
Data Canopy: Accelerating Exploratory Statistical Analysis

Abdul Wasay Xinding Wei Niv Dayan Stratos Idreos

Harvard University
{awasay,weixinding,dayan,stratos}@seas.harvard.edu

ABSTRACT
During exploratory statistical analysis, data scientists repeatedly
compute statistics on data sets to infer knowledge. Moreover, statis-
tics form the building blocks of core machine learning classifi-
cation and filtering algorithms. Modern data systems, software
libraries, and domain-specific tools provide support to compute
statistics but lack a cohesive framework for storing, organizing, and
reusing them. This creates a significant problem for exploratory
statistical analysis as data grows: Despite existing overlap in ex-
ploratory workloads (which are repetitive in nature), statistics are
always computed from scratch. This leads to repeated data move-
ment and recomputation, hindering interactive data exploration.

We address this challenge in Data Canopy, where descriptive and
dependence statistics are synthesized from a library of basic aggre-
gates. These basic aggregates are stored within an in-memory data
structure, and are reused for overlapping data parts and for vari-
ous statistical measures. What this means for exploratory statis-
tical analysis is that repeated requests to compute different statis-
tics do not trigger a full pass over the data. We discuss in detail
the basic design elements in Data Canopy, which address multiple
challenges: (1) How to decompose statistics into basic aggregates
for maximal reuse? (2) How to represent, store, maintain, and ac-
cess these basic aggregates? (3) Under different scenarios, which
basic aggregates to maintain? (4) How to tune Data Canopy in
a hardware conscious way for maximum performance and how to
maintain good performance as data grows and memory pressure
increases?

We demonstrate experimentally that Data Canopy results in an
average speed-up of at least 10× after just 100 exploratory queries
when compared with state-of-the-art systems used for exploratory
statistical analysis.

1. INTRODUCTION
Data Science and Statistics. Many data science pipelines across
different fields begin with a data exploration phase [75]. During
this phase, data scientists develop an initial understanding of the
data by using statistics to summarize variables within the data set,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’17, May 14–19, 2017, Chicago, IL, USA.
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064051

understand trends in variables, and correlate these trends with those
of other variables [41, 58]. For instance, variance in seismic activ-
ity of an area represents how prone it is to earthquakes and corre-
lations between seismic measurements across various sensors help
to predict future patterns of seismic activity [77]. Moreover, statis-
tics – such as mean, variance, and correlations – serve as building
blocks of core machine learning classification and filtering algo-
rithms such as simple linear regression, bayesian classification, and
collaborative filtering [14]. Overall, statistical analysis forms the
staple of data exploration across all fields [25, 32].

Repetitive Calculation of Statistics. Exploratory statistical analy-
sis, a typically unstructured procedure, results in repetitive calcula-
tion of statistics. Every result provides data scientists with knowl-
edge and cues for what to ask next or which model to try out. By
query here we mean a request to compute a given statistic over a
given data part. Different statistics are successively computed on
the same part of the data or even the same statistics are recom-
puted with varying resolution and on data ranges (data portions)
that overlap with previously accessed data ranges. Effectively an
exploration session consists of numerous such repeated queries un-
til a pattern is found [47]. Figure 1 shows different forms of such
repetitive access patterns.

Repetition appears in various forms in various workloads. Fig-
ure 2(a) shows the repetition in two publicly available workloads:
SDSS SkyServer [33] and SQLShare [45]. These workloads are
composed of both handwritten and computer generated SQL queries.
Up to 97 percent of the queries repeat at least once in SDSS. Queries
repeat less frequently in the SQLShare workload, however, up to
55 percent of queries still target a non-distinct set of columns. Fur-
thermore, studies show that repetition is higher in interactive ex-
ploratory analysis [48].

Data Science Tools and Statistics. Data scientists have a spec-
trum of tools available to them for exploratory statistical analy-
sis. This spectrum, at one end, includes software libraries, such
as NumPy [1] and Modeltools [34], with flexible functionality but
no in-built data management. On the other end of this spectrum
are highly optimized relational database systems, but with limited
statistical functionality. Database connectors like SciDB-Py [69],
MonetDB.R [61], and Psycopg [2] connect a database backend with
a flexible language thereby providing a good compromise between
flexibility and data management. Such connectors provide the ma-
jor benefit of computing statistics inside the database system with-
out having to move the data.

