichen Zhu. 2019. Design Continuums
and the Path Toward Self-Designing Key-Value Stores that
Know and Learn. In CIDR (2019).

[27] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007.
Database Cracking. CIDR (2007).

[28] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2009.
Self-organizing Tuple Reconstruction in Column-Stores. SIG-
MOD (2009).

[29] Stratos Idreos, Lukas M Maas, and Mike S Kester. 2017.
Evolutionary Data Systems. CoRR abs/1706.0 (2017).
arXiv:1706.05714

[30] Stratos Idreos, Kostas Zoumpatianos, Manos Athanassoulis,
Niv Dayan, Brian Hentschel, Michael S. Kester, Demi Guo,
Lukas M. Maas, Wilson Qin, Abdul Wasay, and Yiyou Sun.
2018. The Periodic Table of Data Structures. IEEE DEBULL 41,
3 (2018), 64–75.

[31] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel,
Michael S Kester, and Demi Guo. 2018. The Data Calculator:
Data Structure Design and Cost Synthesis from First Principles
and Learned Cost Models. SIGMOD (2018).

[32] Yannis E Ioannidis and Eugene Wong. 1987. Query Optimiza-
tion by Simulated Annealing. SIGMOD (1987).

[33] Oliver Kennedy and Lukasz Ziarek. 2015. Just-In-Time Data
Structures. CIDR (2015).

[34] Martin L. Kersten and Lefteris Sidirourgos. 2017. A Database
System with Amnesia. In CIDR (2019).

[35] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter
Boncz, and Alfons Kemper. 2019. Learned Cardinalities: Esti-
mating Correlated Joins with Deep Learning. In CIDR (2019).

[36] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan
Chafi. 2014. Building Efficient Query Engines in a High-Level
Language. PVLDB 7, 10 (2014), 853–864.

[37] Marcel Kornacker. 1999. High-Performance Extensible Index-
ing. VLDB (1999).

[38] Marcel Kornacker, C Mohan, and Joseph M. Hellerstein. 1997.
Concurrency and Recovery in Generalized Search Trees. SIG-
MOD (1997).

[39] Marcel Kornacker, Mehul A. Shah, and Joseph M. Hellerstein.
1998. amdb: An Access Method Debugging Tool. SIGMOD
(1998).

[40] Marcel Kornacker, Mehul A. Shah, and Joseph M. Hellerstein.
2003. Amdb: A Design Tool for Access Methods. IEEE DEBULL
26, 2 (2003), 3–11.

[41] Donald Kossman. 2018. Systems Research - Fueling Future
Disruptions. In Keynote talk at the Microsoft Research Faculty
Summit. Redmond, WA, USA.

[42] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed Chi, Ani
Kristo, Guillaume Leclerc, Samuel Madden, Hongzi Mao, and
Vikram Nathan. 2019. SageDB: A Learned Database System.
In CIDR (2019).

[43] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neok-
lis Polyzotis. 2018. The Case for Learned Index Structures.
SIGMOD (2018).

[44] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta.
2013. LLAMA: A Cache/Storage Subsystem for Modern Hard-
ware. PVLDB 6, 10 (2013), 877–888.

[45] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta.
2013. The Bw-Tree: A B-tree for New Hardware Platforms.
ICDE (2013).

[46] Zezhou Liu and Stratos Idreos. 2016. Main Memory Adaptive
Denormalization. SIGMOD (2016).

[47] Martin Luhring, Kai-Uwe Sattler, Karsten Schmidt, and Eike
Schallehn. 2007. Autonomous Management of Soft Indexes.
ICDEW (2007).

[48] Ryan C. Marcus and Olga Papaemmanouil. 2019. Towards a
Hands-Free Query Optimizer through Deep Learning. In CIDR
(2019).

[49] Tim Mattson, Beverly Sanders, and Berna Massingill. 2004.
Patterns for Parallel Programming. Addison-Wesley Profes-
sional.

[50] John McPherson and Hamid Pirahesh. 1987. An Overview of
Extensibility in Starburst. IEEE DEBULL 10, 2 (1987), 32–39.

[51] Sylvia L Orborn. 1987. Extensible Databases and RAD. IEEE
DEBULL 10, 2 (1987), 10–15.

[52] David Lorge Parnas. 1979. Designing Software for Ease of
Extension and Contraction. TSE 5, 2 (1979), 128–138.

[53] Eleni Petraki, Stratos Idreos, and Stefan Manegold. 2015. Holis-
tic Indexing in Main-memory Column-stores. SIGMOD (2015).

[54] Holger Pirk, Eleni Petraki, Stratos Idreos, Stefan Manegold,
and Martin L. Kersten. 2014. Database cracking: fancy scan,
not poor man’s sort! DAMON (2014).

[55] Karl Schnaitter, Serge Abiteboul, Tova Milo, and Neoklis Poly-
zotis. 2006. COLT: Continuous On-Line Database Tuning.
SIGMOD (2006).

[56] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich.
2013. The Uncracked Pieces in Database Cracking. PVLDB 7,
2 (2013), 97–108.

[57] Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Self-
Adjusting Binary Search Trees. J. ACM 32, 3 (1985), 652–686.

[58] Michael Stonebraker, Jeff Anton, and Michael Hirohama. 1987.
Extendability in POSTGRES. IEEE DEBULL 10, 2 (1987), 16–23.

[59] Michael Stonebraker and Ugur Cetintemel. 2005. "One Size
Fits All": An Idea Whose Time Has Come and Gone. ICDE
(2005).

[60] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas.
2014. Indexing for interactive exploration of big data series.
SIGMOD (2014).

http://arxiv.org/abs/1706.05714

	Abstract
	1 Part 1: New Requirements for Data Intensive Systems
	2 Part 2: One Size Fits All Systems
	3 Part 3: Self-designed and Learned Systems
	4 Audience and Output
	5 Presenters
	6 ACKNOWLEDGMENTS
	References

