
NoDB: Efficient Query Execution on Raw Data Files

⇤

Ioannis Alagiannis† Renata Borovica-Gajic† Miguel Branco† Stratos Idreos‡ Anastasia Ailamaki†

†Ecole Polytechnique Fédérale de Lausanne
{ioannis.alagiannis, renata.borovica, miguel.branco, anastasia.ailamaki}@epfl.ch

‡Harvard University
stratos@seas.harvard.edu

ABSTRACT
As data collections become larger and larger, users are faced with
increasing bottlenecks in their data analysis. More data means more
time to prepare and to load the data into the database before exe-
cuting the desired queries. Many applications already avoid using
database systems, e.g., scientific data analysis and social networks,
due to the complexity and the increased data-to-query time, i.e.,
the time between getting the data and retrieving its first useful re-
sults. For many applications data collections keep growing fast,
even on a daily basis, and this data deluge will only increase in the
future, where it is expected to have much more data than what we
can move or store, let alone analyze.

We here present the design and roadmap of a new paradigm in
database systems, called NoDB, which do not require data loading
while still maintaining the whole feature set of a modern database
system. In particular, we show how to make raw data files a first-
class citizen, fully integrated with the query engine. Through our
design and lessons learned by implementing the NoDB philosophy
over a modern DBMS, we discuss the fundamental limitations as
well as the strong opportunities that such a research path brings.
We identify performance bottlenecks specific for in situ process-
ing, namely the repeated parsing and tokenizing overhead and the
expensive data type conversion. To address these problems, we in-
troduce an adaptive indexing mechanism that maintains positional
information to provide efficient access to raw data files, together
with a flexible caching structure. We conclude that NoDB systems
are feasible to design and implement over modern DBMS, bringing
an unprecedented positive effect in usability and performance.

1. INTRODUCTION
We are in the era of data deluge, where the amount of gener-

ated data outgrows the capabilities of query processing technology.
Many emerging applications, from social networks to scientific ex-
periments, are representative examples of this deluge, where the
rate at which data is produced exceeds any past experience. Sci-
entific disciplines such as astronomy are soon expected to collect
multiple Terabytes of data on a daily basis. Similarly, web-based
businesses such as social networks or web log analysis are already

⇤The original version of this paper was published in Proceedings
of the 2012 ACM SIGMOD International Conference on Manage-
ment of Data (Scottsdale, Arizona, USA).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

confronted with a growing stream of large data inputs. Therefore,
there is a clear need for efficient big data processing to enable the
evolution of businesses and sciences to the new era of data deluge.

Motivation. Although Database Management Systems (DBMS)
remain overall the predominant data analysis technology, they are
rarely used for emerging applications. This is largely due to the
complexity involved; there is a significant initialization cost in load-
ing data and preparing the database system for queries. For exam-
ple, a scientist needs to quickly examine a few Terabytes of new
data in search of certain properties. Even though only a few at-
tributes might be relevant for the task, the entire data must first be
loaded inside the database. Besides being a significant time invest-
ment, it is also important to consider the extra computing resources
required for a full load and its side-effects with respect to energy
consumption and economical sustainability.

Instead of using database systems, emerging applications rely on
custom solutions that usually miss important database features. For
instance, declarative queries, schema evolution and complete iso-
lation from the internal representation of data are rarely present.
There are a wide variety of competing approaches but users re-
main exposed to many low-level details and must work close to the
physical level to obtain adequate performance and scalability. A
growing part of the database community recognizes the need for
significant and fundamental changes to database design, ranging
from low-level architectural redesigns to changes in the way users
interact with the system [2, 5, 8, 9, 12, 14, 16, 17, 21].

The NoDB Philosophy. We recognize this new need, which is
a direct consequence of the data deluge, and describe the roadmap
towards NoDB, a new database design philosophy that we believe
will come to define how future database systems are designed. The
goal of the NoDB philosophy is to make database systems more
accessible to the user by eliminating major bottlenecks of current
state-of-the-art technology that increases the data-to-query time.
The data-to-query time is of critical importance as it defines the
moment when a database system becomes usable and thus useful.
There are, however, fundamental processes in modern database ar-
chitectures that represent a major bottleneck for data-to-query time.
The NoDB philosophy changes the way a user interacts with a
database system by eliminating one of the most important bottle-
necks, i.e., data loading. We advocate querying over raw data, in
situ (i.e., in its original place) as the principal way to manage data
in a database and we propose to redesign the query processing lay-
ers of database systems to incrementally and adaptively query raw
data files in situ, while automatically creating and refining auxiliary
structures to speed up future queries.

Adaptive Data Loads. We originally introduced the idea of
adaptive data loading in an earlier vision paper [9]. The current pa-
per makes numerous and significant contributions, towards demon-

strating the feasibility and the potential of that vision. Using a
mature and complete implementation over a modern DBMS, we
identify and overcome fundamental limitations in NoDB systems.
Most importantly, we show how to make raw files first-class cit-
izens without sacrificing query performance. We also introduce
several innovative techniques such as selective parsing, adaptive in-
dexing structures that operate on the raw files, caching techniques
and statistics collection over raw files. Overall, we describe how to
exploit current relational databases to conform to the NoDB philos-
ophy while identifying limitations and opportunities in the process.

Contributions. Our contributions are as follows.

• We convert a traditional relational database (PostgreSQL)
into a NoDB system (PostgresRaw), and discover that the
main bottlenecks are the repeated access and parsing of raw
files. Therefore, we design an innovative adaptive indexing
mechanism that makes the trip back to the raw files efficient.

• We demonstrate that the query response time of a NoDB sys-
tem can be competitive with a traditional DBMS, even with-
out prior data loading.

