
MOTHERNETS: RAPID DEEP ENSEMBLE LEARNING

Abdul Wasay 1 Brian Hentschel 1 Yuze Liao 1 Sanyuan Chen 1 Stratos Idreos 1

ABSTRACT

Ensembles of deep neural networks significantly improve generalization accuracy. However, training neural
network ensembles requires a large amount of computational resources and time. State-of-the-art approaches
either train all networks from scratch leading to prohibitive training cost that allows only very small ensemble sizes
in practice, or generate ensembles by training a monolithic architecture, which results in lower model diversity
and decreased prediction accuracy. We propose MotherNets to enable higher accuracy and practical training cost
for large and diverse neural network ensembles: A MotherNet captures the structural similarity across some or
all members of a deep neural network ensemble which allows us to share data movement and computation costs
across these networks. We first train a single or a small set of MotherNets and, subsequently, we generate the
target ensemble networks by transferring the function from the trained MotherNet(s). Then, we continue to train
these ensemble networks, which now converge drastically faster compared to training from scratch. MotherNets
handle ensembles with diverse architectures by clustering ensemble networks of similar architecture and training
a separate MotherNet for every cluster. MotherNets also use clustering to control the accuracy vs. training
cost tradeoff. We show that compared to state-of-the-art approaches such as Snapshot Ensembles, Knowledge
Distillation, and TreeNets, MotherNets provide a new Pareto frontier for the accuracy-training cost tradeoff.
Crucially, training cost and accuracy improvements continue to scale as we increase the ensemble size (2 to 3
percent reduced absolute test error rate and up to 35 percent faster training compared to Snapshot Ensembles). We
verify these benefits over numerous neural network architectures and large data sets.

1 INTRODUCTION

Neural network ensembles. Various applications increas-
ingly use ensembles of multiple neural networks to scale the
representational power of their deep learning pipelines. For
example, deep neural network ensembles predict relation-
ships between chemical structure and reactivity (Agrafiotis
et al., 2002), segment complex images with multiple ob-
jects (Ju et al., 2017), and are used in zero-shot as well as
multiple choice learning (Guzman-Rivera et al., 2014; Ye &
Guo, 2017). Further, several winners and top performers on
the ImageNet challenge are ensembles of neural networks
(Lee et al., 2015a; Russakovsky et al., 2015). Ensembles
function as collections of experts and have been shown, both
theoretically and empirically, to improve generalization ac-
curacy (Dietterich, 2000; Drucker et al., 1993; Granitto et al.,
2005; Huggins et al., 2016; Ju et al., 2017; Lee et al., 2015a;
Russakovsky et al., 2015; Xu et al., 2014). For instance,
by combining several image classification networks on the
CIFAR-10, CIFAR-100, and SVHN data sets, ensembles
can reduce the misclassification rate by up to 20 percent,

1Harvard School of Engineering and Applied Sciences. Corre-
spondence to: Abdul Wasay <awasay@seas.harvard.edu>.

Proceedings of the 3 rd MLSys Conference, Austin, TX, USA,
2020. Copyright 2020 by the author(s).

training time

te
st

 e
rr

or
 ra

te

Independent (full data)

MotherNets

Snapshot
Ensembles

TreeNets

Knowledge Distillation

Bagging

Number of clusters g
navigate this tradeoff

g=1

g=ensemble size

Pareto frontier

Figure 1. MotherNets establish a new Pareto frontier for the
accuracy-training time tradeoff as well as navigate this tradeoff.

e.g., from 6 percent to 4.5 percent for ensembles of ResNets
on CIFAR-10 (Huang et al., 2017a; Ju et al., 2017).

The growing training cost. Training ensembles of mul-
tiple deep neural networks takes a prohibitively large
amount of time and computational resources. Even on high-
performance hardware, a single deep neural network may
take several days to train and this training cost grows lin-
early with the size of the ensemble as every neural network
in the ensemble needs to be trained (Szegedy et al., 2015; He
et al., 2016; Huang et al., 2017b;a). This problem persists
even in the presence of multiple machines. This is because
the holistic cost of training, in terms of buying or renting

MotherNets: Rapid Deep Ensemble Learning

Table 1. Existing approaches to train ensembles of deep neural
networks are limited in speed, accuracy, diversity, and size.

Fast High Diverse Large
train. acc. arch. size

Full data × ×
Bagging ∼ × ×
Knowledge Dist. ∼ × ×
TreeNets ∼ ∼ × ×
Snapshot Ens. × ×
MotherNets

out these machines through a cloud service provider, still in-
creases linearly with the ensemble size. The rising training
cost is a bottleneck for numerous applications, especially
when it is critical to quickly incorporate new data and to
achieve a target accuracy. For instance, in one use case,
where deep learning models are applied to detect Diabetic
Retinopathy (a leading cause of blindness), newly labelled
images become available every day. Thus, incorporating
new data in the neural network models as quickly as possi-
ble is crucial in order to enable more accurate diagnosis for
the immediately next patient (Gulshan et al., 2016).

Problem 1: Restrictive ensemble size. Due to this pro-
hibitive training cost, researchers and practitioners can only
feasibly train and employ small ensembles (Szegedy et al.,
2015; He et al., 2016; Huang et al., 2017b;a). In partic-
ular, neural network ensembles contain drastically fewer
individual models when compared with ensembles of other
machine learning methods. For instance, random decision
forests, a popular ensemble algorithm, often has several hun-
dreds of individual models (decision trees), whereas state-of-
the-art ensembles of deep neural networks consist of around
five networks (He et al., 2016; Huang et al., 2017b;a; Oshiro
et al., 2012; Szegedy et al., 2015). This is restrictive since
the generalization accuracy of an ensemble increases with
the number of well-trained models it contains (Oshiro et al.,
2012; Bonab & Can, 2016; Huggins et al., 2016). Theoreti-
cally, for best accuracy, the size of the ensemble should be
at least equal to the number of class labels, of which there
could be thousands in modern applications (Bonab & Can,
2016).

Additional problems: Speed, accuracy, and diversity.
Typically, every deep neural network in an ensemble is
initialized randomly and then trained individually using all
training data (full data), or by using a random subset of the
training data (i.e., bootstrap aggregation or bagging) (Ju
et al., 2017; Lee et al., 2015a; Moghimi & Vasconcelos,
2016). This requires a significant amount of processing
time and computing resources that grow linearly with the
ensemble size.

To alleviate this linear training cost, two techniques have

been recently introduced that generate a k network ensemble
from a single network: Snapshot Ensembles and TreeNets.
Snapshot Ensembles train a single network and use its pa-
rameters at k different points of the training process to
instantiate k networks that will form the target ensemble
(Huang et al., 2017a). Snapshot Ensembles vary the learning
rate in a cyclical fashion, which enables the single network
to converge to k local minima along its optimization path.
TreeNets also train a single network but this network is
designed to branch out into k sub-networks after the first
few layers. Effectively every sub-network functions as a
separate member of the target ensemble (Lee et al., 2015b).

While these approaches do improve training time, they also
come with two critical problems. First, the resulting en-
sembles are less accurate because they are less diverse com-
pared to using k different and individually trained networks.
Second, these approaches cannot be applied to state-of-
the-art diverse ensembles. Such ensembles may contain
arbitrary neural network architectures with structural differ-
ences to achieve increased accuracy (for instance, such as
those used in the ImageNet competitions (Lee et al., 2015a;
Russakovsky et al., 2015)).

Knowledge Distillation provides a middle ground between
separate training and ensemble generation approaches (Hin-
ton et al., 2015). With Knowledge Distillation, an ensemble
is trained by first training a large generalist network and
then distilling its knowledge to an ensemble of small spe-
cialist networks that may have different architectures (by
training them to mimic the probabilities produced by the
larger network) (Hinton et al., 2015; Li & Hoiem, 2017).
However, this approach results in limited improvement in
training cost as distilling knowledge still takes around 70
percent of the time needed to train from scratch. Even then,
the ensemble networks are still closely tied to the same
large network that they are distilled from. The result is
significantly lower accuracy and diversity when compared
to ensembles where every network is trained individually
(Hinton et al., 2015; Li & Hoiem, 2017).

MotherNets. We propose MotherNets, which enable rapid
training of large feed-forward neural network ensembles.
The core benefits of MotherNets are depicted in Table 1.
MotherNets provide: (i) lower training time and better gen-
eralization accuracy than existing fast ensemble training
approaches and (ii) the capacity to train large ensembles
with diverse network architectures.

Figure 2 depicts the core intuition behind MotherNets: A
MotherNet is a network that captures the maximum struc-
tural similarity between a cluster of networks (Figure 2 Step
(1)). An ensemble may consist of one or more clusters; one
MotherNet is constructed per cluster. Every MotherNet is
trained to convergence using the full data set (Figure 2 Step
(2)). Then, every target network in the ensemble is hatched

MotherNets: Rapid Deep Ensemble Learning

Specifications of ensemble networks

Step 1: Construct the MotherNet per
cluster to capture the largest structural

commonality (shown in bold).

in
pu

t l
ay

er
s

output layers

Step 2: Train the MotherNet using the
entire data set. This allows us to “share
epochs” amongst ensemble networks.

Step 3: Hatch ensemble networks
by function-preserving

transformations and further train.

