
dbTouch in Action
Database Kernels for Touch-based Data Exploration

Erietta Liarou Stratos Idreos
EPFL Harvard University

erietta.liarou@epfl.ch stratos@seas.harvard.edu

Abstract—A fundamental need in the era of data deluge is data

exploration through interactive tools, i.e., being able to quickly de-
termine data and patterns of interest. dbTouch is a new research
direction towards a next generation of data management systems
that inherently support data exploration by allowing touch-based
interaction. Data is represented in a visual format, while users
can touch those shapes and interact/query with gestures. In a
dbTouch system, the whole database kernel is geared towards
quick responses in touch input; the user drives query processing
(not just query construction) via touch gestures, dictating how
fast or slow data flows through query plans and which data parts
are processed at any time. dbTouch translates the gestures into
interactive database operators, reacting continuously to the touch
input and analytics tasks given by the user in real-time such as
sliding a finger over a column to scan it progressively; zoom in
with two fingers over a column to progressively get sample data;
rotate a table to change the physical design from row-store to
column-store, etc. This demo presents the first dbTouch prototype
over iOS for iPad.

I. INTRODUCTION

Interactive Data Exploration. dbTouch [9] expresses a
novel research direction that addresses the critical need of
data exploration in the big data era [4], i.e., when we are
in search for interesting patterns often not knowing a priori
exactly what we are looking for. For example, an astronomer
wants to browse parts of the sky to look for interesting effects,
while a data analyst of an IT business browses daily data of
monitoring streams to figure out user behavior patterns. What
both cases have in common is a daily stream of big data, i.e.,
in the order of multiple Terabytes and the need to observe
something interesting and useful. Interactive data exploration
aims to allow for instant access to the data, i.e., without
expensive initialization steps, while at the same time allowing
the user to extract knowledge from the data by selectively and
interactively investigating parts of the data.

dbTouch. The vision of dbTouch was recently proposed [9]
with the goal to lead towards interactive data exploration by
bringing together touch interfaces and core database research,
i.e., to allow users to touch and manipulate data in intuitive
ways in search for interesting patterns. dbTouch proposes to
rethink database kernel designs towards architectures tailored
for touch-based data exploration.

In the dbTouch context, data is visualized in various shapes
and forms while users can interact with those shapes via
touch input. For example, an attribute of a given table may be
represented by a column shape. Then, a user will be able to

apply gestures on this shape to get a feeling of the data stored
in the column, and to run any kind of simple or complex query.

The fundamental concepts of query, query plan and data
flow are redefined. The user’s touch, the gesture evolution, i.e.,
the speed and the direction of the gesture, determine the data
to be processed next and the actions that need to be performed.
The system does not try to consume all data; instead, it
analyzes only parts of the data at a time, continuously refining
the answers and continuously reacting to user input. Every
single user touch on a data object can be seen as a request
to run an operator or a collection of operators over a part
of the data. At the same time, as a gesture, i.e., a collection
of touches, evolves and varies in direction and speed, users
can determine the data they need to analyze, reacting to
intermediate results as they appear on screen. The database
system does not have control of the data flow anymore.

Beyond Query Construction. Compared to pioneering
state-of-the-art drag and drop systems such as Tableau,
dbTouch shares a lot of motivation but goes a step further
in terms of how interactive it is. Such systems help primarily
with query construction. dbTouch is not only about query con-
struction but mainly about more fine grained data exploration.
For example, in a drag and drop system a user may construct
a query by dragging a column onto an aggregate operation
(which is indeed a very intuitive action). Still though, the
back-end system is a standard database engine that needs to
consume and process the whole column in order to provide
the result. With big data this becomes a bottleneck. dbTouch is
about making this step interactive and adaptive, allowing users
to “touch the column data”, processing just a few data entries
at a time and ask for more data to be processed as they observe
running results. Here we use the notion of touch gestures as
our starting gesture input example but any kind of interactive
input means would apply. For example, the same dbTouch
techniques can be applied in a desktop interface where one
applies gestures via a mouse or a touch-pad on visual data
objects. The dbTouch vision is that through the integration
of intuitive gestures and a new class of interactive database
kernels we enable new ways for users to have a quick look
and feel of their data in a natural and interactive way.