• We show that NoDB systems provide quick access to the data
under a variety of workloads. PostgresRaw query perfor-
mance improves adaptively as it processes additional queries
and it quickly matches or outperforms traditional DBMS, in-
cluding MySQL and PostgreSQL.

• We describe opportunities with the NoDB philosophy, as well
as challenges such a research path brings.

2. QUERYING RAW DATA
In this section, we introduce the NoDB philosophy. For ease of

presentation, we first discuss a straw-man approach to in situ query-
ing, where every query relies exclusively on raw files for query
processing. Then, we address the weaknesses of the straw-man
approach by introducing the core concepts of NoDB that enable
efficient access to raw data.

Typical Storage and Execution. A row-store DBMS organizes
data in the form of tuples, stored sequentially one tuple after the
other in the form of slotted pages. Each page contains a collection
of tuples as well as additional metadata information to help in-page
navigation. These pages are created during the loading process.
Before being able to submit queries, the data must first be loaded,
which transforms it from the raw format to the database page for-
mat. During query processing the system brings pages into memory
and processes the tuples. In order to create proper query plans, i.e.,
to decide the operators and their order of execution, an optimizer is
used, which exploits previously collected statistics about the data.
A query plan can be seen as a tree where each node is a relational
operator and each leaf corresponds to a data access method. The
access methods define how the system accesses the tuples. Each
tuple is then passed one-by-one through the operators of a query
plan. The NoDB philosophy needs to be integrated with the afore-
mentioned design for efficient and adaptive query execution.

2.1 Straightforward Approaches
We describe two straightforward ways to directly query raw data

files. The first approach is to simply run the loading procedure
whenever a relevant query arrives: when a query referring to table R
arrives, only then load table R, and immediately evaluate the query
over the loaded data. Data may be loaded into temporary tables
that are discarded after processing the query, or it may be loaded
into persistent tables stored on disk. These approaches however,

significantly penalize the first query, since creating the complete
table before evaluating the query implies that the same data needs to
be accessed twice, once for loading and once for query evaluation.

A better approach is to tightly integrate the raw file accesses with
the query execution. This is accomplished by enriching the leaf
operators of the query plans, e.g., the scan operator, with the ability
to access raw data files. Therefore, the scan operator tokenizes and
parses a raw file on-the-fly, creates the tuples and passes them to
the remaining of the query plan. The key difference is that data
parsing and processing occur in a pipelined fashion, i.e., the raw
file is read from disk in chunks and once a tuple or a group of tuples
is produced, the scan immediately passes those tuples upstream.

Both straw-man techniques require that the proper schema be
known a priori; the user needs to declare the schema and mark all
tables as in situ tables. Other than that, both techniques represent
a straightforward implementation of in situ query processing; they
do not require significant new technology other than a careful inte-
gration of existing loading procedures with query processing.

Limitations of Straightforward Approaches. The approaches
discussed above are similar to the external files functionality of-
fered by modern database systems such as Oracle and MySQL.
Such solutions are not viable for extensive and repeated query pro-
cessing. For example, if data is not kept in persistent tables, then
every future query needs to perform loading from scratch, which is
a major overhead. Materializing loaded data into persistent tables
however, forces a single query to incur all loading costs. Therefore,
such approaches are only viable if a user needs to fire few queries.

Neither straw-man technique allows the implementation of im-
portant database systems functionality. In particular, given that data
is not loaded, there is no mechanism to exploit indexing; modern
database systems do not support indexes on raw data. Without in-
dex support, query plans for straw-man techniques rely only on full
scans, incurring a significant performance degradation compared to
a DBMS with loaded data and indexes. In addition, the optimizer
cannot exploit any statistics, since statistics in a modern DBMS are
created only after data is loaded. The lack of statistics and indexing
means that straw-man techniques do not provide query processing
performance comparable to a modern DBMS and any time gained
by skipping data loading is lost after only a few queries.

Even though in situ features, such as external files, are important
for the users, current implementations are far from the NoDB vi-
sion of providing an instant gateway to the data, without losing the
performance advantages achieved by modern DBMS.

2.2 The NoDB Philosophy
The NoDB philosophy aims to provide in situ access with query

processing performance that is competitive with a database system
operating over previously loaded data. In other words, the vision
is to completely shed the loading costs, while achieving or improv-
ing the query processing performance of a traditional DBMS. Such
performance characteristics make the DBMS usable and flexible;
a user may only think about the kind of queries to pose and not
about setting up the system in advance and going through all the
initialization steps that are necessary today.

The design we propose in this work takes significant steps in
identifying and eliminating or greatly minimizing initialization and
query processing costs that are unique for in situ systems. The
target behavior is visualized in Figure 1. It illustrates an important
aspect of the NoDB philosophy; even though individual queries
may take longer to respond than in a traditional system, the data-to-
query time is reduced, because there is no need to load and prepare
data in advance or to fine tune the system when different queries
arrive. In addition, performance improves gradually as a function

Re
sp

on
se

 ti
m

e

DBMS with
external files DBMS NoDB

Q1

Q2

Q3

Q4

Load

Q1

Q2
Q3
Q4

Q1
Q2
Q3
Q4

Figure 1: Improving user interaction with NoDB.

of the number of queries processed.
New Challenges of NoDB systems. The main bottleneck of in

situ query processing is the access to raw data. The costs involved
in raw data access significantly degrade query performance. In a
traditional DBMS, parsing raw data files is more expensive than
accessing database pages. The NoDB philosophy aims at making
raw data a first-class citizen, integrating raw data access in an ab-
stract way into the query processing layer, allowing query process-
ing without a priori loading. However, a NoDB system can only
be useful and attractive in practice if it achieves performance levels
comparable to a modern DBMS. Therefore, the main challenge for
a NoDB system is to minimize the cost of accessing raw data.