MotherNet Hatched networks

ne
ur

on

trained
neuron

se
le

ct
ed

 fo
r

M
ot

he
rN

et
s cl
us

te
r g

cl
us

te
r

g-
1

cl
us

te
r

g+
1

Figure 2. MotherNets train an ensemble of neural networks by first training a set of MotherNets and transferring the function to the
ensemble networks. The ensemble networks are then further trained converging significantly faster than training individually.

from its MotherNet using function-preserving transforma-
tions (Figure 2 Step (3)) ensuring that knowledge from the
MotherNet is transferred to every network. The ensemble
networks are then trained. They converge significantly faster
compared to training from scratch (within tens of epochs).

The core technical intuition behind the MotherNets design
is that it enables us to “share epochs” between the ensem-
ble networks. At a lower level what this means is that the
networks implicitly share part of the data movement and
computation costs that manifest during training over the
same data. This design draws intuition from systems tech-
niques such as “shared scans” in data systems where many
(analytical) queries share data movement and computation
for part of a scan over the same data (Harizopoulos et al.,
2005; Zukowski et al., 2007; Qiao et al., 2008; Arumugam
et al., 2010; Candea et al., 2011; Giannikis et al., 2012;
Psaroudakis et al., 2013; Giannikis et al., 2014; Kester et al.,
2017).

Accuracy-training time tradeoff. MotherNets do not train
each network individually but “source” all networks from
the same set of “seed” networks instead. This introduces
some reduction in diversity and accuracy compared to an
approach that trains all networks independently. There is no
way around this. In practice, there is an intrinsic tradeoff
between ensemble accuracy and training time. All existing
approaches are affected by this and their design decisions
effectively place them at a particular balance within this
tradeoff (Guzman-Rivera et al., 2014; Lee et al., 2015a;
Huang et al., 2017a).

We show that MotherNets, strike a superior balance between
accuracy and training time than all existing approaches. In
fact, we show that MotherNets establish a new Pareto fron-
tier for this tradeoff and that we can navigate this tradeoff.
To achieve this, MotherNets cluster ensemble networks (tak-
ing into account both the topology and the architecture class)

and train a separate MotherNet for each cluster. The number
of clusters used (and thus the number of MotherNets) is
a knob that helps navigate the training time vs. accuracy
tradeoff. Figure 1 depicts visually the new tradeoff achieved
by MotherNets.

Contributions. We describe how to construct MotherNets
in detail and how to trade accuracy for speed. Then through
a detailed experimental evaluation with diverse data sets and
architectures we demonstrate that MotherNets bring three
benefits: (i) MotherNets establish a new Pareto frontier of
the accuracy-training time tradeoff providing up to 2 per-
cent better absolute test error rate compared to fast ensemble
training approaches at comparable or less training cost. (ii)
MotherNets allow robust navigation of this new Pareto fron-
tier of the tradeoff between accuracy and training time. (iii)
MotherNets enable scaling of neural network ensembles to
large sizes (100s of models) with practical training cost and
increasing accuracy benefits.

We provide a web-based interactive demo as an additional
resource to help in understanding the training process
in MotherNets: http://daslab.seas.harvard.
edu/mothernets/.

2 RAPID ENSEMBLE TRAINING

Definition: MotherNet. Given a cluster of k neural net-
works C = {N1, N2, . . . Nk}, where Ni denotes the i-th
neural network in C, the MotherNet Mc is defined as the
largest network from which all networks in C can be ob-
tained through function-preserving transformations. Moth-
erNets divide an ensemble into one or more such network
clusters and construct a separate MotherNet for each.

Constructing a MotherNet for fully-connected net-
works. Assume a cluster C of fully-connected neural net-
works. The input and the output layers of Mc have the same

http://daslab.seas.harvard.edu/mothernets/
http://daslab.seas.harvard.edu/mothernets/

MotherNets: Rapid Deep Ensemble Learning

structure as all networks in C, since they are all trained
for the same task. Mc is initialized with as many hidden
layers as the shallowest network in C. Then, we construct
the hidden layers of Mc one-by-one going from the input
to the output layer. The structure of the i-th hidden layer
of Mc is the same as the i-th hidden layer of the network
in C with the least number of parameters at the i-th layer.
Figure 2 shows an example of how this process works for
a toy ensemble of two three-layered and one four-layered
neural networks. Here, the MotherNet is constructed with
three layers. Every layer has the same structure as the layer
with the least number of parameters at that position (shown
in bold in Figure 2 Step (1)). In Appendix A we also include
a pseudo-code description of this algorithm.

Constructing a MotherNet for convolutional networks.
Convolutional neural network architectures consist of blocks
of one or more convolutional layers separated by pooling
layers (He et al., 2016; Shazeer et al., 2017; Simonyan
& Zisserman, 2015; Szegedy et al., 2015). These blocks
are then followed by another block of one or more fully-
connected layers. For instance, VGGNets are composed
of five blocks of convolutional layers separated by max-
pooling layers, whereas, DenseNets consist of four blocks of
densely connected convolutional layers. For convolutional
networks, we construct the MotherNet Mc block-by-block
instead of layer-by-layer. The intuition is that deeper or
wider variants of such networks are created by adding or
expanding layers within individual blocks instead of adding
them all at the end of the network. For instance, VGG-C
(with 16 convolutional layers) is obtained by adding one
layer to each of the last three blocks of VGG-B (with 13
convolutional layers) (Simonyan & Zisserman, 2015). To
construct the MotherNet for every block, we select as many
convolutional layers to include in the MotherNet as the
network in C with the least number of layers in that block.
Every layer within a block is constructed such that it has
the least number of filters and the smallest filter size of any
layer at the same position within that block. An example
of this process is shown in Figure 3. Here, we construct a
MotherNet for three convolutional neural networks block-
by-block. For instance, in the first block, we include one
convolutional layer in the MotherNet having the smallest
filter width and the least number of filters (i.e., 3 and 32
respectively). In Appendix A we also include a pseudo-code
description of this algorithm.

Constructing MotherNets for ensembles of neural net-
works with different sizes and topologies. By construc-
tion, the overall size and topology (sequence of layer sizes)
of a MotherNet is limited by the smallest network in its clus-
ter. If we were to assign a single cluster to all networks in
an ensemble that has a large difference in size and topology
between the smallest and the largest networks, there will
be a correspondingly large difference between at least one

3 : 64

3 : 64

3 : 32

1 : 64

3 : 64

3 : 64

3 : 64

3 : 64

3 : 64

5 : 64

3 : 64

3 : 64

3 : 72

3 : 64

5 : 64

1 : 64

3 : 32

3 : 64

3 : 64

Cluster of ensemble networks C MotherNet

a
bl

oc
k

a
po

ol
in

g
la

ye
r

a
co

nv
.

la
ye

r

Net 1 Net 2 Net 3 Mc
<latexit sha1_base64="Udm5xoxUxkeSJ78/C7WWjqvzZBU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MWLUNF+QBvKZjtpl242YXcjlNCf4MWDIl79Rd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHwzq7efUGkey0czSdCP6FDykDNqrPVw12f9csWtunORVfByqECuRr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSuRUkj1H42X3VKzqwzIGGs7JOGzN3fExmNtJ5Ege2MqBnp5drM/K/WTU145WdcJqlByRYfhakgJiazu8mAK2RGTCxQprjdlbARVZQZm07JhuAtn7wKrYuqZ/n+slK/zuMowgmcwjl4UIM63EIDmsBgCM/wCm+OcF6cd+dj0Vpw8plj+CPn8wcV+I2n</latexit><latexit sha1_base64="Udm5xoxUxkeSJ78/C7WWjqvzZBU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MWLUNF+QBvKZjtpl242YXcjlNCf4MWDIl79Rd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHwzq7efUGkey0czSdCP6FDykDNqrPVw12f9csWtunORVfByqECuRr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSuRUkj1H42X3VKzqwzIGGs7JOGzN3fExmNtJ5Ege2MqBnp5drM/K/WTU145WdcJqlByRYfhakgJiazu8mAK2RGTCxQprjdlbARVZQZm07JhuAtn7wKrYuqZ/n+slK/zuMowgmcwjl4UIM63EIDmsBgCM/wCm+OcF6cd+dj0Vpw8plj+CPn8wcV+I2n</latexit><latexit sha1_base64="Udm5xoxUxkeSJ78/C7WWjqvzZBU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MWLUNF+QBvKZjtpl242YXcjlNCf4MWDIl79Rd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHwzq7efUGkey0czSdCP6FDykDNqrPVw12f9csWtunORVfByqECuRr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSuRUkj1H42X3VKzqwzIGGs7JOGzN3fExmNtJ5Ege2MqBnp5drM/K/WTU145WdcJqlByRYfhakgJiazu8mAK2RGTCxQprjdlbARVZQZm07JhuAtn7wKrYuqZ/n+slK/zuMowgmcwjl4UIM63EIDmsBgCM/wCm+OcF6cd+dj0Vpw8plj+CPn8wcV+I2n</latexit><latexit sha1_base64="Udm5xoxUxkeSJ78/C7WWjqvzZBU=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MWLUNF+QBvKZjtpl242YXcjlNCf4MWDIl79Rd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHwzq7efUGkey0czSdCP6FDykDNqrPVw12f9csWtunORVfByqECuRr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSuRUkj1H42X3VKzqwzIGGs7JOGzN3fExmNtJ5Ege2MqBnp5drM/K/WTU145WdcJqlByRYfhakgJiazu8mAK2RGTCxQprjdlbARVZQZm07JhuAtn7wKrYuqZ/n+slK/zuMowgmcwjl4UIM63EIDmsBgCM/wCm+OcF6cd+dj0Vpw8plj+CPn8wcV+I2n</latexit>

Figure 3. Constructing MotherNet for convolutional neu-
ral networks block-by-block. For each layer, we select
the layer with the least number of parameters from the
ensemble networks (shown in bold rectangles) (Notation:
<filter_width>:<filter_number>).

ensemble network and the MotherNet. This may lead to a
scenario where the MotherNet only captures an insignifi-
cant amount of commonality. This would negatively affect
performance as we would not be able to share significant
computation and data movement costs across the ensemble
networks. This property is directly correlated with the size
of the MotherNet.

