
One Loop Does Not Fit All

Styliani Pantela
Harvard University

stylianipantela@college.harvard.edu

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

ABSTRACT
Just-In-Time (JIT) compilation increasingly becomes a key
technology for modern database systems. It allows the cre-
ation of code on-the-fly to perfectly match an active query.
In the past, it has been argued that a query should be com-
piled to a single loop that performs all query actions, for
example, all selects over all relevant columns. On the other
hand, vectorization – a common feature in modern data sys-
tems – allows for better results by evaluating the query pred-
icates sequentially in different tight for-loops.

In this paper, we study JIT compilation for modern in-
memory column-stores in detail and we show that, contrary
to the common belief that vectorization outweighs the ben-
efits of having one loop, there are cases in which creating a
single loop is actually the optimal solution. In fact, decid-
ing between multiple or a single loop is not a static decision;
instead, it depends on (per column) query selectivity. We
perform our experiments on a modern column-store proto-
type that supports vectorization and we show that, depend-
ing on selectivity, a different code layout is optimal. When a
select operator is implemented with a no-branch design, for
low selectivity creating multiple loops performs better than
a single loop. A single tight loop performs better otherwise.

1. INTRODUCTION
Just-In-Time Code Generation. JIT code generation

for query execution is a method employed by database man-
agement systems in order to avoid the interpretation over-
head that comes with declarative languages like SQL [6].
Upon receiving the query, the engine makes decisions on op-
timization and compiles SQL into a low level representation
that will then be linked, loaded and executed. This method
avoids pitfalls that could be incurred by the separation of
operators, a key insight exploited in HyPer [3]. HyPer uses
JIT code generation for an in-memory column store system
by avoiding intermediate materialization of results until a
pipeline breaker appears. The generated code breaks oper-
ator boundaries combining together as many operators as

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
ACM 978-1-4503-2758-9/15/05.
http://dx.doi.org/10.1145/2723372.2764944.

possible in a single loop. It keeps intermediate results in
registers and generates code in LLVM IR and suggests that
one loop fits all.

Furthermore, Sompolski et al. [5] extensively study the
ideas of JIT compilation and vectorized query processing in
column stores and prove that it is beneficial to introduce JIT
query compilation to a vectorized system and that there are
still benefits of vectorization to a tuple-at-a-time compiled
system. The premise of JIT code generation in a compact
loop is that it avoids the creation of intermediate results [5].
Sompolski et al. argue that if we reduce the generation of
intermediate results by using a select fetch operator instead
of using a fetch followed by a separate select, the approach of
using one loop is worse that simply evaluating one predicate
after another sequentially, in a vectorized way.

Contributions. In this paper we experiment with mod-
ern in-memory column store systems and look closely at
the case of conjunctive selects. We show that in a multi-
threaded setting, it is beneficial to switch to the one loop
technique most of the time. However, in cases of low se-
lectivity and branchless execution it is beneficial to opt for
having multiple loops.

2. ONE LOOP DOES NOT FIT ALL
In this section we present our experimental analysis and

we demonstrate that a single JIT solution is not optimal
across all workload scenarios.

Experimental Setup. We use an in-memory column
store prototype. Every column is assumed to fit in main
memory and the tuples are 8 bytes long for a total of one
billion tuples per column. We evaluate our system on a
4-way Intel Xeon E7-4820 configuration with 64 hardware
threads and 1 TB of main memory and use GCC 4.7.2 (De-
bian 4.7.2-5).

Test Queries. We focus our experiments on conjunctive
select queries of the form of Query 1. Such queries stress the
decision between a single and multiple loops, as they include
several predicates.

Query 1 Select Query
SELECT R.d FROM R
WHERE R.a < v1 AND R.b < v2
AND R.c < v3 AND R.d < v4

Execution Strategies. The first strategy of execution
breaks the evaluation of the query into four tight loops; one
for each predicate. In this case vectorized execution can be
exploited. Each loop operates on a vector of tuples that fits
into the L1 cache and performs the select over the respec-



0 20 40 60 80 100
Per-Column Selectivity (%)

0

1

2

3
E

xe
cu

tio
n

Ti
m

e
(s

ec
) 1 loop

4 loops

Figure 1: With branches

tive column using column store operations [1]. After the
first select, we can minimize intermediate results by using
a fetch select operator to perform a column projection and
selection in one step, following prior art [2] (Algorithm 1).

Algorithm 1 4 Loops Strategy for Query 1

1. inter = select(R.a, v1)
2. inter = select_fetch(R.b, v2, inter)
3. inter = select_fetch(R.c, v3, inter)
4. dest = select_fetch(R.d, v4, inter)

The second execution strategy uses one tight loop for the
evaluation of all of predicates (Algorithm 2).