From Gestures to Query Processing. dbTouch creates
new research opportunities both in the area of database ar-
chitectures and in the area of visualization. From a data-
base researcher’s point of view there are several fundamental
questions to answer. Most critical questions have to do with



how we translate touch gestures to database query processing
algorithms/operators, i.e., how does dbTouch react in terms of
storage and access patterns when we slide a finger or when we
zoom-in with two fingers over a column or a table? What is the
equivalent of a query? Several challenges arise. For example,
when sliding a finger to scan or to run an aggregation over a
column, users may choose to slide faster or slower or change
the slide speed numerous times or even pause for some time,
while they are observing the running results.

The interactive and continuously changing mode in dbTouch
is drastically different than what state-of-the-art database
systems support; it requires rethinking of core algorithms,
while new concepts arise when it comes to interactive query
processing. In traditional systems, once a query is posed,
the database controls the data flow, i.e., it is in full control
regarding which data it processes and in what order, such as
to compute the result to the query. In dbTouch, however, these
concepts are blurred; a query is a session of one or more
continuous gestures and the system needs to react to every
touch, while the user is now in control of the data flow.

Other than translating gestures to database algorithms, there
are numerous optimization issues in dbTouch. For example,
when a user slides a finger over a column with a varying slide
speed, then we would like to find a good way and timing
to extrapolate the gesture movement and to efficiently access,
prefetch and precompute the anticipated data to avoid stalling
once the query session resumes or when it moves faster.

Exploiting dbTouch. The dbTouch system is primarily
designed to work as an exploration tool, i.e., to speed up
understanding of data. For example, a user may choose to load
a small data sample directly on a tablet mobile dbTouch system
or use the tablet as an interface to a cloud based dbTouch
system over the complete data set.

Contributions and Demo. Paper [9] presents the basic
dbTouch vision, the basic architecture and sets the research
path and critical milestones. Here, we present a demo that
showcases the key aspects of our first dbTouch prototype.
The demo allows the audience to experience interactive data
exploration in an iPad and to engage in a contest with other
demo participants to compare this experience against a typical
modern database system. The dbTouch prototype provides
various interactive operators and gestures such as sliding
a finger over a column to scan it progressively or to run
aggregations; zoom in or out with two fingers over a column
to progressively get sample data; rotate a table to change the
physical design from row-store to column-store, etc.

II. DBTOUCH

This section gives more details on the dbTouch prototype.
The main challenge is to redesign database kernels such that
they support near instant reaction to touch input.

Visualizing Data. Objects appear on the touch screen while
a user can apply gestures on these objects. For simplicity, our
initial design assumes a straightforward visualization option,
i.e., data appears in a relational-like way; tables are represented
as (fat) rectangles and attributes are represented as columns.

Slide single finger 
over a column to scan.

Results appear as 
the slide progresses.

 

Two finger zoom-in 
over a column.

See next level of detail
 in sample data.

Two finger zoom-out 
over a column.

See previous level of 
detail in sample data.

Rotate table.
Change physical design 

from column-oriented 
to row-oriented

Fig. 1. Examples of dbTouch gestures.
Figure 1 shows several examples of column representations
and gestures. The objects are abstract representations of the
data. For example, in Figure 1 we see that the actual data
is not visible. A single column of a height of only a few
centimeters may represent an attribute in a table with several
millions of tuples. Thus, the actual data becomes visible, only
by applying one or more gestures on a data object. The various
objects convey the schema information at a high level view,
giving a glimpse to the user regarding what kind of data is
available for inspection via gestures.