In order to maintain the ability to share costs in diverse
ensembles, we partition such an ensemble into g clusters,
and for every cluster, we construct and train a separate
MotherNet. To perform this clustering, the m networks in
the ensemble E = {N1, N2, . . . Nm} are represented as
vectors Ev = {V1, V2, . . . Vm} such that V j

i stores the size
of the j-th layer in Ni. These vectors are zero-padded to
a length of max({|N1|, |N2|, . . . |Nm|}) (where |Ni| is the
number of layers in Ni). For convolutional neural networks,
these vectors are created by first creating similarly zero-
padded sub-vectors per block and then concatenating the
sub-vectors to get the final vector. In this case, to fully
represent convolutional layers, V j

i stores a 2-tuple of filter
sizes and number of filters.

Given a set of vectors Ev , we create g clusters using the bal-
anced K-means algorithm while minimizing the Levenshtein
distance between the vector representation of networks in a
cluster and its MotherNet (Levenshtein, 1966; MacQueen,
1967). The Levenshtein or the edit distance between two
vectors is the minimum number of edits – insertions, dele-
tions, or substitutions – needed to transform one vector to
another. By minimizing this distance, we ensure that, for
every cluster, the ensemble networks can be obtained from
their cluster’s MotherNet with the minimal amount of edits
constrained on g. During every iteration of the K-means al-

MotherNets: Rapid Deep Ensemble Learning

gorithm, instead of computing centers of candidate clusters,
we construct MotherNets corresponding to every cluster.
Then, we use the edit distance between these MotherNets
and all networks to perform cluster reassignments.

Constructing MotherNets for ensembles of diverse ar-
chitecture classes. An individual MotherNet is built for
a cluster of networks that belong to a single architecture
class. Each architecture class has the property of function-
preserving navigation. This is to say that given any member
of this class, we can build another member of this class with
more parameters but having the same function. Multiple
types of neural networks fall under the same architecture
class (Cai et al., 2018). For instance, we can build a sin-
gle MotherNet for ensembles of AlexNets, VGGNets, and
Inception Nets as well as one for DenseNets and ResNets.
To handle scenarios when an ensemble contains members
from diverse architecture classes i.e., we cannot navigate
the entire set of ensemble networks in a function-preserving
manner, we build a separate MotherNet for each class (or a
set of MotherNets if each class also consists of networks of
diverse sizes).

Overall, the techniques described in the previous paragraphs
allow us to create g MotherNets for an ensemble, being able
to capture the structural similarity across diverse networks
both in terms of architecture and topology. We now describe
how to train an ensemble using one or more MotherNets
to help share the data movement and computation costs
amongst the target ensemble networks.

Training Step 1: Training the MotherNets. First, the
MotherNet for every cluster is trained from scratch using
the entire data set until convergence. This allows the Moth-
erNet to learn a good core representation of the data. The
MotherNet has fewer parameters than any of the networks
in its cluster (by construction) and thus it takes less time per
epoch to train than any of the cluster networks.

Training Step 2: Hatching ensemble networks. Once
the MotherNet corresponding to a cluster is trained, the
next step is to generate every cluster network through a se-
quence of function-preserving transformations that allow
us to expand the size of any feed-forward neural network,
while ensuring that the function (or mapping) it learned is
preserved (Chen et al., 2016). We call this process hatch-
ing and there are two distinct approaches to achieve this:
Net2Net increases the capacity of the given network by
adding identity layers or by replicating existing weights
(Chen et al., 2016). Network Morphism, on the other hand,
derives sufficient and necessary conditions that when satis-
fied will extend the network while preserving its function
and provides algorithms to solve for those conditions (Wei
et al., 2016; 2017).

In MotherNets, we adopt the first approach i.e., Net2Net.

Not only is it conceptually simpler but in our experiments
we observe that it serves as a better starting point for further
training of the expanded network as compared to Network
Morphism. Overall, function-preserving transformations
are readily applicable to a wide range of feed-forward neu-
ral networks including VGGNets, ResNets, FractalNets,
DenseNets, and Wide ResNets (Chen et al., 2016; Wei et al.,
2016; 2017; Huang et al., 2017b). As such MotherNets is
applicable to all of these different network architectures. In
addition, designing function-preserving transformations is
an active area of research and better transformation tech-
niques may be incorporated in MotherNets as they become
available.

Hatching is a computationally inexpensive process that takes
negligible time compared to an epoch of training (Wei et al.,
2016). This is because generating every network in a clus-
ter through function preserving transformations requires at
most a single pass on layers in its MotherNet.

Training Step 3: Training hatched networks. To explic-
itly add diversity to the hatched networks, we randomly
perturb their parameters with gaussian noise before further
training. This breaks symmetry after hatching and it is a
standard technique to create diversity when training ensem-
ble networks (Hinton et al., 2015; Lee et al., 2015b; Wei
et al., 2016; 2017). Further, adding noise forces the hatched
networks to be in a different part of the hypothesis space
from their MotherNets.

The hatched ensemble networks are further trained converg-
ing significantly faster compared to training from scratch.
This fast convergence is due to the fact that by initializing
every ensemble network through its MotherNet, we placed
it in a good position in the parameter space and we need
to explore only for a relatively small region instead of the
whole parameter space. We show that hatched networks
typically converge in a very small number epochs.

We experimented with both full data and bagging to train
hatched networks. We use full data because given the small
number of epochs needed for the hatched networks, bagging
does not offer any significant advantage in speed while it
hurts accuracy.

Accuracy-training time tradeoff. MotherNets can nav-
igate the tradeoff between accuracy and training time by
controlling the number of clusters g, which in turn controls
how many MotherNets we have to train independently from
scratch. For instance, on one extreme if g is set to m, then
every network in E will be trained independently, yielding
high accuracy at the cost of higher training time. On the
other extreme, if g is set to one then, all ensemble networks
have a shared ancestor and this process may yield networks
that are not as diverse or accurate, however, the training
time will be low.

MotherNets: Rapid Deep Ensemble Learning

Table 2. We experiment with ensembles of various sizes and neural network architectures.

Ensemble Member networks Param. SE alternative Param.

V5 VGG 13, 16, 16A, 16B, and 19 from the VGGNet paper (Si-
monyan & Zisserman, 2015)

682M VGG-16 × 5 690M

D5 Two variants of DenseNet-40 (with 12 and 24 convolutional filters
per layer) and three variants of DenseNet-100 (with 12, 16, and
24 filters per layer) (Huang et al., 2017b)

17M DenseNet-60 × 5 17.3M

R10 Two variants each of ResNet 20, 32, 44, 56, and 110 from the
ResNet paper (He et al., 2016)

327M R-56 × 10 350M

V25 25 variants of VGG-16 with distinct architectures created by
progressively varying one layer from VGG16 in one of three
ways: (i) increasing the number of filters, (ii) increasing the filter
size, or (iii) applying both (i) and (ii)

3410M VGG-16 × 25 3450M

V100 100 variants of VGG-16 created as described above 13640M VGG-16 × 100 13800M

MotherNets expose g as a tuning knob. As we show in our
experimental analysis, MotherNets achieve a new Pareto
frontier for the accuracy-training cost tradeoff which is a
well-defined convex space. That is, with every step in in-
creasing g (and consequently the number of independently
trained MotherNets) accuracy does get better at the cost of
some additional training time and vice versa. Conceptually
this is shown in Figure 1. This convex space allows robust
and predictable navigation of the tradeoff. For example, un-
less one needs best accuracy or best training time (in which
case the choice is simply the extreme values of g), they can
start with a single MotherNet and keep adding MotherNets
in small steps until the desired accuracy is achieved or the
training time budget is exhausted. This process can further
be fine-tuned using known approaches for hyperparameter
tuning methods such as bayesian optimization, training on
sampled data, or learning trajectory sampling (Goodfellow
et al., 2016).

Parallel training. MotherNets create a new schedule for
“sharing epochs” amongst networks of an ensemble but the
actual process of training in every epoch remains unchanged.
As such, state-of-the-art approaches for distributed train-
ing such as parameter-server (Dean et al., 2012) and asyn-
chronous gradient descent (Gupta et al., 2016; Iandola et al.,
2016) can be applied to fully utilize as many machines as
available during any stage of MotherNets’ training.

Fast inference. MotherNets can also be used to improve
inference time by keeping the MotherNet parameters shared
across the hatched networks. We describe this idea in Ap-
pendix C.

3 EXPERIMENTAL ANALYSIS

We demonstrate that MotherNets enable a better training
time-accuracy tradeoff than existing fast ensemble training
approaches across multiple data sets and architectures. We
also show that MotherNets make it more realistic to utilize
large neural network ensembles.

