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ABSTRACT

Key-value stores are everywhere. They power a diverse set
of data-driven applications across both industry and science.
Key-value stores are used as stand-alone NoSQL systems but
they are also used as a part of more complex pipelines and
systems such as machine learning and relational systems.
In this tutorial, we survey the state-of-the-art approaches
on how the core storage engine of a key-value store sys-
tem is designed. We focus on several critical components of
the engine, starting with the core data structures to lay out
data across the memory hierarchy. We also discuss design
issues related to caching, timestamps, concurrency control,
updates, shifting workloads, as well as mixed workloads with
both analytical and transactional characteristics. We cover
designs that are read-optimized, write-optimized as well as
hybrids. We draw examples from several state-of-the-art
systems but we also put everything together in a general
framework which allows us to model storage engine designs
under a single unified model and reason about the expected
behavior of diverse designs. In addition, we show that given
the vast number of possible storage engine designs and their
complexity, there is a need to be able to describe and commu-
nicate design decisions at a high level descriptive language
and we present a first version of such a language. We then
use that framework to present several open challenges in the
field especially in terms of supporting increasingly more di-
verse and dynamic applications in the era of data science and
Al including neural networks, graphs, and data versioning,.

ACM Reference Format:

Stratos Idreos and Mark Callaghan. 2020. Key-Value Storage En-
gines. In Proceedings of the 2020 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD’20), June 14-19, 2020,
Portland, OR, USA. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3318464.3383133

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06...$15.00
https://doi.org/10.1145/3318464.3383133

Mark Callaghan
MongoDB

1 KEY-VALUE STORAGE ENGINES, AND
APPLICATIONS

Key-Value systems support a key-value API and store and
manage key-value pairs. Such key-value stores are every-
where, providing the storage backbone for an ever-growing
number of diverse applications. The scenarios range from
graph processing in social media [9, 14], to event log pro-
cessing in cybersecurity [15], application data caching [51],
NoSQL stores [57], flash translation layer design [21], time-
series management [42, 43], and online transaction process-
ing [26]. In addition, key-value stores increasingly have be-
come an attractive solution as embedded systems in complex
data-intensive applications, machine learning pipelines, and
larger systems that support more complex data models. For
example, key-value stores are utilized in SQL systems, e.g.,
FoundationDB [8] is a core part of Snowflake [18], while My-
Rocks integrates RockDB in MySQL as its back-end storage.

Storage Engine Design. At its core a key-value store
implements a data structure that stores key-value pairs. Each
data structure design achieves a specific balance regarding
the fundamental trade-offs of read, update, and memory
amplification [11]. For example, read amplification is defined
as “how much more data do we have to read for every key we
are looking for on top of accessing this particular key”. In fact
read, update, and memory amplification further break down
to more fine grained metrics such as point reads, range reads,
updates, deletes, inserts, and memory needed for caching.
The design of the core data structure affects each one of those
performance properties as well as every feature and property
of the system. For example, to support time-travel queries we
need to decide how to store timestamps. To accelerate queries
on recently accessed data we need to balance the available
memory between caching and other structures needed to
accelerate processing on base data, e.g., in-memory bloom
filters, fence pointers that help skip I/O. In order to support
efficient concurrent read and write requests, a storage engine
might have to change the data layout from an in-place to an
out-of-place paradigm.

Rapidly Changing System Requirements. Today more
than ever, we want to build, or change and adapt a data sys-
tem quickly such that we can keep up with the needs of ever
changing applications and hardware. New applications or
new features in existing applications, with new workload pat-
terns, appear frequently. A single system is not capable of ef-
ficiently supporting diverse workloads. This is a problem for
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several increasingly pressing reasons. First, new applications
appear many of which introduce new workload patterns
that were not typical before. Second, existing applications
keep redefining their services and features which affects
their workload patterns directly and in many cases renders
the existing underlying storage decisions sub-optimal or
even bad. Third, hardware keeps changing which affects the
CPU/bandwidth/latency balance; maximum performance re-
quires low-level storage design changes. These problems boil
down to the one size does not fit all problem which holds
for overall system design [65] and for the storage layer [11].
Especially, in today’s cloud-based world even slightly sub-
optimal designs by 1% translate to a massive loss in energy
utilization and thus costs [44].

There is no Perfect Design. There exists no perfect data
structure that minimizes all performance trade-offs [11, 39].
For example, if we add a log to support efficient out of place
writes, we sacrifice memory/space cost as we may have du-
plicate entries, and read cost as future queries have to search
both the core data structure and the log. In turn, this means
that there exists no perfect key-value store that covers di-
verse performance requirements. Every design is a compro-
mise. But then how do we know which design is best for an
application, e.g., for specific data, access patterns, hardware
used, or even a maximum financial budget on the cloud? And
do we have enough designs and systems to cover the needs
of emerging and ever-changing data-driven applications?
Especially today with an increasingly diverse and large array
of applications driven by new opportunities in data science,
and machine learning, it is very critical to have systems prop-
erly designed at their core to match the requirements of the
target application.