From a high level point of view, we distinguish between two
directions; the first one aims at minimizing the cost of raw data
access through the careful design of data structures that can speed-
up such accesses; the second one aims at selectively eliminating the
need for raw data access by careful caching and scheduling raw data
accesses. The final grand challenge is to come up with a seamless
design that integrates such features into a modern DBMS.

3. POSTGRESRAW:
BUILDING NODB IN POSTGRESQL

In this section, we discuss the design of our NoDB prototype,
called PostgresRaw, implemented by modifying the open-source
DBMS PostgreSQL. We show how to minimize parsing and tok-
enizing costs within a row-store engine via selective and adaptive
parsing actions. In addition, we present a novel raw file indexing
structure that adaptively maintains positional information to speed-
up future accesses on raw files. Finally, we present caching and ex-
ploitation of statistics in PostgresRaw. The ideas described in this
section can be used as guidelines for turning modern row-stores
into NoDB systems.

In the remaining of this section we assume that raw data is stored
in comma-separated value (CSV) files. CSV files as textual files are
challenging for an in situ engine, considering the high conversion
cost to binary format and the fact that fields may be variable length.
Nonetheless, being a common data source, they present an ideal use
case for PostgresRaw.

3.1 On-the-fly Parsing
We first discuss aspects related to on-the-fly raw file parsing and

essential features such as selective parsing and tuple formation. We
later describe the core PostgresRaw components.

Query plans in PostgresRaw. When a query submitted to Post-
gresRaw references relational tables that are not yet loaded, Post-
gresRaw needs to access the respective raw file(s). PostgresRaw
overrides the scan operator with the ability to access raw data files
directly, while the remaining query plan, generated by the opti-
mizer, works without changes compared to a conventional DBMS.

Parsing and Tokenizing Raw Data. Every time a query needs
to access raw data, PostgresRaw has to perform parsing and tok-
enization. In a typical CSV structure, each CSV file represents a
relational table, each row in the CSV file represents a tuple of a
table and each entry in a row represents an attribute value of the
tuple. During parsing, PostgresRaw needs first to identify each tu-
ple, or row in the raw file. Once all tuples have been identified,
PostgresRaw must then search for the delimiter separating differ-
ent values and transform those characters into their proper binary
values. Overall, these extra parsing and tokenizing actions repre-
sent a significant overhead inherent to in situ query processing; a
typical DBMS performs all these steps at loading time and directly
reads binary database pages during query processing.

Selective Tokenizing. PostgresRaw reduces the tokenizing costs
by opportunistically aborting tokenizing tuples as soon as the re-
quired attributes for a query have been found. This occurs at a
per tuple basis. Given that CSV files are organized in a row-by-row
basis, selective tokenizing does not bring any I/O benefits; nonethe-
less, it significantly reduces the CPU processing costs.

Selective Parsing. In addition to selective tokenizing, Postgres-
Raw also employs selective parsing to further reduce raw access
costs. PostgresRaw transforms to binary only the values required to
answer the query. For example, if a query requests the 4th and 8th
attribute of a given file and the query contains a selection on the 4th
attribute. PostgresRaw with selective parsing converts all values of
the 4th attribute to binary but delays the binary transformation of
the 8th attribute, until it knows that the given tuple qualifies.

Selective Tuple Formation. To fully capitalize on selective pars-
ing and tokenizing, PostgresRaw also applies selective tuple forma-
tion. Tuples are not fully composed but only contain the attributes
required for a given query. In PostgresRaw, tuples are only created
after the select operator, i.e., after knowing which tuples qualify.

Overall selective tokenizing, parsing and tuple formation help to
significantly minimize the on-the-fly processing costs, since Post-
gresRaw parses only what is necessary to produce query answers.

3.2 Indexing
Even with selective tokenizing, parsing and tuple formation, the

cost of accessing raw data is still significant. This section intro-
duces an auxiliary structure that allows PostgresRaw to compete
with a DBMS with previously loaded data. This auxiliary structure
is a positional map, and forms a core component of PostgresRaw.

Adaptive Positional Map. We introduce the adaptive positional
map to reduce parsing and tokenizing costs. It maintains low level
metadata information on the structure of the flat file, which is used
to navigate and retrieve raw data faster. This metadata information
refers to positions of attributes in the raw file. For example, if a
query needs an attribute X that is not loaded, then PostgresRaw can
exploit this metadata information that describes the position of X in
the raw file and jump directly to the correct position without having
to perform expensive tokenizing steps to find X .

Map Population. The positional map is created on-the-fly dur-
ing query processing, continuously adapting to queries. Initially,
the positional map is empty. As queries arrive, PostgresRaw adap-
tively and continuously augments the positional map. The map is
populated during the tokenizing phase, i.e., while tokenizing the
raw file for the current query, PostgresRaw adds information to the
map. PostgresRaw learns as much information as possible during
each query. For instance, it does not keep maps only for the at-
tributes requested in the query, but also for attributes tokenized
along the way; e.g., if a query requires attributes in positions 10
and 15, all positions from 1 to 15 may be kept.

Storage Format. The dynamic nature of the positional map

a1, a2, a3, a4, a5, a6, a7, …, an
a1, a2, a3, a4, a5, a6, a7, …, an
a1, a2, a3, a4, a5, a6, a7, …, an
a1, a2, a3, a4, a5, a6, a7, …, an
a1, a2, a3, a4, a5, a6, a7, …, an
a1, a2, a3, a4, a5, a6, a7, …, an

...

Raw File

Tuple 1
Tuple 2

Tuple 6

.

.

.

p4, p7

Positional Map

p4, p7

p4, p7
p4, p7

p4, p7

p4, p7

p4, p7 p2, p5

p4, p7 p2, p5

p4, p7 p2, p5
p4, p7 p2, p5

p4, p7 p2, p5

p4, p7 p2, p5

Positional Map

Tuple 1

Tuple 2

Tuple 6

.