Baselines. We compare against five state-of-the-art methods
spanning both techniques that train all ensemble networks
individually, i.e., Full Data (FD) and Bagging (BA), as
well as approaches that generate ensembles by training a
single network, i.e., Knowledge Distillation (KD), Snapshot
Ensembles (SE), and TreeNets (TN).

Evaluation metrics. We capture both the training cost and
the resulting accuracy of an ensemble. For the training cost,
we report the wall clock time as well as the monetary cost for
training on the cloud. For ensemble test accuracy, we report
the test error rate under the widely used ensemble-averaging
method (Van der Laan et al., 2007; Guzman-Rivera et al.,
2012; 2014; Lee et al., 2015b). Experiments with alternative
inference methods (e.g., super learner and voting (Ju et al.,
2017)) showed that the method we use does not affect the
overall results in terms of comparing the training algorithms.

Ensemble networks. We experiment with ensembles of var-
ious convolutional architectures such as VGGNets, ResNets,
Wide ResNets1, and DenseNets. Ensembles of these ar-
chitectures have been extensively used to evaluate fast en-
semble training approaches (Lee et al., 2015a; Huang et al.,
2017a). Each of these ensembles are composed of networks
having diverse architectures as described in Table 2.

To provide a fair comparison with SE (where the snapshots
have to be from the same network architecture), we cre-

1For experiments with Wide ResNets, see Appendix E.

MotherNets: Rapid Deep Ensemble Learning

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0 4 8 12 16

te
st

 e
rr

or
 ra

te
 (%

)

training time (hrs)

single model

Pareto frontier

MN (g=1)

MN (g=2)

MN (g=3)

MN (g=4)
MN (g=5)/FD

SE

KD

TN

(a) V5 (C-10)

 4.7

 4.8

 4.9

 5

 5.1

 5.2

 5.3

 4 8 12 16 20 24
te

st
 e

rr
or

 ra
te

 (%
)

training time (hrs)

single model

MN (g=1)

MN (g=2)

MN (g=3)
MN (g=4)

MN (g=5)
/FD

SE

KD

(b) D5 (C-10)

 3

 3.5

 4

 4.5

 5

 5.5

 20 30 40 50 60 70

te
st

 e
rr

or
 ra

te
 (%

)

training time (hrs)

single model

MN (g=1)

MN (g=2)

MN (g=5)

MN (g=10)/FD

SE

KD

(c) R10 (C-10)

 23

 24

 25

 26

 27

 28

 29

 30

 31

 20 40 60 80 100

te
st

 e
rr

or
 ra

te
 (%

)

training time (hrs)

single model

MN (g=1)

MN (g=2)

MN (g=5)

MN (g=10)
MN (g=25)/

FD

KD

SE

(d) V25 (C-100)

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 4 8 12 16 20 24

te
st

 e
rr

or
 ra

te
 (%

)

training time (hrs)

single model

MN (g=1)

MN (g=2)
MN (g=5)

MN (g=10)MN (g=25)

SE

KD

(e) V25 (SVHN)

Figure 4. MotherNets provide consistently better accuracy-training time tradeoff when compared with existing fast ensemble training
approaches across various data sets, architectures, and ensemble sizes.

ate snapshots having comparable number of parameters to
each of the ensembles described above. This comparable
alternatives we used for SE are also summarized in Table 2.

For TN, we varied the number of shared layers and found
that sharing the 3 initial layers provides the best accuracy.
This is similar to the optimal proportion of shared layers
in the TreeNets paper (Lee et al., 2015a). TN is not appli-
cable to DenseNets or ResNets as it is designed only for
networks without skip-connections (Lee et al., 2015a). We
omit comparison with TN for such ensembles.

Training setup. For all training approaches we use stochas-
tic gradient descent with a mini-batch size of 256 and batch-
normalization. All weights are initialized by sampling from
a standard normal distribution. Training data is randomly
shuffled before every training epoch. The learning rate is set
to 0.1 with the exception of DenseNets. For DenseNets, we
use a learning rate of 0.1 to train MotherNets and 0.01 to
train hatched networks. This is inline with the learning rate
decay used in the DenseNets paper (Huang et al., 2017b).
For FD, KD, TN, and MotherNets, we stop training if the
training accuracy does not improve for 15 epochs. For SE
we use the optimized training setup proposed in the original
paper (Huang et al., 2017a), starting with an initial learning
rate of 0.2 and then training every snapshot for 60 epochs.

Data sets. We experiment with a diverse array of data
sets: SVHN, CIFAR-10, and CIFAR-100 (Krizhevsky, 2009;
Netzer et al.). The SVHN data set is composed of images of
house numbers and has ten class labels. There are a total of
99K images. We use 73K for training and 26K for testing.
The CIFAR-10 and CIFAR-100 data sets have 10 and 100
class labels respectively corresponding to various images of
everyday objects. There are a total of 60K images – 50K
training and 10K test images.

Hardware platform. All experiments are run on the same
server with Nvidia Tesla V100 GPU.

3.1 Better training time-accuracy tradeoff

We first show how MotherNets strike an overall superior
accuracy-training time tradeoff when compared to existing
fast ensemble training approaches.

Figure 4 shows results across all our test data sets and en-
semble networks. All graphs in Figure 4 depict the tradeoff
between training time needed versus accuracy achieved. The
core observation from Figure 4 is that across all datasets and
networks, MotherNets help establish a new Pareto frontier
of this tradeoff. The different versions of MotherNets shown
in Figure 4 represent different numbers of clusters used (g).
When g=1, we use a single MotherNet, optimizing for train-
ing time, while when g becomes equal to the ensemble size,
we optimize for accuracy (effectively this is equal to FD as
every network is trained independently in its own cluster).

The horizontal line at the top of each graph indicates the ac-
curacy of the best-performing single model in the ensemble
trained from scratch. This serves as a benchmark and, in
the vast majority of cases, all approaches do improve over a
single model even when they have to sacrifice on accuracy
to improve training time. MotherNets is consistently and
significantly better than that benchmark.

Next we discuss each individual training approach and how
it compares to MotherNets.

MotherNets vs. KD, TN, and BA. MotherNets (with g=1)
is 2× to 4.2× faster than KD and results in up to 2 percent
better test accuracy. KD suffers in terms of accuracy because
its ensemble networks are more closely tied to the base
network as they are trained from the output of the same
network. KD’s higher training cost is because distilling is
expensive. Every network starts from scratch and is trained
on the data set using a combination of empirical loss and
the loss from the output of the teacher network. We observe
that distilling a network still takes around 60 to 70 percent
of the time required to train it using just the empirical loss.

To achieve comparable accuracy to MotherNets (with g =

MotherNets: Rapid Deep Ensemble Learning

 0

 5

 10

 15

 20

 25

FD KD BA MN1

tra
in

in
g

tim
e

(h
rs

.)

training method

MN
DN1
DN2

DN3
DN4
DN5

Figure 5. MotherNets train
ensemble networks signif-
icantly faster after having
trained the MotherNet
(shown in black).

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 0 5 10 15 20 25 30 35 40 45

te
st

 e
rr

or
 ra

te
 (%

)
training time (hrs)

SE

MN (g=1)

MN (g=8)

(k=5)

(k=10)

(k=25)

(k=50)

(k=100)

(k=5)

(k=10)(k=25) (k=50)
(k=100)

(k=5)

(k=10)(k=25) (k=50) (k=100)

Figure 6. As the size of the
ensemble grows, MotherNets
scale better than SE both in
terms of training time and ac-
curacy achieved.

1), TN requires up to 3.8× more training time on V 5. In
the same time budget, MotherNets can train with g = 4
providing over one percent reduction in test error rate. The
higher training time of TN is due to the fact that it combines
several networks together to create a monolithic architecture
with various branches. We observe that training this takes a
significant time per epoch as well as requires more epochs
to converge. Moreover, TN does not generalize to neural
networks with skip-connections.

Figure 4 does not show results for BA because it is an
outlier. BA takes on average 73 percent of the time FD
needs to train but results in significantly higher test error
rate than any of the baseline approaches including the single
model. Compared to BA, MotherNets is on average 3.6 ×
faster and results in significantly better accuracy – up to 5.5
percent lower absolute test error rate. These observations are
consistent with past studies that show how BA is ineffective
when training deep neural networks as it reduces the number
of unique data items seen by individual networks (Lee et al.,
2015a).

Overall, the low test error rate of MotherNets when com-
pared to KD, TN, and BA stems from the fact that trans-
ferring the learned function from MotherNets to target en-
semble networks provides a good starting point as well as
introduces regularization for further training. This also al-
lows hatched ensemble networks to converge significantly
faster, resulting in overall lower training time.

Training time breakdown. To better understand where the
time goes during the training process, Figure 5 provides
the time breakdown per ensemble network. We show this
for the D5 ensemble and compare MotherNets (with g=1)
with individual training approaches FD, BA, and KD. While
other approaches spend significant time training each net-
work, MotherNets, can train these networks very quickly
after having trained the core MotherNet (black part in the
MotherNets stacked bar in Figure 5). We observe similar
time breakdown across all ensembles in our experiments.

Table 3. MotherNets (with g=1) give better oracle test accuracy
compared to Snapshot ensembles.

