
JAFAR: Near-Data Processing for Databases

Oreoluwa Babarinsa
Harvard University

obabarinsa@seas.harvard.edu

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

ABSTRACT
As main-memory sizes have grown, data systems have been able to
process entire large-scale data-sets in memory. However, because
memory speeds have been not been keeping pace with CPU speeds,
the cost of moving data into CPU caches has begun to dominate cer-
tain operations within in-memory data systems. Recent advances
in hardware architectures point to near memory computation ca-
pabilities becoming possible soon. This allows us to rethink how
database systems process queries and how they split computation
across the various computational units. In this paper, we present
JAFAR, a near data processing accelerator for pushing selects down
to memory. Through a detailed simulation of JAFAR hardware we
show it has the potential to provide up to 900% improvement for
select operations in modern column-stores.

1. INTRODUCTION
The Development of In-memory Data Systems. Rapidly dimin-
ishing costs of main memory per gigabyte have led to the develop-
ment of in-memory data systems, significantly increasing through-
put and performance compared to disk-based systems. However,
while disk accesses are no longer the performance bottleneck for
in-memory data systems, the cost of moving data from main mem-
ory across the memory buses and into CPU caches is still signifi-
cant [2]. Big data applications like data analytics tend to be more
memory bound than CPU-bound. This trend, called “memory wall”
[11], will only become worse as CPU performance improvement
continues to surpass memory performance improvement.

Furthermore, while there have been fruitful efforts in tuning data-
base operators to be cache-aware and efficient in multi-core settings
[3], ultimately, data still must be moved from main memory to the
CPUs, incurring a significant cost. There is extensive literature on
optimizing the memory behavior of DBMS workloads, such as im-
proving cache hit rates with multi-core optimized joins [3]. Past
work, however, does not directly try to reduce movement of rele-
vant data from memory to the CPUs.
Near Data Processing. Reducing data movement can be achieved
by moving the computation closer to the data itself by having spe-
cialized hardware that performs computation close to the data. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’15 May 31 - June 04, 2015, Melbourne, VIC, Australia
ACM 978-1-4503-2758-9/15/05
http://dx.doi.org/10.1145/2723372.2764942.

is known as near-data processing (NDP). In the hardware architec-
ture community, NDP has been proposed in various forms in the
past [7, 10]. However, NDP hardware did not see widespread adop-
tion, when it was originally proposed due to strong past gains in
CPU performance. However, due to diminishing returns from tech-
nology scaling, there has been a recent resurgence in NDP research
[2]. Historically, proposals for NDP systems have emphasized de-
sign for general purpose computation [5, 6, 8].
Our Contribution. In this paper, we study NDP for columnar data
systems [1]. We present JAFAR, short for “Just a Filtering Acceler-
ator on Relations”. JAFAR is a hardware accelerator embedded in
a DRAM module that implements the select operator of a modern
column-store. According to our experiments, JAFAR is capable of
achieving up to 9× speedup on the selection operator.

2. JAFAR
JAFAR allows for processing database filtering operations di-

rectly in memory. When a select operator is pushed to JAFAR by
the database system, JAFAR starts filtering data directly in memory.
The key idea is that JAFAR requests data from memory as normal
but it filters data without pushing data further up in the memory hi-
erarchy. To achieve that JAFAR receives input directly from the IO
buffer of the DRAM module, as shown in Figure 1a. JAFAR tar-
gets integer input data, covering a spectrum of use cases. Modern
data systems typically store columns of data employing dictionary
compression, allowing a variety of data types to be represented by
integers or fixed-width data.

The internals of JAFAR are depicted in Figure 1b. For each 64
bit word that it receives, an integer comparison is performed against
the value of the element corresponding to the query predicate. For
range filters, two arithmetic logic units (ALUs) operate in paral-
lel. JAFAR tracks the offset of the current row in the page. If the
result of the filter is true, then the offset is converted into a bit-
mask and written into an output buffer, which is a bitset indicating
which rows pass the filter. The output buffer thus holds n bits to
represent the state of n filter operations. Every n cycles, the out-
put buffer is filled, the bitset is written back to main memory at a
pre-programmed location. The CPU controls JAFAR via memory-
mapped accelerator control registers and is notified on completion
by polling a shared memory location.

We design and simulate JAFAR using an accelerator modeling
tool called Aladdin [9] and the surrounding system with the gem5
simulator [4]. Aladdin is a power and performance modeling tool
that converts a C-style representation of the workload being accel-
erated into a data dependence graph, which represents the structure
and execution of the accelerator datapath itself.



Bank	
  0	
  
RAS 

CAS 
Sense	
  Amps	
  

64b 

CPU 
mem. 
req. 

JAFAR 
mem. 
req. 

To host 

Memory	
  
Access	
  
Arbiter	
  

IO	
  buffer	
  

DRAM	
  array	
  clock	
  domain	
  

JAFAR	
  

Data	
  bus	
  clock	
  domain	
  

(a) DDR3 DRAM module

Opcode 

From IO buffer 

Data	
  latch	
  

Left Right 

Opcode ALU ALU 
Comparison	
  is	
  true?	
  