Tutorial Structure. The tutorial consists of three parts.
The first part goes over the overall problem setting as de-
scribed in this section, 1) defining key-value store systems, 2)
describing traditional as well as emerging applications across
data science fields, and 3) giving a view of critical open chal-
lenges especially towards diverse workloads and dynamic
application scenarios. The second part discusses major re-
search and industry trends from the past several years that
have formed the state-of-the-art in key-value storage engines.
In particular, we cover 1) read-optimized storage engines, 2)
write-optimized storage engines, 3) design options and con-
siderations on allocating memory across system components,
4) how to store time-stamps, and 5) how to store large values.
In the third part, we present a unified framework that encap-
sulates all state-of-the-art designs and allows us to reason
about the possible design space of storage engines. We also
discuss how to describe and communicate storage engine de-
signs and why this is a critical issue. Finally, we present the
open challenge of self-designed key-value storage engines.
We explain 1) the new opportunities they bring compared to

past solutions, 2) how they can be applied to solve practical
problems across many classes of data-intensive applications,
and 3) the new research opportunities that arise from their
fusion with past work. Self-designed systems [35, 40] know
the possible design choices and their combinations for crit-
ical system design components such as data storage, and
can choose the most appropriate design among drastically
different choices

2 STATE-OF-THE-ART ENGINE DESIGN

The Big Three. There are three predominant data struc-
ture designs for key-value stores to organize data. To give
an idea of the diverse design goals and performance bal-
ances they provide, we go briefly through their core design
characteristics. The first one is the B*tree [13]. The proto-
typical B tree design consists of a leaf level of independent
nodes with sorted key-value pairs (typically multiple stor-
age blocks each) and an index (logarithmic at the number of
leaf nodes) which consists of nodes of fractional cascading
fence pointers with a large fanout. For example, B*tree is
the backbone design of the BerkeleyDB key-value store [53],
now owned by Oracle, and the backbone of the WiredTiger
key-value store [66], now used as the primary storage engine
in MongoDB [52]. FoundationDB [8] also relies on a B* tree.
Overall, B*tree achieves a good balance between read and
write performance with a reasonable memory overhead that
is primarily due to its fill factor in each node (typically 50%)
and the auxiliary internal index nodes.

In the early 2000s, a new wave of applications emerged
requiring faster writes, while still giving good read perfor-
mance. At the same time, the advent of flash-based SSDs has
made write I/Os 1-2 orders of magnitude costlier than read
I/Os [1]. These workload and hardware trends led to two data
structure design decisions for key-value stores: 1) buffering
new data in memory, batching writes in secondary storage,
and 2) avoiding global order maintenance. This class of de-
signs was pioneered by the Log-Structured Merge Tree
(LSM-tree) [54] which partitions data temporally in a series
of increasingly larger levels. Each key-value entry enters
at the very top level (the in-memory write buffer) and is
sort-merged at lower levels as more data arrives. In-memory
structures such as Bloom filters, fence pointers and Tries
help filter queries to avoid disk I/O [19, 67]. This design
has been adopted in numerous industrial settings including
LevelDB [30] and BigTable [17] at Google, RocksDB [27] at
Facebook, Cassandra [45], HBase [33] and Accumulo [7] at
Apache, Voldemort [47] at LinkedIn, Dynamo [24] at Ama-
zon, WiredTiger [66] at MongoDB, and bLSM [61] and cLSM
[29] at Yahoo, and more designs in research such as SlimDB
[58], WiscKey [49], Monkey [19, 20], Dostoevsky [22], and
LSM-bush [23]. Relational databases such as MySQL and



SQLite4 support this design too by mapping primary keys
to rows as values. Overall, LSM-tree-based designs achieve
better writes than B*tree-based designs but they typically
give up some read performance (e.g., for short-range queries)
given that we have to look for data through multiple levels,
and they also give up some memory amplification to hold
enough in-memory filters to support efficient point queries.
Crucial design knobs, such as fill factor for B*tree and size ra-
tio for LSM-tree, define the space amplification relationship
among the two designs.

More recently, a third design emerged for applications
that require even faster ingestion rates. The primary data
structure design decision was to drop order maintenance.
Data accumulates in an in-memory write buffer. Once full,
it is pushed to secondary storage as yet another node of an
ever-growing single level log. An in-memory index, e.g., a
hash table, allows locating any key-value pair easily while
the log is periodically merged to enforce an upper bound
on the number of obsolete entries. This Log and Index de-
sign is employed by BitCask [62] at Riak, Sparkey [64] at
Spotify, FASTER [16] at Microsoft, and many more systems
in research [2, 46, 59]. Most systems use a hash table as the
index over the log. Overall, such a design achieves excellent
write performance, but it sacrifices read performance (for
range queries), while the memory footprint is also typically
higher since now all keys need to be indexed in-memory to
minimize I/O needs per key.