To get a sense of how modern systems behave during exploratory
statistical analysis, we perform the following experiment. We use
two data columns each with 100 million rows of doubles (unique,
uniformly distributed). We simulate an exploratory analytics se-
quence by firing successively a series of queries to compute var-

http://dx.doi.org/10.1145/3035918.3064051

Queries target sub-ranges of
other queries

Queries’ ranges partially
overlap with other queries

Queries ask for different
statistics on the same range

Queries show a mixture of the
aforementioned repetitionstime

Column Query range Statistic types

Q1:
Q2:
Q3:

Figure 1: In exploratory statistical analysis, queries request for a given statistic on a given data range and show various forms of repetition.

 1

 10

 100

SQLShare SDSS

Q
ue

ri
es

 (%
)

Workload

Queries exactly repeat
Query templates repeat

Targetted column sets repeat

(a) Exploratory workloads in the sciences
exhibit high repetition in queries.

 0

 5

 10

D
at

a
 a

cc
es

se
d

(G
B

)

 0
 2
 4
 6
 8

 10
 12
 14
 16

Q1 - Mean
Q2 - Std. dev.

Q3 - Covariance

Q4 - Correlation

Q5 - Covariance

Q6 - Std. dev.

Q7 - Mean

R
es

po
ns

e
tim

e
(s

ec
)

Sequence of statistics requested

NumPy (Python) Modeltools (R) MonteDB

(b) Existing systems used in exploratory statistical analysis do not reuse computation and data
access across statistical queries (both top and bottom parts use the same x-axis).

Figure 2: Data Canopy motivation: Existing systems always compute different statistical measures from scratch causing significant slowdown
in the presence of repetitive exploratory workloads.

ious statistics. Results are shown in Figure 2(b) (the bottom part
shows query response time and the top part shows the amount of
data accessed; for MonetDB the statistics are computed inside the
DBMS). The main observation is that as we fire more queries (as
the x-axis evolves from left to right), all systems maintain a rather
stable query response time; it fluctuates a bit depending on how
computationally heavy each statistic is. Critically, this continues
to hold even when, in the second half of the query sequence, we
ask for exactly the same set of statistics again. This behavior is
explained by the amount of data that each of these systems has to
access (top part of Figure 2(b)). It is the same for all systems as
they touch the same data but the important point is that accesses
accumulate as we ask for more statistics. In turn, what this means
is that every time data scientists want to explore a new statistic, to
understand a different property of the data set, they have to incur
the overhead of going over the whole data again.

Lost Opportunities. Repetitive workloads, on one hand, and the
absence of a cohesive framework to store and reuse statistics on the
other hand, result in sub-optimal performance: (1) No matter the
degree of overlap in workloads, existing systems and data science
tools always compute statistics from scratch; (2) No central frame-
work exists to opportunistically or preemptively collect statistical
measures to speed up the process of exploratory statistical analysis;
(3) User queries and machine learning algorithms, which, directly
or indirectly, compute and use statistics cannot share computation
and data access.

As data sets continue to grow, calculating statistics from scratch
each time during interactive exploratory statistical analysis becomes
intractable. For instance, in the Earthscope project, an array of four
hundred sensors continuously records seismic activity around the
US, which alone results in about eighty thousand unique correla-
tions [77]. In addition, the fully-sequenced human genomic data,
composed of over three billion base pairs per individual, is pro-

jected to outgrow our ability to analyze it by 2025. According to
an estimate analyzing two billion genomes per year in parallel will
require a processing speed of two genomes per CPU hour [72],
which already exceeds our current ability by three to four orders of
magnitude [53]. Doing it repeatedly is completely unrealistic.

Data Canopy. In this paper, we take a step to address this prob-
lem by introducing Data Canopy. In Data Canopy statistics, along-
side data, become first class objects within the data system. Data
Canopy maintains a library of basic aggregates that can be used to
synthesize statistics without repeatedly accessing base data. These
basic aggregates, depending on the statistical measure being com-
puted, can take multiple forms and can be reused in different ways.
For instance, when computing standard deviation, Data Canopy
stores the resulting basic aggregates: sum and sum of squares. The
sum can later be reused to completely synthesize the mean and the
sum of squares can later be reused as one of the ingredients for
correlation coefficients across variables.

Individual basic aggregates within the library are computed and
maintained at a granularity of a chunk. A chunk is the smallest por-
tion of data (e.g., a collection of k contiguous values in a column)
that Data Canopy maintains basic aggregates on. This allows reuse
between queries that request statistics on overlapping or partially
overlapping data. For instance, in a time series data set weekly cor-
relations are synthesized from daily correlations. Also, in settings
with limited amount of main memory, the chunk size can be used to
adjust the tradeoff between memory requirement and the resolution
of stored information.