V5
C10

D5
C10

R10
C10

V25
C100

V25
SVHN

MN 96.71 97.43 98.61 87.5 97.17

SE 96.03 96.91 97.11 86.9 97.3

3.2 MotherNets vs. SE and scaling to large ensembles

Across all experiments in Figure 4, SE is the closest baseline
to MotherNets. In effect, SE is part of the very same Pareto
frontier defined by MotherNets in the accuracy-training cost
tradeoff. That is, it represents one more valid point that can
be useful depending on the desired balance. For example,
in Figure 4a (for V5 CIFAR-10), SE sacrifices nearly one
percent in test error rate compared to MotherNets (with g=1)
for a small improvement in training cost. We observe similar
trends in Figure 4c and 4d). In Figure 4b, SE achieves a
balance that is in between MotherNets with one and two
clusters. However, when training V25 on SVHN (Figure 4e)
SE is in fact outside the Pareto frontier as it is both slower
and achieves worst accuracy.

Overall, MotherNets enables drastic improvements in either
accuracy or training time compared to SE by being able to
control and navigate the tradeoff between the two.

Oracle accuracy. Also, Table 3 shows that MotherNets
enable better oracle test accuracy when compared with SE
across all our experiments. This is the accuracy if an oracle
were to pick the prediction of the most accurate network
in the ensemble per test element (Guzman-Rivera et al.,
2012; 2014; Lee et al., 2015b). Oracle accuracy is an upper
bound for the accuracy that any ensemble inference tech-
nique could achieve. This metric is also used to evaluate the
utility of ensembles when they are applied to solve Multiple
Choice Learning (MCL) problems (Guzman-Rivera et al.,
2014; Lee et al., 2016; Brodie et al., 2018).

Scaling to very large ensembles. As we discussed before,
large ensembles help improve accuracy and thus ideally
we would like to scale neural network ensembles to large
number of models as it happens for other ensembles such
as random forests (Oshiro et al., 2012; Bonab & Can, 2016;
2017). Our previous results were for small to medium en-
sembles of 5, 10 or 25 networks. We now show that when
it comes to larger ensembles, MotherNets dominate SE in
both how accuracy and training time scale.

Figure 6 shows results as we increase the number of net-
works up to a hundred variants of VGGNets trained on
CIFAR-10. For every point in Figure 6, k indicates the
number of networks. For MotherNets we plot results for the
time-optimized version with g=1, as well as with g=8.

MotherNets: Rapid Deep Ensemble Learning

Figure 6 shows that as the size of the ensemble grows, Moth-
erNets scale much better in terms of training time. Toward
the end (for 100 networks), MotherNets train more than
10 hours faster (out of 40 total hours needed for SE). The
training time of MotherNets grows at a much smaller rate
because once the MotherNet has been trained, it takes 40
percent less time to train a hatched network than the time it
takes to train one snapshot.

In addition, Figure 6 shows that MotherNets does not only
scale better in terms of training time, but also it scales better
in terms of accuracy. As we add more networks to the
ensemble, MotherNets keeps improving its error rate by
nearly 2 percent while SE actually becomes worse by more
than 0.5 percent. The declining accuracy of SE as the size
of the ensemble increases has also been observed in the
past, where by increasing the number of snapshots above six
results in degradation in performance (Huang et al., 2017a).

Finaly, Figure 6 shows that different cluster settings for
MotherNets allow us to achieve different performance bal-
ances while still providing robust and predictable navigation
of the tradeoff. In this case, with g=8 accuracy improves
consistently across all points (compared to g=1) at the cost
of extra training time.

3.3 Improving cloud training cost

 0

 250

 500

 750

 1000

M1

V25 SVHN
R10 C10

V25 C100

 0

 150

 300

MN1 SE KD BA FD

tra
in

in
g

co
st

 (U
SD

)

training method

M2

Figure 7. Training cost (USD)

One approach to speed
up training of large en-
sembles is to utilize
more than one machines.
For example, we could
train k individual net-
works in parallel using
k machines. While
this does save time, the
holistic cost in terms
of energy and resources
spent is still linear to the
ensemble size.

One proxy for capturing the holistic cost is to look at the
amount of money one has to pay on the cloud for training
a given ensemble. In our next experiment, we compare all
approaches using this proxy. Figure 7 shows the cost (in
USD) of training on four cloud instances across two cloud
service providers: (i) M1 that maps to AWS P2.xlarge and
Azure NC6, and (ii) M2 that maps to AWS P3.2xlarge and
Azure NCv3. M1 is priced at USD 0.9 per hour and M2 is
priced at USD 3.06 per hour for both cloud service providers
(Amazon, 2019; Microsoft, 2019).

Training time-optimized MotherNets provide significant
reduction in training cost (up to 3×) as it can train a very
large ensemble in a fraction of the training time compared

0.025

0

0

0

0

0

0.025

0

0

0

0

0

0.027

0

0

0

0

0

0.026

− 0.001

0

0

0

− 0.001

0.026

0.027

0.01

0.009

0.009

0.009

0.01

0.027

0.009

0.009

0.008

0.009

0.009

0.028

0.009

0.008

0.009

0.009

0.009

0.028

0.008

0.009

0.008

0.008

0.008

0.028

0.034

0.008

0.008

0.007

0.008

0.008

0.028

0.01

0.009

0.009

0.008

0.01

0.027

0.01

0.01

0.007

0.009

0.01

0.028

0.01

0.008

0.009

0.01

0.01

0.027

Full Data MotherNets Snapshot Ensemble

Figure 8. MotherNets (with g=1) train ensembles with lower model
covariances compared to Snapshot Ensembles.

to other approaches.

3.4 Diversity of model predictions

Next, we analyze how diversity of ensembles produced by
MotherNets compares with SE and FD.

Ensembles and predictive diversity. Theoretical results
suggest that ensembles of models perform better when the
models’ predictions on a single example are less correlated.
This is true under two assumptions: (i) models have equal
correct classification probability and (ii) the ensemble uses
majority vote for classification (Krogh & Vedelsby, 1994;
Rosen, 1996; Kuncheva & Whitaker, 2003). Under ensem-
ble averaging, no analytical proof that negative correlation
reduces error rate exists, but lower correlation between mod-
els can be used to create a smaller upper bound on incorrect
classification probability. More precise statements and their
proofs are given in Appendix B.

Rapid ensemble training methods. For MotherNets, as
well as for all other compared techniques for ensemble
training, the training procedure binds the models together to
decrease training time. This can have two negative effects
compared to independent training of models:

1. by changing the model’s architecture or training pat-
tern, the technique affects each model’s prediction qual-
ity (the model’s marginal prediction accuracy suffers)

2. by sharing layers (TN), attempted softmax values (KD),
or training epochs (SE, MN), the training technique
creates positive correlations between model errors.

We compare here the magnitude of these two effects for-
MotherNets and Snapshot Ensembles when compared to
independent training of each model on CIFAR-10 using V5.

Individual model quality. For both SE and MN, the
individual model accuracy drops, but the effect is more
pronounced in SE than MN. The mean misclassification
percentage of the individual models for V5 using FD, MN
and SE are 8.1%, 8.4% and 9.8% respectively. The poor
performance of SE in this area is due to its difficulty in
consistently hitting performant local minima, either because
it overfits to the training data when trained for a long time

MotherNets: Rapid Deep Ensemble Learning

or because its early snapshots need to be far away from the
final optimum to encourage diversity.

Model variance. Our goal in assessing variance is to see
how the training procedure affects how models in the en-
semble correlate with each other on each example. To do
this, we train each of the five models in V 5 five times under
MN, SE, and FD. Letting Yij be the softmax of the correct
model on test example j using model i, we then estimate
V ar(Yij) for each i, j and Cov(Yij , Yi′j) for each i, i′, j
with i 6= i′ using the sample variance and covariance. To
get a single number for a model, instead of one for each
test example, we then average across all test examples, i.e.
Cov(Yi, Yi′) =

1
n

∑n
j=1 Cov(Yij , Yi′j). For total variance

numbers for the ensemble, we perform the same procedure
on Yj = 1

5

∑5
i=1 Yij .

Figure 8 shows the results. As expected, independent train-
ing between the models in FD makes their corresponding
covariance 0 and provides the greatest overall variance re-
duction for the ensemble, with ensemble variance at 0.0051.
For both SE and MN, the covariance of separate models is
non-zero at around 0.009 per pair of models; however, it is
also significantly less than the variance of a single model.
As a result, both MN and SE provide significant variance
reduction compared to a single model. Whereas a single
model has variance around 0.026, MN and SE provide en-
semble variance of 0.0125 and 0.0130 respectively.

Takeaways. Since both SE and MN train nearly as fast as a
single model, they provide variance reduction in prediction
at very little training cost. Additionally, for MN, at the cost
of higher training time, one can create more clusters and
thus make the training of certain models independent of
each other, zeroing out many of the covariance terms and
reducing the overall ensemble variance. When compared
to each other, MN with g = 1 and SE have similar vari-
ance numbers, with MN slightly lower, but MotherNets has
a substantial increase in individual model accuracy when
compared to Snapshot Ensembles. As a result, its overall
ensemble performs better.

Additional results. We demonstrate in Appendix C how
MotherNets can improve inference time by 2×. In Ap-
pendix D, we show how the relative behavior of MotherNets
remains the same when training using multiple GPUs. Fi-
nally, in Appendix E we provide experiments with Wide
ResNets and demonstrate how MotherNets provide better
accuracy-training time tradeoff when compared with Fast
Geometric Ensembles.

4 RELATED WORK

In this section, we briefly survey additional (but orthogonal)
ensemble training techniques beyond Snapshot Ensembles,
TreeNets, and Knowledge Distillation.