Memory Management. One of the most critical deci-
sions in key-value stores is how to distribute the available
bits across the various in-memory components. For example,
in an LSM-tree like design it is common to have numerous
Bloom-filters in memory and other helper structures to help
skip disk reads. Similarly, caching is used to help with access
to recent items or data blocks. Buffers that holds recent up-
dates/inserts also compete for memory bits. Overall each one
of these components can have a positive impact in system
performance but given a fixed budget and a workload and
storage engine base design it is not always clear how to best
assign memory.

Compactions and Splits. Depending on the exact design
aNoSQL engine will need to frequently reorganize data such
as to maintain certain performance invariants. For example,
an LSM-tree like design needs to perform compactions as
new data arrives such as to maintain order and remove past
invalid values which have been updated out of place. De-
pending on the frequency of compactions the system can
be characterized from read to write optimized. Furthermore,
compactions may happen in-place or out-of-place. The latter
allows queries to be served over the previous layout while the
compaction is happening. This comes at the cost of temporar-
ily duplicating the relevant data. In-place does not require

any extra memory but needs to block queries. Understand-
ing the design space of compactions and splits is critical for
NoSQL storage engine design so we can navigate diverse
application requirements.

Concurrency Control. Key-value storage engines need
to support large numbers of concurrent queries. When reads
and writes arrive at the same time then depending on the
exact design of the engine there are a plethora of approaches
on increasing throughput. For example, LSM-trees are inher-
ently more able to process concurrent requests compared
to a typical B-tree design because they update data out of
place. Similarly, a log-structured hash table design goes a step
further by performing much fewer compactions and thus
creating fewer conflicts for reads and writes (at the expense
of read cost). B-tree designs can also adopt an out of place
approach by stacking updates in leaf nodes like BW-tree or
across any node like B€tree.

Time-travel Queries. A very useful property in business
applications is to be able to query data based on the status of
the system at a particular point in time. This means that key-
value pairs should be associated with timestamps. Supporting
even small number of versions, though, can be a significant
overhead in terms of storage. At the same time the exact
way the timestamps are stored is critical. For example, if
timestamps are stored inline with the base date, then this can
lead to significant overheads for all queries (since timestamps
will need to be read along with the base data).

CPU vs I/O Cost. Primarily key-value engines deal with
big data and as such the bulk of their performance cost comes
from moving data from disk and across the memory hierar-
chy. However, still a significant part of the cost does come
from CPU. For example, depending on the mix of access
patterns in the workload an engine may be more or less in-
tensive in moving data. Similarly, using compression leads
to increased CPU costs and the exact form of compression
used defines the balance of I/O saved versus CPU sacrificed.
This trade-off becomes especially important on the cloud
where both CPU and I/O cost contribute to the required bud-
get while different cloud providers offer different (and often
changing) cost policies.

Adaptive Indexing and Layouts. One way to “blend"
performance properties for diverse workloads is through
adaptivity. While the concept has not been studied in NoSQL
storage there are a lot of parallels that can be drown and
we will use these concepts when we touch on the open
challenges for NoSQL engines. Adaptive indexing [36] is
a lightweight approach in self-tuning databases. Adaptive
indexing addresses the limitations of offline and online in-
dexing for dynamic workloads; it reacts to workload changes
by building or refining indices partially and incrementally
as part of query processing. That is, no DBA or offline pro-
cessing is needed. By reacting to every single query with



lightweight actions, adaptive indexing manages to instantly
adapt to a changing work load. As more queries arrive, the
more the indices are refined and the more performance
improves. Recently this area has received considerable at-
tention with numerous works that study adaptivity with
regards to base storage in relational systems, NoSQL sys-
tems, updates, concurrency, and time-series data manage-
ment [4, 5, 10, 19, 25, 31, 32, 36, 37, 41, 48, 55, 56, 60, 63, 68].
Typically, in these lines of work the layout adapts to incom-
ing requests. Similarly works on tuning via experiments [12],
learning [6], and tuning via machine learning [3, 34] can
adapt parts of a design using feedback from tests.

3 SELF-DESIGNED NOSQL STORAGE

In the third part of the tutorial we will describe in detail new
research opportunities to create custom storage engines to
match tailored applications requirements.