.

.

after Query 1 on a4,a7 after Query 2 on a2,a5

Figure 2: An example of indexing raw files with positional map.

requires a physical organization that is easy to update and incurs
low cost during query execution. To achieve efficient reads and
writes, the PostgresRaw positional map is implemented as a collec-
tion of chunks, partitioned vertically and horizontally. Each chunk
fits comfortably in the CPU caches, allowing PostgresRaw to effi-
ciently acquire all information regarding several attributes and tu-
ples with a single access. The map can also be extended by adding
more chunks either vertically (i.e., adding positional information
about more tuples of already partially indexed attributes) or hor-
izontally (i.e., adding positional information about currently non-
indexed attributes). Figure 2 shows an example of a positional map,
where the attributes do not necessarily appear in the map in the
same order as in the raw file. The positional map does not mirror
the raw file. Instead, it adapts to the workload, keeping in the same
chunk attributes accessed together during query processing.

Exploiting the Positional Map. The information contained in
the positional map can be used to jump to the exact position of the
file or as close as possible. For example, if a query is looking for
the 9th attribute of a file, while the map contains information for
the 4th and the 8th attribute, PostgresRaw uses the positional map
to jump to the 8th attribute and parse it until it finds the 9th attribute.

Maintenance. The positional map is an auxiliary structure and
may be dropped fully or partly at any time without any lost of crit-
ical information; the next query simply starts re-building the map
from scratch. PostgresRaw assigns a storage threshold for the size
of the positional map such that the map fits comfortably in memory.
Once the storage threshold is reached, PostgresRaw drops parts of
the map to ensure it is always within the threshold limits.

Adaptive Behavior. The positional map is an adaptive data
structure that continuously indexes positions based on the most re-
cent queries. This includes requested attributes as well as patterns,
or combinations, in which those attributes are used. As the work-
load evolves, some attributes may no longer be relevant and are
dropped by a LRU policy. Similarly, combinations of attributes
used in the same query, which are also stored together, may be
dropped to give space for storing new combinations. Populating
the map with new combinations is decided during pre-fetching, de-
pending on where the requested attributes are located on the current
map. The distance that triggers indexing of a new attribute combi-
nation is a PostgresRaw parameter. In our prototype, the default
setting is that if all requested attributes for a query belong in differ-
ent chunks, then the new combination is indexed.

3.3 Caching
The positional map allows for efficient access of raw files. An

alternative and complementary direction is to avoid raw file access
altogether. Therefore, PostgresRaw also contains a cache that tem-
porarily holds previously accessed data, e.g., a previously accessed
attribute or even parts of an attribute. If the attribute is requested
by future queries, PostgresRaw will read it directly from the cache.

The cache holds binary data and is populated on-the-fly during
query processing. To minimize the parsing costs and to maintain
the adaptive behavior of PostgresRaw, caching does not force ad-
ditional data to be parsed, i.e., only the requested attributes for the
current query are transformed to binary. The cache follows the
format of the positional map such that it is easy to integrate it in
the PostgresRaw query flow, allowing queries to seamlessly exploit
both the cache and the positional map in the same query plan. The
size of the cache is a parameter than can be tuned depending on the
resources. PostgresRaw follows the LRU policy to drop and popu-
late the cache. Overall, the PostgresRaw cache can be seen as the
place holder for adaptively loaded data.

3.4 Statistics
Optimizers rely on statistics to create good query plans. Most

important plan choices depend on the selectivity estimation that
helps ordering operators such as joins. Creating statistics in modern
databases, however, is only possible after data is loaded.

We extend the PostgresRaw scan operator to create statistics on-
the-fly. We carefully invoke the native statistics routines of the
DBMS, providing it with a sample of the data. Statistics are then
stored and are exploited in the same way as in conventional DBMS.
In order to minimize the overhead of creating statistics during query
processing, PostgresRaw creates statistics only on requested at-
tributes, i.e., only on attributes that PostgresRaw needs to read and
which are required by at least the current query.

On-the-fly creation of statistics brings a small overhead on the
PostgresRaw scan operator, while allowing PostgresRaw to imple-
ment high-quality query execution plans.

4. EXPERIMENTAL EVALUATION
In this section, we present an experimental analysis of Postgres-

Raw. PostgresRaw is implemented on top of PostgreSQL 9.0, thus
the direct comparison between the two systems is important to un-
derstand the impact of in situ querying. We have to point out that
PostgresRaw is highly affected by any performance bottlenecks
present in PostgreSQL, since they share the same query engine.

All experiments are conducted in a Sun X4140 server with 2 x
Quad-Core AMD Opteron processor (64 bit), 2.7 GHz, 512 KB L1
cache, 2 MB L2 cache and 6 MB L3 cache, 32 GB RAM, 4 x 250
GB 10000 RPM SATA disks (RAID-0) and using Ubuntu 9.04.

The experiments presented in this section, use a raw data file
of 11 GB, containing 7.5 ⇤ 106 tuples. Each tuple contains 150
attributes with integers distributed randomly in the range [0�109).

4.1 Positional Map
Impact. The first experiment investigates the impact of the posi-

tional map. In particular, we investigate how the behavior of Post-
gresRaw is affected as the map is populated dynamically with po-
sitional information based on the workload.

The set up of the experiment is as follows. We create a random
set of queries accessing a subset of the attributes found in the raw
file. We refer to queries as random, because they may ask for any
attribute. Each query asks for 10 random attributes and retrieves
all the rows of the file. We measure the average time PostgresRaw
needs in order to process all queries with a varying storage capacity
for the positional map, from 14.3 MB up to 2.1 GB.