Parameter sharing. Various related techniques share pa-
rameters between different networks during ensemble train-
ing and, in doing so, improve training cost. One interpre-
tation of techniques such as Dropout and Swapout is that,
during training, they create several networks with shared
weights within a single network. Then, they implicitly en-
semble them during inference (Wan et al., 2013; Srivastava
et al., 2014; Huang et al., 2016; Singh et al., 2016; Huang
et al., 2017a). Our approach, on the other hand, captures the
structural similarity in an ensemble, where members have
different and explicitly defined neural network architectures
and trains it. Overall, this enables us to effectively com-
bine well-known architectures together within an ensemble.
Furthermore, implicit ensemble techniques (e.g., dropout
and swapout) can be used as training optimizations to im-
prove upon the accuracy of individual networks trained in
MotherNets (Srivastava et al., 2014; Singh et al., 2016).

Efficient deep network training. Various algorithmic tech-
niques target fundamental bottlenecks in the training process
(Niu et al., 2011; Brown et al., 2016; Bottou et al., 2018).
Others apply system-oriented techniques to reduce mem-
ory overhead and data movement (De Sa & Feldman, 2017;
Jain et al., 2018). Recently, specialized hardware is being
developed to improve performance, parallelism, and energy
consumption of neural network training (Prabhakar et al.,
2016; De Sa & Feldman, 2017; Jouppi et al., 2017). All
techniques to improve upon training efficiency of individual
neural networks are orthogonal to MotherNets and in fact
directly compatible. This is because MotherNets does not
make any changes to the core computational components
of the training process. In our experiments, we do utilize
some of the widely applied training optimizations such as
batch-normalization and early-stopping. The advantage that
MotherNets bring on top of these approaches is that we can
further reduce the total number of epochs that are required
to train an ensemble. This is because a set of MotherNets
will train for the structural similarity present in the ensemble
once.

5 CONCLUSION

We present MotherNets which enable training of large and
diverse neural network ensembles while being able to nav-
igate a new Pareto frontier with respect to accuracy and
training cost. The core intuition behind MotherNets is to
reduce the number of epochs needed to train an ensemble by
capturing the structural similarity present in the ensemble
and training for it once.

Acknowledgments. We thank the reviewers for their valu-
able feedback. We also thank Chang Xu for building the
web-based demo and all DASlab members for their help.
This work was partially funded by Tableau, Cisco, and the
Harvard Data Science Institute.

MotherNets: Rapid Deep Ensemble Learning

REFERENCES

Agrafiotis, D. K., Cedeno, W., and Lobanov, V. S. On the
use of neural network ensembles in qsar and qspr. Journal
of chemical information and computer sciences, 42(4),
2002.

Amazon. Aws pricing. https://aws.amazon.com/
pricing/, 2019. (Accessed on 05/16/2019).

Arumugam, S., Dobra, A., Jermaine, C. M., Pansare,
N., and Perez, L. The DataPath System: A Data-
centric Analytic Processing Engine for Large Data Ware-
houses. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pp. 519–
530, 2010. URL http://dl.acm.org/citation.
cfm?id=1807167.1807224.

Bonab, H. R. and Can, F. A theoretical framework on the
ideal number of classifiers for online ensembles in data
streams. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management,
2016.

Bonab, H. R. and Can, F. Less is more: A comprehensive
framework for the number of components of ensemble
classifiers. IEEE Transactions on Neural Networks and
Learning Systems, 2017.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM Review,
60(2), 2018.

Brodie, M., Tensmeyer, C., Ackerman, W., and Martinez,
T. Alpha model domination in multiple choice learning.
In IEEE International Conference on Machine Learning
and Applications (ICMLA), 2018.

Brown, K. J., Lee, H., Rompf, T., Sujeeth, A. K., Sa, C. D.,
Aberger, C. R., and Olukotun, K. Have abstraction and eat
performance, too: Optimized heterogeneous computing
with parallel patterns. In Proceedings of the International
Symposium on Code Generation and Optimization, 2016.

Cai, H., Chen, T., Zhang, W., Yu, Y., and Wang, J. Efficient
architecture search by network transformation. In AAAI
Conference on Artificial Intelligence, 2018.

Candea, G., Polyzotis, N., and Vingralek, R. Pre-
dictable Performance and High Query Concurrency
for Data Analytics. The VLDB Journal, 20(2):227–
248, 2011. URL http://dl.acm.org/citation.
cfm?id=1969331.1969355.

Chen, T., Goodfellow, I. J., and Shlens, J. Net2net: Accel-
erating learning via knowledge transfer. In International
Conference on Learning Representations (ICLR), San
Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

De Sa, C. and Feldman, M. Understanding and optimizing
asynchronous low-precision stochastic gradient descent.
In Annual International Symposium on Computer Archi-
tecture (ISCA), 2017.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q. V., et al.
Large scale distributed deep networks. In Advances in
Neural Information Processing Systems, 2012.

Dietterich, T. G. Ensemble methods in machine learning. In
International Workshop on Multiple Classifier Systems,
2000.

Drucker, H., Schapire, R., and Simard, P. Improving per-
formance in neural networks using a boosting algorithm.
In Advances in Neural Information Processing Systems,
1993.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., and
Wilson, A. G. Loss surfaces, mode connectivity, and fast
ensembling of dnns. In Advances in Neural Information
Processing Systems, 2018.

Giannikis, G., Alonso, G., and Kossmann, D. SharedDB:
Killing One Thousand Queries with One Stone. Pro-
ceedings of the VLDB Endowment, 5(6):526–537,
2012. URL http://dl.acm.org/citation.
cfm?id=2168651.2168654.

Giannikis, G., Makreshanski, D., Alonso, G., and Koss-
mann, D. Shared Workload Optimization. Pro-
ceedings of the VLDB Endowment, 7(6):429–440,
2014. URL http://www.vldb.org/pvldb/
vol7/p429-giannikis.pdf.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
MIT Press, 2016.

Granitto, P. M., Verdes, P. F., and Ceccatto, H. A. Neural net-
work ensembles: Evaluation of aggregation algorithms.
Artificial Intelligence, 163(2), 2005.

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu,
D., Narayanaswamy, A., Venugopalan, S., Widner, K.,
Madams, T., Cuadros, J., et al. Development and valida-
tion of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs. Jama, 316(22),
2016.

Gupta, S., Zhang, W., and Wang, F. Model accuracy and
runtime tradeoff in distributed deep learning: A system-
atic study. In IEEE International Conference on Data
Mining (ICDM), 2016.

Guzman-Rivera, A., Batra, D., and Kohli, P. Multiple choice
learning: Learning to produce multiple structured outputs.
In Advances in Neural Information Processing Systems,
2012.

https://aws.amazon.com/pricing/
https://aws.amazon.com/pricing/
http://dl.acm.org/citation.cfm?id=1807167.1807224
http://dl.acm.org/citation.cfm?id=1807167.1807224
http://dl.acm.org/citation.cfm?id=1969331.1969355
http://dl.acm.org/citation.cfm?id=1969331.1969355
http://dl.acm.org/citation.cfm?id=2168651.2168654
http://dl.acm.org/citation.cfm?id=2168651.2168654
http://www.vldb.org/pvldb/vol7/p429-giannikis.pdf
http://www.vldb.org/pvldb/vol7/p429-giannikis.pdf

MotherNets: Rapid Deep Ensemble Learning

Guzman-Rivera, A., Kohli, P., Batra, D., and Rutenbar, R.
Efficiently enforcing diversity in multi-output structured
prediction. In Artificial Intelligence and Statistics, 2014.

Harizopoulos, S., Shkapenyuk, V., and Ailamaki, A.
QPipe: A Simultaneously Pipelined Relational Query
Engine. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pp. 383–
394, 2005. URL http://dl.acm.org/citation.
cfm?id=1066157.1066201.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowl-
edge in a neural network. In NIPS Deep Learning and
Representation Learning Workshop, 2015.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger,
K. Q. Deep networks with stochastic depth. In European
Conference on Computer Vision, 2016.

Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., and
Weinberger, K. Q. Snapshot ensembles: Train 1, get
m for free. 5th International Conference on Learning
Representations (ICLR), 2017a.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
IEEE Conference on Computer Vision and Pattern Recog-
nition, (CVPR), 2017b.

Huggins, J., Campbell, T., and Broderick, T. Coresets for
scalable bayesian logistic regression. In Advances in
Neural Information Processing Systems, 2016.

Iandola, F. N., Moskewicz, M. W., Ashraf, K., and Keutzer,
K. Firecaffe: Near-linear acceleration of deep neural net-
work training on compute clusters. In IEEE Conference
on Computer Vision and Pattern Recognition, 2016.

Jain, A., Phanishayee, A., Mars, J., Tang, L., and Pekhi-
menko, G. Gist: Efficient data encoding for deep neural
network training. In IEEE Annual International Sympo-
sium on Computer Architecture, 2018.

Jouppi, N. P. et al. In-datacenter performance analysis of a
tensor processing unit. In Annual International Sympo-
sium on Computer Architecture (ISCA), 2017.

Ju, C., Bibaut, A., and van der Laan, M. J. The relative
performance of ensemble methods with deep convolu-
tional neural networks for image classification. CoRR,
abs/1704.01664, 2017.