Output	
  buffer	
  Page	
  offset	
  cnt	
  

page	
  offset	
  	
  
bitmask	
  

write	
  enable	
  

(b) JAFAR architecture

0 20 40 60 80 100
Selectivity (%)

0

2

4

6

8

10

S
pe

ed
up

1M
2M

3M
4M

(c) Speedup increases with selectivity

Figure 1: JAFAR design and evaluation

3. EXPERIMENTAL ANALYSIS
Experimental Setup. Using the gem5 simulator we simulate a ma-
chine with a single 1 GHZ CPU with 64KB L1, 128KB L2 cache,
and 2GB of DRAM. We experiment using a synthetic dataset con-
sisting of integers between 0 and 106, randomly generated from a
uniform distribution. We evaluate JAFAR using scans and selec-
tions of varying selectivity over different data sizes. Figure 1c
shows on the y-axis the speedup achieved when running a scan fol-
lowed by a selection using JAFAR when compared with a CPU-
only execution. On the x-axis we vary the selectivity from 10% to
100%. The four different lines correspond to different data sizes.
We calculate speed-up by comparing the run-time of a query on our
simulated machine with and without JAFAR handling scans.
Impact of Dataset Size. We first discuss the impact of dataset
size on JAFAR (the different lines in Figure 1c). JAFAR speedup
is small for small datasets (< 1M rows), but increases to a maxi-
mum of 9× for large datasets. This is because on large datasets,
most of the program execution is spent in the accelerated selection
operation. For smaller datasets, the amount of time in the acceler-
ated part of the code is reduced, thus leading to a smaller speedup.
In this experiment, there is no memory contention when JAFAR is
running because the CPU is spin-waiting until JAFAR finishes.
Impact of Selectivity. In addition to the data size, selectivity plays
an important role in the achieved speed-up due to JAFAR, espe-
cially for data sizes larger than 1M (note the top three lines in in
Figure 1c). We observe that JAFAR performance increases with
query selectivity. This behavior is attributed to a key difference be-
tween how JAFAR operates compared to a traditional CPU-based
execution. CPU executes additional code on a record when a row
passes the filter. On the other hand, JAFAR always writes the
contents of the output buffer back to main memory each time the
buffer is full, without delaying the filtering operation. Hence, JA-
FAR has constant execution time regardless of the query selectivity.
Combining that with the increasing number of commands the CPU
needs to execute for increasing selectivity, results to the observed
linear increase in speedup for higher selectivity.
Contention. JAFAR provides considerable speedup on filtering op-
erations, increasing both with data size and query selectivity. How-
ever, so far we did not consider memory contention effects, which
are important because JAFAR was designed as a drop-in NDP ac-
celerator which can can only operate while the memory controller
is idle. To quantify this effect, we measure the idle periods when
using a modern data system. We use several filter-heavy TPC-H
queries running on MonetDB on a NUMA machine with 4 sock-
ets, each equipped with an Intel Xeon E7-4820 v2 Ivy processor
running at 2.0GHz with 16MB of L3 cache. We find that the mem-
ory controller idle periods range between 200 and 800 memory bus

clock cycles, with an average of 500 cycles. Thus, on average, JA-
FAR can process 500/4 = 125 32-byte data blocks, or a total of
4KB of data, per idle period. Due to space restrictions we do in-
clude this analysis here. More details can be found in a subsequent
publication [12].

4. SUMMARY & FUTURE WORK
We present JAFAR, an NDP hardware accelerator embedded into

DRAM that provides up to 9× speedup on filtering operations in
modern column-stores. A more complete version of this study is
now available [12], where we analyze the performance gains when
running analytical queries and quantify memory contention.

Our future research plans include the design of further operators,
as well as studying NDP opportunities for row-stores and hybrid
systems. Another important topic is to identify what are the min-
imum changes required at the host system and software stack as
well as study possible optimizations based on data types.
Acknowledgments. The authors would like to thank Sam Xi and
Manos Athanassoulis, member of Harvard DASlab, for their help
during this project.

5. REFERENCES
[1] D. J. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, and S. Madden. The Design

and Implementation of Modern Column-Oriented Database Systems.
Foundations and Trends in Databases, 5(3):197–280, 2013.

[2] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair,
and S. Swanson. Near-Data Processing: Insights from a MICRO-46 Workshop.
IEEE Micro, 34(4):36–42, 2014.

[3] C. Balkesen, J. Teubner, G. Alonso, and M. T. Ozsu. Main-memory hash joins
on multi-core CPUs: Tuning to the underlying hardware. In Proceedings of the
IEEE International Conf. on Data Engineering (ICDE), pages 362–373, 2013.

[4] N. L. Binkert et al. The gem5 simulator. SIGARCH Computer Architecture
News, 39(2):1–7, 2011.

[5] M. Gokhale, W. Holmes, and K. Iobst. Processing in Memory: The Terasys
Massively Parallel PIM Array. IEEE Computer, 28(4):23–31, 1995.

[6] M. Hall et al. Mapping Irregular Applications to DIVA, a PIM-based
Data-intensive Architecture. In Proceedings of the ACM/IEEE Conf. on
Supercomputing, 1999.

[7] W. H. Kautz. Cellular Logic-in-Memory Arrays. IEEE Transactions on
Computers, 18(8):719–727, 1969.

[8] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick. A Case for Intelligent RAM. IEEE Micro,
17(2):34–44, 1997.

[9] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. Aladdin: A Pre-RTL,
Power-performance Accelerator Simulator Enabling Large Design Space
Exploration of Customized Architectures. In Proc. of the Annual International
Symposium on Computer Architecture (ISCA), pages 97–108, 2014.

[10] H. S. Stone. A Logic-in-Memory Computer. IEEE Transactions on Computers,
19(1):73–78, 1970.

[11] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of the
Obvious. ACM SIGARCH Computer Architecture News, 23(1):20–24, 1995.

[12] S. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos. Beyond the Wall:
Near-Data Processing for Databases. In Proceedings of the International
Workshop on Data Management on New Hardware (DAMON), 2015.

http://daslab.seas.harvard.edu

	Introduction
	JAFAR
	Experimental Analysis
	Summary & Future Work
	References