Interactive Exploration. One of the main requirements
when inspecting data is to get a quick feeling regarding the
quality of the data and possible patterns and properties. Not
necessarily all data is required at this stage while at the same
time this is not an exact science; it involves a lot of intuition
from the analyst which is why many people claim that (big)
data analysis is a kind of art [5]. In this way, the key goal of
dbTouch is to assist users with data exploration.

dbTouch provides an interactive feeling to the users, by
giving them the illusion that they are indeed “touching the
data” in real time. This increases user satisfaction and ease
of using the system. To achieve this goal, dbTouch operators
are not monolithic; they do not consume big piles of data at a
time, resulting in significant delays in response times. Instead,
dbTouch provides incremental and adaptive operators that give
quick results back to the user. In turn, users reflect on those
results and adjust their gestures accordingly.

The interactive data exploration requires a combination of
both low level query processing actions and visualization tech-
niques of properly visualizing data and intermediate results.
Good query processing techniques increase the response times
of the system when reacting to user requests (gestures), while
good visualization techniques increase the response time of
the user when reacting to results produced by the system.

dbTouch in Action. A snapshot of the dbTouch prototype
in action is shown in Figure 2. In general, several objects
may be visible at any time, representing data (columns and
tables) stored in the database. The user has the option to
touch and manipulate whole tables or to visualize and work
on the columns of a table independently for more fine grained
access and analysis. In the example of Figure 2, the user
sees 3 independent columns, each one visualized as a separate
rectangle and with a different color.

Slide: Scan and Aggregates. The most basic action when
having a first exploratory look at a new set of data is achieved



Fig. 2. Screenshot of dbTouch.

either by having access at the actual data values or by running
simple aggregations. dbTouch realizes this goal by the slide
operator which is triggered by the slide gesture.

The upper left part of Figure 1 depicts an example of the
slide gesture; the idea is that the user slides a single finger over
the data object to point at data to be inspected. Figure 2 shows
a slide gesture in action on the actual dbTouch prototype. The
gesture is applied on the blue data object in (the middle of)
Figure 2 where data values appear as the gesture progresses.
The screen-shot is taken directly from the iPad where we tested
our prototype using the screen-shot functionality in XCode.
Naturally, the actual user finger is not visible in Figure 2; in
this case the user slides a finger starting from the top of the
blue object all the way to the bottom of the object.

Touching Data: From Touch to Tuple Identifiers. Data
objects represent tables and columns. A key step is in trans-
lating the location of a touch over a data object to a tuple
identifier of the table or the column represented by the object,
i.e., determining which data entry corresponds to the touch.
For example, with a single tap over a data object dbTouch
shows a single data entry which appears and fades away (as
in Figure 2). A slide gesture can be seen as multiple continuous
single taps in successive positions of a data object. In order to
translate the location of a touch to a tuple identifier, dbTouch
exploits the view concept of modern touch-based operating
systems by correlating the size of the visual object with the
cardinality of the underlying data objects.

Storage Layout and Touch. The dbTouch vision does
not pose any particular restrictions on the underlying storage
model. It can be a row-store, a column-store or a hybrid
format. Our current design is based on a flexible hybrid format;
each relational table is stored as a collection of column-groups
and following common practices of most modern systems each
column is a fixed-width array [1]. For expert users part of the
exploration process may also involve changing the schema or
the storage layout for organization or for performance reasons
which can be achieved by drag and drop actions to bring
objects together or to separate them.

Operators. The key element in the design of dbTouch is
the design of underlying operators which can quickly react
to continuous touch input. Consider every tap as if it is a

query in a typical DBMS. Our current prototype supports slide
operations which fetch data dynamically following the speed
and direction of the gesture. Scans and aggregates run on top
of sample data as a single slide gesture will not touch all
rowIDs. A slower or faster slide touches more or less tuples
respectively. Zoom in and zoom out gestures allow to increase
or decrease the granularity of the working data set.

Implementation. Our dbTouch prototype is essentially a
prototype database kernel implemented on top of iOS in
objective C. In many ways it resembles a hybrid kernel where
data is stored in fixed-width dense arrays or matrixes which
can be seen as collections of >1 of such arrays. In this way, in
terms of data storage dbTouch resembles modern systems. The
critical difference in dbTouch is the way data is accessed and
the way query processing actions are triggered and processed
which requires rethinking of the core database design.