Kester, M. S., Athanassoulis, M., and Idreos, S. Access
Path Selection in Main-Memory Optimized Data Systems:

Should I Scan or Should I Probe? In Proceedings of the
ACM SIGMOD International Conference on Management
of Data, pp. 715–730, 2017. ISBN 9781450341974. doi:
10.1145/3035918.3064049. URL http://dl.acm.
org/citation.cfm?doid=3035918.3064049.

Keuper, J. and Preundt, F.-J. Distributed training of deep
neural networks: Theoretical and practical limits of paral-
lel scalability. In 2016 2nd Workshop on Machine Learn-
ing in HPC Environments (MLHPC), pp. 19–26. IEEE,
2016.

Krizhevsky, A. Learning multiple layers of features from
tiny images. 2009.

Krogh, A. and Vedelsby, J. Neural network ensembles,
cross validation and active learning. In International
Conference on Neural Information Processing Systems,
1994.

Kuncheva, L. I. and Whitaker, C. J. Measures of diversity
in classifier ensembles and their relationship with the
ensemble accuracy. Machine Learning, 51(2), 2003.

Lee, S., Purushwalkam, S., Cogswell, M., Crandall, D. J.,
and Batra, D. Why M heads are better than one:
Training a diverse ensemble of deep networks. CoRR,
abs/1511.06314, 2015a.

Lee, S., Purushwalkam, S., Cogswell, M., Crandall, D. J.,
and Batra, D. Why M heads are better than one:
Training a diverse ensemble of deep networks. CoRR,
abs/1511.06314, 2015b.

Lee, S., Prakash, S. P. S., Cogswell, M., Ranjan, V., Cran-
dall, D., and Batra, D. Stochastic multiple choice learning
for training diverse deep ensembles. In Advances in Neu-
ral Information Processing Systems, 2016.

Levenshtein, V. I. Binary codes capable of correcting dele-
tions, insertions, and reversals. 1966.

Li, Z. and Hoiem, D. Learning without forgetting. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 2017.

MacQueen, J. Some methods for classification and analysis
of multivariate observations. In Berkeley Symposium on
Mathematical Statistics and Probability, 1967.

Microsoft. Pricing - windows virtual ma-
chines | microsoft azure. https://azure.
microsoft.com/en-us/pricing/details/
virtual-machines/windows/, 2019. (Accessed
on 05/16/2019).

Moghimi, M. and Vasconcelos, N. Boosted convolutional
neural networks. In Proceedings of the British Machine
Vision Conference, 2016.

http://dl.acm.org/citation.cfm?id=1066157.1066201
http://dl.acm.org/citation.cfm?id=1066157.1066201
http://dl.acm.org/citation.cfm?doid=3035918.3064049
http://dl.acm.org/citation.cfm?doid=3035918.3064049
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/

MotherNets: Rapid Deep Ensemble Learning

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning.

Niu, F., Recht, B., Ré, C., and Wright, S. J. Hogwild!:
A lock-free approach to parallelizing stochastic gradient
descent. In Advances in Neural Information Processing
Systems, 2011.

Oshiro, T. M., Perez, P. S., and Baranauskas, J. A. How
many trees in a random forest? In International Work-
shop on Machine Learning and Data Mining in Pattern
Recognition. Springer, 2012.

Prabhakar, R., Koeplinger, D., Brown, K. J., Lee, H.,
Sa, C. D., Kozyrakis, C., and Olukotun, K. Generat-
ing configurable hardware from parallel patterns. In
Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’16, Atlanta,
GA, USA, April 2-6, 2016, pp. 651–665, 2016. doi:
10.1145/2872362.2872415. URL http://doi.acm.
org/10.1145/2872362.2872415.

Psaroudakis, I., Athanassoulis, M., and Ailamaki, A.
Sharing Data and Work Across Concurrent Analytical
Queries. Proceedings of the VLDB Endowment, 6(9):637–
648, 2013. URL http://dl.acm.org/citation.
cfm?id=2536360.2536364.

Qiao, L., Raman, V., Reiss, F., Haas, P. J., and Lohman,
G. M. Main-memory Scan Sharing for Multi-core
CPUs. Proceedings of the VLDB Endowment, 1(1):610–
621, 2008. URL http://dl.acm.org/citation.
cfm?id=1453856.1453924.

Rosen, B. E. Ensemble learning using decorrelated neural
networks. Connection Science, 1996.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision, 115(3),
2015.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
International Conference on Learning Representations
(ICLR), 2017.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Interna-
tional Conference on Learning Representations (ICLR),
2015.

Singh, S., Hoiem, D., and Forsyth, D. Swapout: Learning
an ensemble of deep architectures. In Advances in Neural
Information Processing Systems, 2016.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research, 15(1), 2014.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Computer Vision
and Pattern Recognition (CVPR), 2015.

Van der Laan, M. J., Polley, E. C., and Hubbard, A. E. Super
learner. Statistical applications in genetics and molecular
biology, 6(1), 2007.

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R.
Regularization of neural networks using dropconnect. In
International Conference on Machine Learning, 2013.

Wei, T., Wang, C., Rui, Y., and Chen, C. W. Network mor-
phism. In International Conference on Machine Learning,
2016.

Wei, T., Wang, C., and Chen, C. W. Modularized morphing
of neural networks. CoRR, abs/1701.03281, 2017.

Xu, L., Ren, J. S., Liu, C., and Jia, J. Deep convolutional
neural network for image deconvolution. In Advances in
Neural Information Processing Systems, 2014.

Ye, M. and Guo, Y. Self-training ensemble networks for
zero-shot image recognition. Knowl.-Based Syst., 123:
41–60, 2017.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
Proceedings of the British Machine Vision Conference,
2016.

Zukowski, M., Héman, S., Nes, N. J., and Boncz, P. A.
Cooperative Scans: Dynamic Bandwidth Sharing in
a DBMS. In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), pp. 723–
734, 2007. URL http://dl.acm.org/citation.
cfm?id=1325851.1325934.

http://doi.acm.org/10.1145/2872362.2872415
http://doi.acm.org/10.1145/2872362.2872415
http://dl.acm.org/citation.cfm?id=2536360.2536364
http://dl.acm.org/citation.cfm?id=2536360.2536364
http://dl.acm.org/citation.cfm?id=1453856.1453924
http://dl.acm.org/citation.cfm?id=1453856.1453924
http://dl.acm.org/citation.cfm?id=1325851.1325934
http://dl.acm.org/citation.cfm?id=1325851.1325934

MotherNets: Rapid Deep Ensemble Learning

APPENDIX

Algorithm A Constructing the MotherNet for fully-
connected neural networks

Input: E: ensemble networks in one cluster;
Initialize: M: empty MotherNet;

// set input/output layer sizes

M.input.num_param← E[0].input.num_param;
M.output.num_param← E[0].output.num_param;
M.num_layers← getShallowestNetwork(E).num_layers;

// set hidden layer sizes

for i← 0 . . . M.num_layers-1 do
M.layers[i].num_param← getMin(E,i);

return M;

// Get the min. size layer at posn

Function getMin(E,posn)
min← E[0].layers[posn].num_param;
for j ← 0 . . . len(E)-1 do

if E[j].layers[posn].num_param < min then
min← E[j].layers[posn].num_param

return min;

A ALGORITHMS FOR CONSTRUCTING
MOTHERNETS

We outline algorithms for constructing the MotherNet given
a cluster of neural networks. We describe the algorithms for
both fully-connected and convolutional neural networks.

Fully-Connected Neural Networks. Algorithm A de-
scribes how to construct the MotherNet for a cluster of
fully-connected neural networks. We proceed layer-by-layer
selecting the layer with the least number of parameters at
every position.

Convolutional Neural Networks. Algorithm B provides a
detailed strategy to construct the MotherNet for a cluster of
convolutional neural networks. We proceed block-by-block,
where each block is composed of multiple convolutional
layers. The MotherNet has as many blocks as the network
with the least number of blocks. Then, for every block, we
proceed layer-by-layer and construct the MotherNet layer
at every position as follows: First, we compute the least
number of convolutional filters and convolutional filter sizes
at that position across all ensemble networks. Let these
be Fmin and Smin respectively. Then, in MotherNet, we
include a convolutional layer with Fmin filters of Smin size
at that position.

B MODEL COVARIANCE AND ENSEMBLE
PREDICTIVE ACCURACY

We can analyze how model covariance effects ensemble
performance by using Chebyshev’s Inequality to bound the
chance that a model predicts an example incorrectly. By
showing that lower covariance between models makes this
bound on the probability smaller, we give an intuitive rea-
son why ensembles with lower covariance between models
perform better. The proof shows as well that the average
model’s predictive accuracy is important; finally, no assump-
tions need to be made for the proof to hold. The individual
models can be of different quality and have different chances
of getting each example correct.

Given a fixed training dataset, let Yi be the softmax value
of model i in the ensemble for the correct class, and let
Ŷ = 1

m

∑m
i=1 Yi be the ensemble’s average softmax value

on the correct class. Both are random variables with the
randomness of Ŷ and Yi coming through the randomness
of neural network training. Under the mild assumption that
E[Ŷ] > 1

2 , so that the a one vs. all softmax classifier would
say on average that the correct class is more likely, than
Chebyshev’s Inequality bounds the probability of incorrect
prediction. Namely, the correct prediction is made with cer-
tainty if Ŷ ≥ 1

2 and so the probability of incorrect prediction
is less than

P (|Ŷ − E[Ŷ]| ≥ E[Ŷ]− 1

2
) ≤ V ar(Ŷ)

(E[Ŷ]− 1
2)

2

From the form of the equation, we immediately see that
keeping the average model accuracy E[Yi] high is impor-
tant, and that degradation in model quality can offset reduc-
tions in variance. Since the variance of Ŷ decomposes into
1

m2 (
∑m

i=1 V ar(Yi)+
∑

i6=i′ Cov(Yi, Yi′)), we see that low
model covariance keeps the variance of the ensemble low,
and that models which have which have high covariance
with other models provides little benefit to the ensemble.