The results are shown in Figure 3. The impact of the positional
map is significant as it eventually improves response times by more
than a factor of 2. In addition, performance improves rapidly, not
requiring the maximum capacity. With little less than the 1

4 of the
pointers (260 million positions) collected, execution time is already
only 15% from the full indexed case. After 3

4 of the pointers are col-

0
10
20
30
40
50

0 200 400 600 800 1000 1200Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

pointers (in millions)

Figure 3: Effect of the number of pointers in the positional map.

scalabilityPM

0
100
200
300
400

0 20 40 60 80 100Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

File size (GB)

Vary #tuples
Vary #attributes

Figure 4: Scalability of the positional map.

sens

1

10

100

0 10 20 30 40 50Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Query Sequence

PostgresRaw PM+C PostgresRaw PM
PostgresRaw C Baseline

Figure 5: Effect of the positional map and caching.

0

50

100

1

10

100

0 50 100 150 200 250

Ca
ch

e
U

sa
ge

 (%
)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Query Sequence

Cache Utilization
Execution Time

Figure 6: Adapting to changes in the workload.

lected, response time remains constant even though the workload is
random. Therefore, PostgresRaw does not need to maintain posi-
tional information for the complete raw file, thereby saving signifi-
cant storage and access costs, without compromising performance.

Scalability. The next experiment investigates the scalability of
PostgresRaw when exploiting the positional map. The set up is
the same as in the previous experiment with the difference that this
time the file size is increased gradually from 2 GB to 92 GB. We use
two ways to increase the file size; first, by adding more attributes
to the file and second, by appending more rows to the file. In the
first case, queries remain the same as before. In the second case,
queries incrementally access more attributes as we increase the file
size. We ensure that for every case we compare, queries perform
similar I/O and computation actions. We allow unlimited storage
space for the positional map. Nevertheless, we store only positions
accessed by the most recent queries.

Figure 4 depicts the results. For both cases we observe linear
scalability; PostgresRaw exploits the positional map to nicely scale
as raw files grow both vertically and horizontally.

4.2 Positional Maps and Caching
This experiment investigates the behavior of PostgresRaw when

exploiting both the positional map and caching or only one of them.
We create 50 queries, where each query randomly accesses 5 columns
and all the rows of the raw file. We study four variations. The first
one, called Baseline, does not use positional maps or caching, rep-
resenting the behavior of PostgresRaw as if it were a straw-man
external files implementation. The second variation, called Post-
gresRaw PM, uses only the positional map while the third, called
PostgresRaw C, uses only the cache and an additional minimal map
with positional information for the end of lines. The final version,
called PostgresRaw PM+C, combines all previous techniques.

Figure 5 plots the response time for each query. Since there is
no a priori knowledge to exploit, all PostgresRaw variations need to
touch the raw file to extract the needed data for the first query; thus,
they all show similar performance. Performance improves drasti-
cally as of the second query. When the cache and the positional
map are enabled the second query is 82-88% faster than the first.
The Baseline variation improves slightly mainly due to file system

caching and from there on it provides constant performance, which
is not competitive with the other variations; every query needs to
scan the raw file without any help from indexing and caching.

When only the positional map is used, the first few queries col-
lect metadata information, improving future attribute retrieval by
minimizing the parsing and tokenizing costs. The rest of the queries
benefit from this information, demonstrating improved and stable
performance. The positional map allows PostgresRaw to navigate
as close as possible to the required attributes, which is important
particularly when a small subset of the attributes is required. When
only caching is used, there is a noticeable difference in perfor-
mance. Caching achieves optimal performance only when all the
requested attributes are cached. Nevertheless, if some attributes are
missing, PostgresRaw needs to parse the raw file, which increases
the overall execution time (3� 5 times in this example). Figure 5
shows that the combined effects of the positional map and caching
achieve the best performance; PostgresRaw PM+C outperforms all
other approaches across the entire query sequence.

4.3 Adapting to Workload Changes
In this experiment, we demonstrate that PostgresRaw progres-

sively and transparently adapts to changes in the workload. We use
the same raw file as in the previous experiments but the query se-
quence is expanded to 250 queries. Each query again refers to 5
random attributes of the file. The query sequence is divided into
5 epochs and in each epoch we execute 50 different queries. All
queries within the same epoch focus on a given part of the raw file.
The maximum size of the cache is limited to 2.8 GB, while the
positional map does not exceed 715 MB.

Figure 6 depicts the results, separating each epoch with vertical
lines at positions 50,100, ...,200. The graph plots both the response
time for each query in the sequence and how the size of the Post-
gresRaw cache evolves as queries are evaluated.

During the first epoch, queries refer to columns 1-50. The cache
and the positional map are initially empty. After executing 32
queries all data in this part of the file is cached; the cache does
not increase and performance remains stable. In the second epoch,
queries retrieve data between columns 51-100. Performance fluc-
tuates as some queries can fully exploit the cache and have faster

NoDBvsAll2Col

0
500

1000
1500
2000
2500
3000

MySQL CSV Engine
 MySQL

DBMS X DBMS X
w/ external files

PostgreSQL PostgresRaw
PM + C

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) Q9 Q8
Q7 Q6
Q5 Q4
Q3 Q2
Q1 Load

1671sec

~5971sec

656sec

2357sec

831sec
617sec

Figure 7: Comparing the performance of PostgresRaw with other DBMS.

response times while others need to go back to the file. After the
second epoch, the cache is full and all queries enjoy good perfor-
mance. During the third epoch, we launch a random set of queries
requesting columns between 1-100, i.e., the same regions used in
the previous epochs. Since PostgresRaw has built a complete cache
of this region, no I/O or parsing is required. In the fourth epoch,
queries ask for columns 75-125, i.e., half of the queries hit previ-
ously explored areas and half of the queries hit new regions. Post-
gresRaw uses a LRU replacement policy in its cache and drops pre-
viously cached data to accommodate the new requests. During the
last epoch, the workload slightly shifts to the region of columns 85-
135. PostgresRaw needs to replace parts of its cache while parts of
the requested data are retrieved from the file by exploiting the po-
sitional map.