Self-designed Systems. Self-designed systems rely on
the notion of mapping the possible space of critical design
decisions in a system. For example, the Data Calculator intro-
duced the design space of key-value storage [40]. The design
space is defined by all designs that can be described as com-
binations and tunings of the “first principles of design”. A
first principle is a fundamental design concept that cannot
be broken into additional concepts, e.g., for data structure de-
sign: fence pointers, links, temporal partitioning, and so on.
The intuition is that, over the past decades, researchers have
invented numerous fundamental design concepts such that
a plethora of new valid designs with interesting properties
can be synthesized out of those. The design space presented
in [40] is shown to cover state-of-the-art designs, but it also
reveals that a massive number of additional storage designs
can be derived. As an analogy consider the periodic table of
elements in chemistry; it categorized existing elements, but
it also predicted unknown elements and their properties. In
the same way, we can create the periodic table of data struc-
tures [39] which describes more key-value store designs than
stars on the sky. Similar efforts have created design spaces
in cache coherency protocols for database servers [28] and
the design of parallel algorithms [50].

A self-designed system uses the design space to automat-
ically generate designs that fit best a target workload and
hardware. To do that we need to know how the various
points in the space differ in terms of the performance prop-
erties they give to the resulting system. For example, learned
cost models [40] is a method that enables learning the costs
of fundamental access patterns (random access, scan, sorted
search) out of which we can synthesize the costs of complex
algorithms for a given data structure specification. These
costs can, in turn, be used by machine learning algorithms

that iterate over machine generated data structure specifi-
cations to label designs, and to compute rewards, deciding
which specification to try out next. For example, early results
using genetic algorithms [38] and dynamic programming
[40] show the strong potential of such approaches to auto-
matically discover close to optimal storage designs.

In addition, design continuums [20, 22, 35] is another
direction which allows for accurate fast search for the best
design. A design continuum is a performance hyperplane
that connects a specific subset of designs within the set of
all possible designs. Design continuums are effectively a pro-
jection of the design space, a “pocket” of designs where we
can identify unifying properties among its members. A de-
sign continuum unifies major distinct data structure designs
under the same model. The critical insight and potential long-
term impact is that such unifying models 1) render what we
consider up to now as fundamentally different data struc-
tures to be seen as “views” of the very same overall design
space, and 2) allow “seeing” new data structure designs with
performance properties that are not feasible by existing de-
signs. The core intuition behind the construction of design
continuums is that all data structures arise from the very
same set of fundamental design principles, i.e., a small set of
data layout design concepts out of which we can synthesize
any design that exists in the literature as well as new ones.
We show how to construct, evaluate, and expand, design con-
tinuums and we also present the a continuum that unifies
major data structure designs, i.e., B*tree, Btree, LSM-tree,
and LSH-table.

The practical benefit of a design continuum is that it cre-
ates a fast inference engine for the design of data structures.
For example, we can predict near instantly how a specific
design change in the underlying storage of a data system
would affect performance, or reversely what would be the
optimal data structure (from a given set of designs) given
workload characteristics and a memory budget. In turn, these
properties allow us to envision a new class of self-designing
key-value stores with a substantially improved ability to
adapt to workload and hardware changes by transitioning
between drastically different data structure designs to as-
sume a diverse set of performance properties at will.

Storage Engine Description. Another critical issue trig-
gered by the vast design space of storage engine designs
and its complexity is how we communicate the specifics of a
particular design. This is critical for system architects and en-
gineers to understand and maintain systems as they evolve.
We argue that a high level language is needed to describe
storage engine and we present ideas and open problems to
achieving that.

Applications: Big Data, Data Science. In the last part
of the tutorial we touch on how the new directions described
can apply across numerous data-intensive areas. We discuss



broad data science applications such as statistics-heavy pro-
cessing and machine learning systems. Effectively, all these
areas have in common the need to process ever growing
amounts of data. The data storage and exact processing al-
gorithms supported need to vary depending on the exact ac-
cess patterns desired by the high level algorithms/workloads
and by the hardware. As data grows, even the slightest sub-
optimality in these decisions can cost anything from hours to
days in processing. The new ideas presented in this tutorial
showcase open research problems towards being able to gen-
erate close to optimal storage systems for such data-intensive
applications.

4 AUDIENCE, AND OUTPUT

Audience. The target audience for this tutorial is students,
academics, researchers and software engineers with basic
knowledge on data structures, algorithms and data system
design. We assume basic understanding of fundamental data
structures such as B-trees, LSM-trees, and Hash-tables. In
addition, we assume basic knowledge of modeling and op-
timization. The tutorial is self-contained in providing all
necessary background, no prior knowledge is needed on
auto-tuning, adaptive systems/indexing, self-designed and
learned systems.
Output. The target learning output is as follows:

(1) understanding use cases of key-value systems

(2) understanding state-of-the-art storage engine design

(3) understanding the long term technical limitations of
state-of-the-art systems

(4) understanding the need of building new tailored sys-
tems that match the application needs

(5) exposure to the new research challenges with self-
designed NoSQL systems

(6) exposure to the new opportunities across diverse data-
intensive contexts: data science, machine learning,

graphs
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