We explain how MotherNets improve the efficiency of en-
semble inference.

Ensemble inference. Inference in an ensemble of neural
networks proceeds as follows: First, the data item (e.g., an
image or a feature vector) is passed through every network
in the ensemble. These forward passes produce multiple
predictions – one prediction for every network in the ensem-
ble. The prediction of the ensemble is then computed by
combining the individual predictions using some averaging
or voting function. As the size of the ensemble grows, the
inference cost in terms of memory and time required for
inference increases linearly. This is because for every addi-
tional ensemble network, we need to maintain its parameters
as well as do an additional forward pass on them.

MotherNets: Rapid Deep Ensemble Learning

Algorithm B Constructing the MotherNet for convolutional neural networks block-by-block.

Input: E: ensemble of convolutional networks in one cluster;
Initialize: M: empty MotherNet;

// set input/output layer sizes and number of blocks

M.input.num_param← E[0].input.num_param;
M.output.num_param← E[0].output.num_param;
M.num_blocks← getShallowestNetwork(E).num_blocks;

// set hidden layers block-by-block

for k ← 0 . . . M.num_blocks-1 do
M.block[k].num_hidden← getShallowestBlockAt(E,k).num_hidden; // select the shallowest block

for i← 0 . . . M.block[k].num_hidden-1 do
M.block[k].hidden[i]..num_filters, M.block[k].hidden[i]..filter_size← getMin(E,k,i)

return M;

// Get minimum number of filters and filter size at posn

Function getMin(E,blk,posn)
min_num_filters← E[0].block[blk].hidden[posn].num_filters;
min_filter_size← E[0].block[blk].hidden[posn].filter_size;
for j ← 0 . . . len(E) do

if E[j].block[blk].hidden[posn].num_filters < min_num_filters then
min_num_filters← E[j].block[blk].hidden[posn].num_filters;

if E[j].block[blk].hidden[posn].filter_size < min_filter_size then
min_filter_size← E[j].block[blk].hidden[posn].filter_size;

return min_num_filters, min_filter_size;

Shared MotherNetsHatched ensemble networks

Shared param.Ensemble param.

Figure A. To construct a shared-MotherNet, parameters originating
from the MotherNet are combined together in the ensemble.

C SHARED-MOTHERNETS

Shared-MotherNets. We introduce shared-MotherNets to
reduce inference time and memory requirement of ensem-
bles trained through MotherNets. In shared-MotherNets, af-
ter the process of hatching (step 2 from §2), the parameters
originating from the MotherNet are incrementally trained
in a shared manner. This yields a neural network ensemble
with a single copy of MotherNet parameters reducing both
inference time and memory requirement.

Constructing a shared-MotherNet. Given an ensemble
E of K hatched networks (i.e., those networks that are
obtained from a trained MotherNet), we construct a shared-

MotherNet S as follows: First, S is initialized with K input
and output layers, one for every hatched network. This al-
lows S to produce as many as K predictions. Then, every
hidden layer of S is constructed one-by-one going from
the input to the output layer and consolidating all neurons
across all of E that originate from the MotherNet. To con-
solidate a MotherNet neuron at layer li, we first reduce the
k copies of that neuron (across all K networks in H) to a
single copy. All inputs to the neuron that may originate
from various other neurons in the layer li−1 across different
hatched networks are added together. The output of this
consolidated neuron is then forwarded to all neurons in the
next layer li+1 (across all hatched networks) which were
connected to the consolidated neuron.

Figure A shows an example of how this process works for
a simple ensemble of three hatched networks. The filled
circles represent neurons originating from the MotherNet
and the colored circles represent neurons from ensemble
networks. To construct the shared-MotherNet (shown on
the right), we go layer-by-layer consolidating MotherNet
neurons.

The shared-MotherNet is then trained incrementally. This
proceeds similarly to step 3 from §2, however, now through
the shared-MotherNet, the neurons originating from the
MotherNet are trained jointly. This results in an ensemble

MotherNets: Rapid Deep Ensemble Learning

 6

 7

 8

er
r.

ra
te

 (%
)

MN

Shared-MN

 0

 10

 20

1 2 3 4 5

in
f.

tim
e

(m
s)

number of clusters

Figure B. Shared MotherNets
improve inference time by 2×
for the V5 ensemble.

 10

 100

 1000

 10000

1 2 4 8
tra

in
in

g
tim

e
(m

in
)

number of GPUs

V5

Figure C. MotherNets con-
tinue to improve training cost
in parallel settings (V5).

 10

 100

 1000

 10000

1 2 4 8

tra
in

in
g

tim
e

(m
in

)

number of GPUs

D5 FD
SE

MN

Figure D. MotherNets is able
to utilize multiple GPUs effec-
tively scaling better than SE.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

C10 C100

te
st

 e
rr

or
 ra

te
 (%

) FGE
MN

Figure E. MotherNets outper-
form FGE on Wide ResNet en-
sembles.

that has K outputs, but some parameters between the net-
works are shared instead of being completely independent.
This reduces the overall number of parameters, improving
both the speed and the memory requirement of inference.

Memory reduction. Assume an ensemble E =
{N0, N1, . . . NK−1} of K neural networks (where Ni de-
notes a neural network architecture in the ensemble with
|Ni| number of parameters) and its MotherNet M . The
number of parameters in the ensemble is reduced by a factor
of χ given by:

χ = 1− k|M |∑K−1
i=0 |Ni|

Results. Figure B shows how shared-MotherNets improves
inference time for an ensemble of 5 variants of VGGNet
as described in Table 1. This ensemble is trained on the
CIFAR-10 data set. We report both overall ensemble test
error rate and the inference time per image. We see an
improvement of 2× with negligible loss in accuracy. This
improvement is because shared-MotherNets has a reduced
number of parameters requiring less computation during
inference time. This improvement scales with the ensemble
size.

D PARALLEL TRAINING

Deep learning pipelines rely on clusters of multiple GPUs
to train computationally-intensive neural networks. Mother-
Nets continue to improve training time in such cases when
an ensemble is trained on more than one GPUs. We show
this experimentally.

To train an ensemble of multiple networks, we queue all
networks that are ready to be trained and assign them to
available GPUs in the following fashion: If the number of
ready networks is greater than free GPUs, then we assign a
separate network to every GPU. If the number of ensemble
networks available to be trained are less than the number of

idle GPUs, then we assign one network to multiple GPUs
dividing idle GPUs equally between networks. In such
cases, we adopt data parallelism to train a network across
multiple machines (Dean et al., 2012).

We train on a cluster of 8 Nvidia K80 GPUs and vary the
number of available GPUs from 1 to 8. The training hyper-
parameters are the same as described in Section 3. Figure
C and Figure D show the time to train the V5 and D5 en-
sembles respectively across FD, SE, and MotherNets. We
observe that compared to Snapshot Ensembles, MotherNets
(g=1) scale better as we increase the number of GPUs. The
reason for this is that after the MotherNet has been trained,
the rest of the ensemble networks are all ready to be trained.
They can then be trained in a way that minimizes communi-
cation overhead by assigning them to as distinct set of GPUs
as possible. Snapshot Ensembles, on the other hand, are
generated one after the other. In a parallel setting this boils
down to training a single network across multiple GPUs,
which incurs communication overhead that increases as the
number of GPUs increases (Keuper & Preundt, 2016).

E IMPROVING OVER FAST GEOMETRIC
ENSEMBLES

Now we compare against Fast Geometric Ensembles (FGE),
a technique closely related to Snapshot Ensembles (SE)
(Huang et al., 2017a; Garipov et al., 2018). FGE also trains
a single neural network architecture and saves the network’s
parameters at various points of its training trajectory. In par-
ticular, FGE uses a cyclical geometric learning rate schedule
to explore various regions in a neural network’s loss surface
that have a low test error (Garipov et al., 2018). As the
learning rate reaches its lowest value in a cycle, FGE saves
‘snapshots’ of the network parameters. These snapshots are
then used in an ensemble.

We compare MotherNets to FGE using an ensemble of Wide
Residual Networks trained on CIFAR-10 and CIFAR-100

MotherNets: Rapid Deep Ensemble Learning

(Zagoruyko & Komodakis, 2016). Our experiment consists
of an ensemble with six WRN-28-10. For MotherNets, we
use six variants of this architecture having different number
of filters and filter widths. For FGE all networks in the
ensemble are the same as is required by the approach. For a
fair comparison, the number of parameters are kept identical
between the two approaches. We use the same training
hyperparameters as discussed in the FGE paper and train

for a full training budget of 200 epochs. MotherNets is
also allocated the same training budget. The MotherNet
is trained for a 140 epochs and every ensemble network
is trained for 10 epochs after hatching. The experimental
hardware is the same as outlined in Section 3. Figure E
shows that for identical training budget MotherNets is more
accurate than FGE across both data sets.