Similarly to the typical SQL input-parser-optimizer-
execution flow of modern database systems, a dbTouch system
goes through a flow that begins with a touch input, and
continues with gesture recognition. Then, depending on the
gesture, the location touched, the size of the object touched,
etc., the proper execution methods are called.

Operating 
System

Recognize Touch

Recognize Gesture

dbTouch

Map touch to data

Execute

The figure on the left-hand side
shows a high level view of this
task flow and how the various
system layers interact. This flow
is not per query as it is in da-
tabase systems; instead dbTouch
goes through these steps for every
touch input on a data object.

Complex Queries. Any kind of
query is possible with dbTouch.

For example, a user may set-up any kind of complex query
(which may include joins, group by operators, etc) and then
use slide gestures to drive the flow of data in an interactive
way, while observing running results. Setting up a query is
purely a HCI issue; for example a join can be defined by bring-
ing together and overlapping two columns or simply by double
tapping and presenting a menu with the available options. The
challenge in terms of database architecture design is how do
we interactively provide instant results when the actual query
processing starts. To provide instant and interactive results
dbTouch raises the challenge to design interactive operators
which may sacrifice correctness for speed [9].

III. DEMONSTRATION

We have developed a dbTouch prototype over iOS SDK
5.1 (9B176) for iPad. The demo focuses on exposing the
exploration properties of dbTouch.

Set-up and Scenarios. The audience will get direct access
to the dbTouch prototype via an iPad that we will provide and
will get the chance to use the system and interact via gestures
to query and explore data. We will provide various data sets
with a varying set of properties and patterns. The audience
will have the task of discovering these properties.



Exploration Contest dbTouch Vs. DBMS. In addition, the
audience can participate in an exploration contest. We will
provide a laptop installed with a traditional DBMS loaded
with the same data sets as dbTouch. Two audience members
will simultaneously start exploring the data set; one member
will be using the tablet dbTouch prototype, while the other
member will be using the SQL interface of the DBMS on the
laptop. Both members will be free to perform any kind of
query processing actions, i.e., to apply any kind of supported
gestures in dbTouch and to fire any kind of standard SQL
queries in the DBMS. The winner is the one who can first
figure out the data properties and patterns.

Available dbTouch Gestures. Our prototype supports ex-
ploration via zoom-in and zoom-out gestures that increase or
decrease a data object size allowing more or less fine grained
access to the underlying data. The slide gesture allows to walk
through a data object in order to perform various aggregations
or simply to scan data or even to join data from > 1 data
objects. Each user touch can be tuned to result in touching
just one or multiple tuples (interactive summaries).

IV. RELATED WORK

dbTouch takes inspiration from several research areas.
Data Exploration. Several researchers argue towards ex-

ploration based database kernels, e.g., with sampling based
kernels [2], [11], [14], adaptive indexing [8] and adaptive data
loading [7], [3]. Overall, this is a quite promising and largely
unexplored research area. dbTouch complements ongoing re-
search efforts by providing a promising alternative when it
comes to how users interact with an exploration based database
kernel. Ideas such as sampling, adaptive indexing or loading
can be exploited in the dbTouch context with new challenges
on how to adapt to the dynamic touch patterns in gestures.

Online Aggregation. Online aggregation [6], [13] is also
related to dbTouch. In online aggregation the system continu-
ously returns results as they are created. A confidence metric
is also calculated and reported, allowing the user to terminate
query processing when confidence reaches satisfactory levels.
Online aggregation techniques can certainly be exploited in
dbTouch; dbTouch brings additional challenges as the user
drives the speed of requesting more data and determines the
data to be processed dynamically.