Effectively, Data Canopy is a smart cache of the basic primitives
of statistical measures. Data Canopy can be populated in different
ways depending on the scenario: (1) In offline mode, Data Canopy
is constructed over a specified part of the data set completely in
advance; (2) In online mode, Data Canopy populates the library
of basic aggregates incrementally online during query processing;

Data

Query 1: Touch base data and store aggregates in Data Canopy

tss =
n 11X

i=0

t2i+12k|

k 2 {0, 1, ..., 728}

ts =
n 11X

i=0

ti+12k|

k 2 {0, 1, ..., 728}
o

Query 2: Reuse across ranges

r2 =
n 1

168

13X

i=0

tsi+14k|k 2 {0, 1, ..., 51}
o

Query 3: Reuse across statistics

r3 =
n⇣ 1

168

6X

i=0

tss
i+28k

⌘
�

⇣ 1

168

6X

i=0

tsi+28k

⌘2

|k 2 {0, 1, ..., 25}
or1 =

n 1

24
(tsk + tsk+1)|k 2 {0, 2, 4, ..., 728}

o

ts tss ts tss ts tss

Compute, decompose, and store Reuse

Figure 3: An example of queries that can reuse computation and data access through Data Canopy.

(3) In speculative mode, Data Canopy speeds up the population of
the library of basic aggregates by speculatively creating and main-
taining additional basic aggregates in addition to those required by
active queries.

Contributions. Our contributions are as follows:

• We demonstrate that existing systems used for exploratory
statistical analysis cause redundant data movement, which
becomes a bottleneck as data grows.

• We propose Data Canopy, a smart cache tailored for explorat-
ory statistical analysis. It computes and caches the basic
primitives of statistical measures and then it can synthesize
results for future queries without having to repeatedly go
back to base data.

• We discuss the design space of Data Canopy in detail. We
show how to break up statistics into basic aggregates and
maintain them at an optimal granularity that enables efficient
synthesis of other statistics during query time.

• We show how to store and maintain basic aggregates in a
way that provides logarithmic query time for queries over
arbitrary data portions and allows Data Canopy to be built
and updated incrementally.

• We develop policies for various core scenarios so that data
scientists may use Data Canopy both offline, i.e, when there
is time to let Data Canopy scan the data to precompute the
library of basic aggregates, and online, i.e., when there is no
time to devote to preparation. Data Canopy can also oppor-
tunistically compute basic aggregates during query process-
ing to speed up future queries.

• We show how to achieve a hardware conscious tuning of the
chunk size to optimize read performance and how to react to
memory pressure as data grows.

• We demonstrate that Data Canopy results in a speed up of
10× in repetitive workloads compared to state-of-the-art sys-
tems currently used in exploratory statistical analysis.

2. DATA CANOPY
We now present Data Canopy in detail. Data Canopy allows data

scientists to perform exploratory statistical analysis without having
to repeatedly scan the entire base data.

The main idea is that Data Canopy breaks statistics down to basic
aggregates. It caches and manages a library of basic aggregates so
that incoming queries may use it to synthesize different kinds of
statistics. Data Canopy can compute the library of basic aggregates
in a single offline pass over the data. For dynamic scenarios with
little idle time, Data Canopy incrementally computes the library of
basic aggregates during query processing.

2.1 Example
First, we motivate and provide the core intuition of Data Canopy

with an example before discussing the design. Consider the hourly
temperature measurements collected by the National Centers for
Environmental Information (NCEI) [3]. On this data set we build
an instance of Data Canopy that is configured to work with three
univariate statistics: mean, variance, and standard deviation. Figure
3 shows how Data Canopy processes a series of queries over this
data set without having to always check the base data.

Query 1: The data scientist requests mean temperatures for each
day. Data Canopy is initially empty i.e., there are no basic aggre-
gates to utilize. For this query Data Canopy has to access base data
and compute the daily mean temperatures (using 24 observations
for each calculation). Data Canopy takes this opportunity to com-
pute and store two types of basic aggregates: (1) basic aggregates
that are immediately needed to synthesize statistics for the current
query, and (2) basic aggregates that are not immediately needed,
but can be computed from accessed data and then reused by other
statistics. These basic aggregates are always maintained at a fixed
granularity of a chunk. For ease of presentation, the chunk size
is set to 12 in this example, i.e., one chunk corresponds to twelve
hours (in practice Data Canopy autotunes the chunk size as we will
discuss later on). The basic aggregates resulting from this query
are shown under Query 1 in Figure 3. For every chunk of size 12,
Data Canopy stores the set of sums (ts), to be used for the current
query, and the set of sums of squares (tss), that may be used by
future queries (for example for standard deviation and variance).