Algorithm 2 1 Loop Strategy for Query 1

1. dest = select(R.a, v1, R.b, v2,
R.c, v3, R.d, v4)

Optimizations. Multi-threaded execution helps to im-
prove performance; we fully utilize the eight available cores
by using eight threads. Following prior work [4] we evaluate
the two execution strategies with two different implementa-
tions: with and without branching. The order of evaluation
of the predicates is inconsequential because the data is ran-
domly generated using a uniform distribution, and the per-
column selectivity is the same across all predicates. Finally,
we use loop unrolling to optimize the branchless version of
vectorized processing.

Results. Figure 1 shows the performance of the two ex-
ecution strategies for different column selectivity in an im-
plementation that uses branching. The performance is af-
fected by branch mispredictions as selectivity varies. The 1
Loop Strategy (Algorithm 1) outperforms the 4 Loops Strat-
egy (Algorithm 2) for any selectivity and the gap is increased
in high selectivity. Furthermore, Figure 2 compares the two
execution strategies in a branchless context. The 1 Loop
Strategy is outperforming the 4 Loops Strategy for higher
selectivity but is slower for lower selectivity.

Although it is argued that vectorization comes with a lot
of benefits [5], the functional overhead we pay along with
the cost of materializing intermediate results is significant
in both the branchless and the with cases. The intuition
behind our observation is that in the 1 Loop Strategy, all
columns of the predicates will be scanned fully regardless
of the selectivity. However, for low selectivity, most of the
tuples across the columns are not going to qualify. This
results in reading data that is not going to be used. On the
other hand, using separate loops for each predicate results
in scanning fewer cache lines when the first filter selects very
few tuples.

0 20 40 60 80 100
Per-Column Selectivity (%)

0

1

2

3

E
xe

cu
tio

n
Ti

m
e

(s
ec

) 1 loop
4 loops

Figure 2: Branchless

Comparing Figure 1 and 2 we observe that optimizing
for performance requires the branched execution (especially
for low selectivity), where we should always opt for the 1
Loop Strategy. On the other hand, the branchless version
yields more predictable performance. For low selectivity the
4 Loops Strategy outperforms the 1 Loop Strategy, and vice
versa for high selectivity.

Finally, we observe that the difference between the two ex-
ecution strategies in Figure 1 and Figure 2 is increasing and
appears to be dominated by the extra cost of the creation
of intermediate results for the vectorized execution.

3. SUMMARY & FUTURE WORK
We study code generation for in-memory column store sys-

tems, covering the case of conjunctive selects. We show that
there is no single solution that works optimally across all
workloads; selectivity is the crucial factor. Our conclusion
is that a robust system using branchless execution should
choose to alternate between the two methods based on pre-
dicted selectivity.

Future steps include a more detailed breakdown of hard-
ware metrics like CPU cycles and branch mispredictions for
varying selectivity in order to further support our findings
on which strategy performs better. Another open question is
whether employing SIMD instructions when comparing the
two strategies will yield different results. In order to estab-
lish a general heuristic, we plan to extend our analysis by
evaluating disjunctive queries, and varying data distribution
and correlations across columns.

Acknowledgments. This project is supported by the Na-
tional Science Foundation under Grant No. IIS-1452595.
The authors would like to thank Lukas Maas and Manos
Athanassoulis, members of Harvard DASlab, for their help.

4. REFERENCES
[1] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, and S. Madden.

The design and implementation of modern column-oriented
database systems. Foundations and Trends in Databases,
5:197–280, 2013.

[2] S. Idreos, M. L. Kersten, and S. Manegold. Database Cracking.
In Proceedings of the International Conference on Innovative
Data Systems Research (CIDR), pages 68–78, 2007.

[3] T. Neumann. Efficiently Compiling Efficient Query Plans for
Modern Hardware. Proceedings of the VLDB Endowment,
4(9):539–550, 2011.

[4] K. A. Ross. Selection Conditions in Main Memory. ACM
Transactions on Database Systems, 29(1):132–161, 2004.

[5] J. Sompolski, M. Zukowski, and P. Boncz. Vectorization vs.
Compilation in Query Execution. In Proceedings of the
International Workshop on Data Management on New
Hardware (DAMON), pages 33–40, 2011.

[6] S. D. Viglas. Just-in-time Compilation for SQL Query
Processing. Proceedings of the VLDB Endowment,
6(11):1190–1191, 2013.

http://daslab.seas.harvard.edu

	Introduction
	One loop does not fit all
	Summary & Future Work
	References