Overall, we observe that PostgresRaw gracefully adapts to the
changes of the workload. In every epoch, PostgresRaw quickly
adapts, adjusting and populating its cache and the positional maps,
automatically stabilizing to good performance levels. Additionally,
the maintenance of the cache and the positional map do not add
significant overhead to query execution.

4.4 PostgresRaw vs other DBMS
In our next experiment we demonstrate the behavior of Postgres-

Raw against state-of-the-art DBMS. We compare MySQL (5.5.13),
DBMS X (a commercial system) and PostgreSQL against Post-
gresRaw with positional maps and caching enabled. MySQL and
DBMS X offer “external files” functionality, which enables direct
querying over raw files. Therefore, for MySQL and DBMS X we
include two sets of performance results; (a) using external files, and
(b) using previously loaded data. For queries over loaded data we
also report the time required to load the data; our goal is to show
the overall data-to-query time.

We study the cumulative time needed to run a sequence of queries
with each system. We use a sequence of 9 queries where we also
vary selectivity and projectivity. All queries have one selection
predicate and then project and run aggregations on the rest of the
attributes. The first query requires all attributes and accesses all
rows of the file. This is the worst case for PostgresRaw since we
have to pay the whole cost of populating the positional map and the
cache up front. The next 4 queries are the same with the difference
that they access fewer rows at steps of 20% at a time. Then, the fi-
nal 4 queries are again similar to the first query with the difference
that they refer to fewer attributes at steps of 20% at a time.

Figure 7 shows the results. PostgresRaw achieves the best over-
all performance. It is competitive with DBMS X and MySQL for
this sequence of queries. External files in MySQL (CSV Engine)
and DBMS X are significantly slower than querying over loaded
data or PostgresRaw, since each query repeatedly scans the entire
file. Conventional wisdom indicates that the overhead inherent to

statisticsNoDB

0

50

100

150

Q1_a Q1_b Q1_c Q1_dEx
ec

ut
io

n
Ti

m
e

(s
ec

)

Query Sequence

w/ statistics
w/o statistics

Figure 8: Execution time as PostgresRaw generates statistics.

in situ querying is problematic. This is indeed the case for straight-
forward in situ techniques such as external files. Nonetheless, these
results show that the in situ overhead is not a bottleneck if we ap-
ply more advanced techniques that amortize the overhead across a
sequence of queries, allowing for quick access to the data. Com-
pared to PostgreSQL, PostgresRaw shows a significant advantage
(25.75% in this case) even though it uses the same query engine.
PostgreSQL is 53% slower than DBMS X if we consider the query
execution time (without the loading costs). PostgresRaw, on the
other hand, manages to be 6% faster than DBMS X even though it
uses the same engine as PostgreSQL; by avoiding the loading costs,
PostgresRaw has already answered the first 4 queries when DBMS
X starts processing the first query.

Overall, PostgresRaw shows that it is feasible to amortize the
overheads inherent to in situ querying over a sequence of queries,
making an in situ system competitive with a conventional DBMS
without requiring a priori data loading.

4.5 Statistics in PostgresRaw
In our final experiment, we demonstrate the behavior of Post-

gresRaw when statistics are created on-the-fly during query pro-
cessing. We use 4 instances of TPC-H decision support benchmark
Query 1. We compare two versions of PostgresRaw. The first one
generates statistics on-the-fly in an adaptive way, while the second
one does not generate or exploit statistics at all.

Figure 8 shows the response times when running all 4 queries.
The first query uses the same plan in both versions of PostgresRaw
and initializes the positional map and the caching as well. Col-
lecting statistics adds an additional overhead of 4.5 seconds in the
execution time of the first query. PostgresRaw analyzes and cre-
ates statistics only for the attributes required for the current query.
After the first query, the rest of the queries have different behavior
even though they follow the same query template. In the Postgres-
Raw version with statistics support, queries run three times faster
in comparison with the version without statistics. By examining
the query plans, we notice that the optimizer selects a different
set of operators and changes the ordering of operators in Post-

gresRaw with statistics which explains the improvement in per-
formance. Generating the statistics on-the-fly adds only a small
overhead, while it significantly improves query plan selection.

5. IN SITU QUERYING: TRADE-OFFS
In situ querying, although desirable in theory, is thought to be

prohibitive in practice. Executing queries directly over raw data
files incurs additional overhead to the execution, when compared
to query execution over previously-loaded data. Nonetheless, our
PostgresRaw implementation demonstrates that auxiliary structures
reduce the time to access raw data files and amortize the overhead
across a sequence of queries. In situ query execution, however,
introduces a new set of trade-offs, which require further analysis:

Data Type Conversion. For ASCII files, PostgresRaw must
convert the data into its proper type, e.g., from string to integer.
Conventional DBMS perform this conversion only once at loading
time. To alleviate the data type conversion overhead, PostgresRaw
only converts the attributes in the tuple that are actually needed to
answer a query. Nonetheless, data type conversion is not always
an overhead: if a raw data file consists of variable-length strings,
then PostgresRaw over CSV files is actually faster than a conven-
tional DBMS because there is no need to convert data nor create
secondary copies when loading data into a DBMS. Different data
types, however, affect NoDB performance in different ways and
should be taken into account when deciding which data to cache.

File Size vs. Database Size. Loading data into a DBMS creates
a second copy of the data. This copy can be stored in an optimized
manner: e.g., integers stored in a database page (in binary) likely
take less space than in ASCII. Nonetheless, there are cases where a
second copy does not imply less data. Variable-sized data stored in
fixed-size fields usually takes more space in a database page rather
than in its raw form. Therefore, depending on the workload, in situ
engines can benefit from keeping data in its raw form.