Query 2: The data scientist requests mean temperatures for each
week. This time the data scientist asks for the same statistic as
requested in Query 1 but at a different granularity (weekly instead
of daily). As shown under Query 2 in Figure 3, there is no need
to access the base data again. Data Canopy already contains ts,
the sums of hourly temperatures for every 12 hours. It sums up 14
consecutive values of ts to synthesize the result for each week.

Query 3: The data scientist requests variances in temperature for
every two weeks. This time the data scientist asks for both a dif-
ferent statistical measure and at a different granularity (biweekly
instead of weekly or daily). As shown under Query 3 in Figure
3, Data Canopy synthesizes statistics from basic aggregates, again,
without accessing the base data. The variance of a set of observa-
tions x is given by Equation 1. Data Canopy thus uses ts and tss to
synthesize the result set r3 for this query.

vx =
(1

N

N

∑
i=1

x2
i

)
−
(1

N

N

∑
i=1

xi

)2
(1)

Other Queries. Similar to the above scenarios, once Data Canopy
stores the set of sums ts for every 12 hours, and the set of sums of
squares tss for every 12 hours, it can reuse these basic aggregates
in four different types of query scenarios:

Statistics Basic Aggregates

Type Formula ∑x ∑x2
∑xy ∑y2

∑y

Mean (avg) ∑xi
n

Root Mean Square (rms)
√

1
n ·∑x2

Variance (var) ∑x2
i−n·avg(x)2

n

Standard Deviation (std)
√

∑x2
i−n·avg(x)2

n

Sample Kurtosis (kur) 1
n ∑(

xi−avg(x)
std(x))4−3

Sample Covariance (cov) ∑xi·yi
n − ∑xi·∑yi

n2

Simple Linear Regression (slr) cov(x,y)
var(x) ,avg(x),avg(y)

Sample Correlation (corr) n·∑xi·yi−∑xi·∑yi√
n·∑x2

i−(∑xi)2
√

n·∑y2
i−(∑yi)2

Table 1: Data Canopy synthesizes statistics from a library of basic aggregates.

Term Description
c Number of columns
r Number of rows
h Number of chunks
s Chunk size (bytes)
vd Record size (bytes)
vst ST node size (bytes)
Cache line size (bytes)

Table 2: Data Canopy terms.

f1(⌧1)

⌧1

f2(⌧2)
⌧2

F
({

f
1,

f
2}

)

X

column
range

Figure 4: Decomposing Statistics.

i. Across different data ranges: daily mean of the first three days,
daily mean of the last four days, etc.

ii. Across different data granularities: weekly mean, biweekly
mean, etc.

iii. Across different statistical measures: daily standard deviation,
daily variance, etc.

iv. Across any combinations of i, ii, and iii : weekly standard de-
viation, monthly variance, etc.

In the rest of this section, we discuss Data Canopy design concepts,
data structures, and different policies that seamlessly enable the
aforementioned degree of reuse.

2.2 Design Concepts
We now describe the core design concepts in Data Canopy.

Data and Query Range. We will use the concepts of data and
query range throughout our discussion. We define a data range as a
set of consecutive data items from a column or a set of columns. A
query range is the data range over which a query requests statistical
measures.

Basic Aggregates. Data Canopy breaks statistical measures into
basic primitives. We call those primitives basic aggregates. We de-
fine a basic aggregate over a data range as a value that is obtained by
first performing a transformation τ on every data item in that data
range and then combining the results using an aggregation function
f . Formally, for a given data range X, (with elements xi) a basic ag-
gregate can be represented as f ({τ(xi)}). In our running example,
sum of squares tss can be represented as f ({τ(xi)}) = ∑i x2

i , where
τ(xi) = x2

i and f is the sum function.
The transformation τ can be any operation on an individual data

item. However, the aggregation function f has to be commutative
and associative i.e., we should be able to break down and combine
basic aggregates between sub-ranges (partitions of the data range).
Formally, for any partition {X1,X2, . . .Xn} of a data range X , the
following should hold:

f (X) = f ({ f (X1), f (X2) . . . f (Xn)}) (2)

For instance, this property is satisfied by min, max, count, sum,
and product functions on any given data range, whereas the median
function does not satisfy this property.