Visual Analytics. The idea that simple text mode can hurt
usability is not new. Polaris is the pioneering system from
Stanford University for visual analytics [15], [16]. In Polaris,
there are two distinct features to ease usability and exploration:
(a) users can synthesize SQL queries by drag and drop actions
and (b) results appear directly in the proper visual format.
For example, results can appear directly in a bar graph or in
other graph formats depending on the kind of data. The ideas
pioneered in Polaris and later commercialized in the Tableau
system are directly in line with the dbTouch vision. In addition
to Tableau, there are more commercial systems exploiting
similar ideas. In particular Data Clarity and VisuaLinks from
Visual Analytics Inc. and the Visual Analytics platform by
SAS. All these systems have the same high level goal; they

try to provide an easy way to construct queries graphically
and to visualize results.

What dbTouch brings is the idea of building database
kernels to inherently support touch interfaces and interactive
exploration at their core, taking visual analytics one major step
further by allowing systems to increase their interactive and
exploratory character. In dbTouch users do not simply create
queries which will then run in a typical back-end system;
instead they drive the actual low level query processing actions
which results in a more interactive data exploration system.

Gesture-based Systems. The vision of gesture based sys-
tems is a new path expressed by dbTouch [9] and also by
the vision of keyboard-free systems [12], [10]. Both visions
appeared concurrently and have the same high level goal;
keyboard free systems research is mostly focused on creating
novel gesture-based languages for users to be able to pose
expressive queries [12], [10], while dbTouch is mostly focused
on the interactive database architectures aspect of the vision.
A notable example from past research is the system Timber,
proposed in the early 1980s [17]; it essentially shares the
same high level motivation with dbTouch and keyboard free
systems, allowing for data exploration via “browsing relations”
interactively.

V. SUMMARY

In this paper, we present a demonstration of dbTouch [9]; a
new research direction towards touch based database kernels
to ease interactive data exploration in the big data era.

REFERENCES

[1] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, and S. Madden.
The Design and Implementation of Modern Column-Oriented Database
Systems. Foundations and Trends in Databases, 5(3), 2012.

[2] S. Agarwal, A. Panda, B. Mozafari, S. Madden, and I. Stoica. Blink
and it’s done: Interactive queries on very large data. In PVLDB, 2012.

[3] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki.
Nodb: efficient query execution on raw data files. In SIGMOD, 2012.

[4] S. Chaudhuri. What next? a half-dozen data management research goals
for big data and cloud. In PODS, 2012.

[5] P. Hanrahan. Analytic database technologies for a new kind of user -
the data enthusiast. In SIGMOD, 2012.

[6] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In
SIGMOD Conference, 1997.

[7] S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki. Here are my data
files. here are my queries. where are my results? In CIDR, 2011.

[8] S. Idreos, M. Kersten, and S. Manegold. Database Cracking. CIDR’07.
[9] S. Idreos and E. Liarou. dbtouch: Analytics at your fingertips. CIDR’13.

[10] L. Jiang, M. Mandel, and A. Nandi. Gesturequery: A multitouch
database query interface. PVLDB, 6(12):1342–1345, 2013.

[11] M. L. Kersten, S. Idreos, S. Manegold, and E. Liarou. The researcher’s
guide to the data deluge: Querying a scientific database in just a few
seconds. PVLDB, 4(12):1474–1477, 2011.

[12] A. Nandi. Querying without keyboards. In CIDR, 2013.
[13] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online aggregation

for large mapreduce jobs. PVLDB, 4(11):1135–1145, 2011.
[14] L. Sidirourgos, M. L. Kersten, and P. A. Boncz. Sciborq: Scientific data

management with bounds on runtime and quality. In CIDR, 2011.
[15] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query,

analysis, and visualization of multidimensional relational databases.
IEEE Trans. Vis. Comput. Graph., 8(1):52–65, 2002.

[16] C. Stolte, D. Tang, and P. Hanrahan. Query, analysis, and visualization
of hierarchically structured data using polaris. In KDD, 2002.

[17] M. Stonebraker and J. Kalash. Timber: A sophisticated relation browser.
In VLDB, pages 1–10, 1982.