Complex Database Schemas. DBMS support complex database
schemas with large number of tables and columns within a table.
Nonetheless, complex schemas usually require a DBA to tune vendor-
specific configuration settings. For instance, a commercial DBMS
we tested does not allow a row to be split across pages; if there
are many columns within a table, or columns have large fields, the
DBA must manually increase the page size, buffer pool and table
space. These configurations are not straightforward. and are also
subjected to additional limitations: e.g., pages must also have a
minimum number of rows. In addition, larger tuples cause unpre-
dictable behavior due to the use of slotted pages in the DBMS.

Types of Data Analysis. Current DBMS are best suited to man-
age data that is loaded only once or rarely in an incremental fash-
ion, with well-known and rarely changing workloads. DBMS re-
quire physical design steps for best performance, such as creating
indexes, which are time-consuming tasks. In situ databases, how-
ever, are more suited for users that need to explore data without
having to load entire datasets. Users should be willing to pay a
penalty during the early queries, as long as they do not need to cre-
ate data loading scripts. In situ databases are also useful when there
are large datasets but users need to frequently analyze small subsets
of the data; such scenarios are increasingly common.

Integration with External Tools. DBMS are designed to be
the main repository for the data, which makes the integration of
DBMS data with external tools inherently hard. Techniques such
as ODBC, stored procedures and user-defined functions aim to fa-
cilitate the interaction with data stored on the DBMS. Nonetheless,
none of these techniques is fully satisfactory and in fact, this is a
common complaint of scientific users, who have large repositories
of legacy code that operates against raw data files. Migrating and

reimplementing these tools in a DBMS would be difficult and likely
require vendor-specific hooks. The NoDB philosophy significantly
facilitates such data integration, since users may continue to rely
on their legacy code in parallel to systems such as PostgresRaw.

Database Independence. DBMS store data in database pages
using proprietary and vendor-specific formats. The DBMS has
complete ownership over the data, which is a cause of concern for
some users. The NoDB philosophy, however, achieves database
independence, since the data files remain the main data repository.

6. OPPORTUNITIES
The NoDB philosophy drastically and fundamentally redefines

the way database systems are designed. It requires revisiting well-
established assumptions and implementation techniques, while also
enabling new opportunities, which are discussed in this section.

Flexible Storage. NoDB systems do not require a priori load-
ing, which implies no need for a priori decisions on how data is
physically organized during loading. Data that is adaptively loaded
can be cached in memory or written to disk in a format that en-
ables faster access. Data compression can also be applied, where
beneficial. Deciding the proper storage layout is an open research
question. Rows, columns and hybrids all have comparative advan-
tages and disadvantages. Nevertheless, a NoDB system benefits
from avoiding to choose in advance. Physical layout decisions can
be done online, and change overtime as the workload changes [3].

Adaptive Indexing. The NoDB philosophy brings new oppor-
tunities towards achieving fully autonomous database systems, i.e.,
systems that require zero initialization and administration. Recent
efforts in database cracking and adaptive indexing [7, 10, 11, 13]
demonstrate the potential for incrementally building and refining
indexes without requiring an administrator to tune the system, or
knowing the workload. Still, though, all data has to be loaded up
front, forcing a delay in data-to-query time. We envision that adap-
tive indexing can be exploited and enhanced for NoDB systems.

Auto Tuning Tools. In this paper, we have considered the hard
case of zero a priori idle time or workload knowledge. Traditional
systems assume “infinite" idle time and knowledge to perform all
necessary initialization steps. In many cases, though, the reality
can be somewhere in between. For example, there might be some
idle time but not enough to load all data. Auto tuning tools for
NoDB systems, given a budget of idle time and workload knowl-
edge, can exploit idle time to load and index as much of the relevant
data. The rest of the data remains unloaded and unindexed until rel-
evant queries arrive. A NoDB tuning tool should consider raw data
access costs, I/O costs in addition to the typical query workload
based parameters. The NoDB philosophy brings new opportunities
in exploiting every single bit of idle time or workload knowledge.

Information Integration. Another major opportunity with the
NoDB vision is the potential to query multiple different data sources
and formats. NoDB systems can adopt format-specific plugins to
handle different raw data file formats. Implementing these plug-
ins in a reusable manner requires applying data integration tech-
niques but may also require the development of new techniques,
so that commonalities between formats are determined and reused.
Additionally, supporting different file formats also requires the de-
velopment of hybrid query processing techniques, or even adding
support for multiple data models (e.g., for array data).

File System Interface. Another interesting opportunity that comes
with NoDB is that of bridging the gap between file systems and
databases. Unlike traditional database systems, data in NoDB sys-
tems is always stored in file systems, such as NTFS or ext4. This
provides NoDB the opportunity to intercept file system calls and
gradually create auxiliary data structures that speed up future queries.

7. RELATED WORK
The NoDB philosophy draws inspiration from several decades

of research on database technology and it is related to a plethora of
research topics. We briefly discuss related work in this section.

Auto-tuning. The NoDB philosophy advocates for minimizing
or eliminating the data-to-query time, which is also the goal of
auto-tuning tools. Every major database vendor offers offline in-
dexing features, where an auto tuning tool performs offline analy-
sis to determine the proper physical design for a specific workload
[1, 6, 18, 22]. More recently, these ideas have been extended to
support online indexing [4, 20], hence removing the need to know
the workload in advance. These techniques are a significant step
forward, but still require all data to be loaded in advance.

Adaptive Indexing. Database cracking and adaptive indexing
introduce the notion of incrementally refining the physical design
by following and matching the workload patterns [7, 10, 11, 13].
This shares the adaptive goal of the NoDB philosophy, where each
query is seen as an advice on how to refine indexes. Nonethe-
less, similarly to the previous case, existing adaptive indexing tech-
niques also require all data to be loaded up front.

External Files. Most modern DBMS offer the ability to query
data files directly with SQL, i.e., without loading. External files,
however, can only access raw data with no support for database fea-
tures such as DML operations, indexes or statistics and require ev-
ery query to access the entire data file, as if no other query did so in
the past. In practice, this functionality is used to facilitate data load-
ing tasks and not for querying. NoDB systems, however, provide
incremental data loading, on-the-fly index creation and caching to
assist future queries and drastically improve performance.

Information Extraction. Information extraction techniques have
been extended to provide direct access to raw text data [15], sim-
ilarly to external files. The difference from external files is that
raw data access relies on information extraction techniques instead
of directly parsing raw data files. These efforts are motivated by
the need to bridge multiple different data formats and make them
accessible via SQL, usually by relying on wrappers [19].

8. CONCLUSIONS
Very large data processing is increasingly becoming a necessity

for modern applications in businesses and in sciences. For state-of-
the-art database systems, the incoming data deluge is a problem. In
this paper, we introduce a database design philosophy that turns the
data deluge into a tremendous opportunity for database systems. It
requires drastic changes to existing query processing technology
but eliminates one of the most fundamental bottlenecks present in
classical database systems for the past forty years, i.e., the data
loading overhead. Until now, it has not been possible to exploit
database technology until data is fully loaded. NoDB systems per-
manently remove this restriction by enabling in situ querying.

This paper describes the NoDB philosophy, identifies problems,
solutions and opportunities. It also describes the transformation of
a modern row-store, PostgreSQL, into a NoDB prototype system,
which we call PostgresRaw. Experiments on PostgresRaw demon-
strate competitive performance with traditional DBMS. Postgres-
Raw, however, does not require any previous assumptions about
which data to load, how to load it or which physical design steps to
perform before querying the data. Instead, it accesses the raw data
files adaptively and incrementally, allowing users to explore new
data quickly and improving the usability of database systems.

The NoDB philosophy does not stop here however. We describe
open issues and research challenges for the database community at
large. We expect that addressing these new challenges will enable a

new generation of database systems that serve the needs of modern
applications and users.

9. REFERENCES
[1] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe,

V. Narasayya, and M. Syamala. Database Tuning Advisor for
Microsoft SQL Server 2005. In VLDB, 2004.

[2] A. Ailamaki, V. Kantere, and D. Dash. Managing scientific
data. Commun. ACM, 53:68–78, 2010.

[3] I. Alagiannis, S. Idreos, and A. Ailamaki. H2O: A hands-free
adaptive store. In SIGMOD, 2014.

[4] N. Bruno and S. Chaudhuri. To tune or not to tune?: a
lightweight physical design alerter. In VLDB, 2006.

[5] J. Cohen, B. Dolan, M. Dunlap, J. Hellerstein, and
C. Welton. MAD skills: new analysis practices for big data.
PVLDB, 2:1481–1492, 2009.

[6] D. Dash, N. Polyzotis, and A. Ailamaki. CoPhy: a scalable,
portable, and interactive index advisor for large workloads.
PVLDB, 4:362–372, 2011.

[7] G. Graefe and H. Kuno. Self-selecting, self-tuning,
incrementally optimized indexes. In EDBT, 2010.

[8] J. Gray, D. Liu, M. Nieto-Santisteban, A. Szalay, D. DeWitt,
and G. Heber. Scientific data management in the coming
decade. SIGMOD Rec., 34:34–41, 2005.

[9] S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki. Here
are my Data Files. Here are my Queries. Where are my
Results? In CIDR, 2011.

[10] S. Idreos, M. Kersten, and S. Manegold. Database Cracking.
In CIDR, 2007.

[11] S. Idreos, M. Kersten, and S. Manegold. Self-organizing
tuple reconstruction in column-stores. In SIGMOD, 2009.

[12] S. Idreos and E. Liarou. dbTouch: Analytics at your
fingertips. In CIDR, 2013.

[13] S. Idreos, S. Manegold, H. Kuno, and G. Graefe. Merging
what’s cracked, cracking what’s merged: adaptive indexing
in main-memory column-stores. PVLDB, 4:586–597, 2011.

[14] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian,
Y. Li, A. Nandi, and C. Yu. Making database systems usable.
In SIGMOD, 2007.

[15] A. Jain, A. Doan, and L. Gravano. Optimizing SQL Queries
over Text Databases. In ICDE, 2008.

[16] M. Kersten, S. Idreos, S. Manegold, and E. Liarou. The
Researcher’s Guide to the Data Deluge: Querying a
Scientific Database in Just a Few Seconds. In VLDB, 2011.

[17] A. Nandi and H. V.Jagadish. Guided Interaction: Rethinking
the Query-Result Paradigm. In VLDB, 2011.

[18] S. Papadomanolakis and A. Ailamaki. AutoPart: Automating
Schema Design for Large Scientific Databases Using Data
Partitioning. In SSDBM, 2004.

[19] M. T. Roth and P. Schwarz. Don’t Scrap It, Wrap It! A
Wrapper Architecture for Legacy Data Sources. In VLDB,
1997.

[20] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis.
COLT: continuous on-line tuning. In SIGMOD, 2006.

[21] M. Stonebraker, J. Becla, D. DeWitt, K.-T. Lim, D. Maier,
O. Ratzesberger, and S. Zdonik. Requirements for Science
Data Bases and SciDB. In CIDR, 2009.

[22] D. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm,
C. Garcia-Arellano, and S. Fadden. DB2 Design Advisor:
Integrated Automatic Physical Database. In VLDB, 2004.