Decomposing Statistics. Data Canopy defines a statistic S over a
data range X as a function F of different basic aggregates:

S(X) = F({ f (τ({xi})})
Figure 4 shows how statistic S (with function F) is mapped to

two basic aggregates. The rationale behind representing statistics
as a function of basic aggregates is twofold: First, various statisti-
cal measures share – and can reuse – basic aggregates. For instance
mean, variance, and standard deviation all require the basic aggre-
gate of sum over the target data. Second, a given basic aggregate
over a certain data range (as a result of the property in Equation 2)
can be further decomposed into sub-ranges. These sub-ranges can
be combined together to synthesize that basic aggregate over any
data range that contains those sub-ranges.

Table 1 shows how Data Canopy breaks down a set of widely
used descriptive and dependence statistics into five basic aggre-
gates. Effectively, Data Canopy is a smart cache. An alternative
approach could be that we cache the result values of each individ-
ual statistic. However, we then lose the ability to reuse computation
and data access between different statistics, despite clear overlaps.
For instance, if instead of caching each of the basic aggregates cor-
responding to correlation, we cached just the final value, we will
not be able to use that value to synthesize any of the other statis-
tical measures mentioned in Table 1. Instead, we would have to
access the data set again to compute the individual statistics.

In addition to the examples in Table 1, geometric mean (τ(x) =
x, f (X) = ∏i xi), harmonic mean (τ(x) = 1

x , f (X) = ∑i xi) and other
descriptive and dependence statistics can be synthesized from ba-
sic aggregates. Over 90 percent of statistics supported by NumPy
and SciPy [1], and over 75 percent of statistics supported by Wol-
fram [7] (a popular mathematical computational language) can be
expressed in the aforementioned form i.e., they can be decomposed
and expressed in terms of τ, f , and F .

Chunks. Data Canopy maintains basic aggregates at the granular-
ity of a chunk – a logical partition of data that comprises of con-
secutive values from a data column. For every chunk, Data Canopy
maintains a single value per basic aggregate type. In our example
of hourly temperature data, a chunk size of 12 implies that for ev-
ery statistical measure that Data Canopy computes, it caches each
of the resulting basic aggregates over every 12 data values. This
concept of chunk is essential to how Data Canopy enables reuse –

Options Memory Query/Update
ST per Data Canopy 2 ·b · c ·h−1 O(logb · c ·h)
ST per column 2 ·b · c ·h− c O(logb ·h)
ST per statistic 2 ·b · c ·h− s O(logc ·h)
ST per column per stat. 2 ·b · c ·h−b · c O(logh)

Table 3: Memory, access, and update cost of different configura-
tions of segment trees (ST) storing b basic aggregates. The con-
figuration used by Data Canopy (bottom) has the lowest query cost
and memory usage.

reducing repeated data access – between different queries during
exploratory statistical analysis.

As a result of chunking, queries of any data range larger than
the chunk size can be synthesized directly from basic aggregates.
Even in cases when the query range does not exactly align with the
chunks, Data Canopy only needs to scan at most the two chunks at
the edges of the requested query range. In a similar fashion, queries
having partial range overlaps with previously computed chunks can
also reuse basic aggregates. Mapping this concept to our running
example, weekly and yearly variances in temperature can be syn-
thesized from daily aggregates. Also, a query that requests the
mean temperature over the last three weeks of a month, can reuse
overlapping basic aggregates corresponding to the first two weeks.

Overall. Data Canopy is able to reuse previously computed ba-
sic aggregates to synthesize a wide set of statistics. As a concrete
example, by storing just two basic aggregates of sum and sum of
squares over five chunks in ten columns (a total of 100 values),
Data Canopy can reuse this information across queries that target
25 possible combinations of chunks and request for up to four sta-
tistical measures – mean, variance, root mean square, and standard
deviation – over any of these ten columns.

2.3 Data Structure
Data Canopy uses a set of segment trees to store basic aggre-

gates. Segment trees support efficient aggregate queries over a data
range without the need to access individual data items [26, 67].
This property is satisfied by storing, at every parent node, an aggre-
gate of its two children. Segment trees in Data Canopy are imple-
mented as binary trees. The Data Canopy catalog implemented as
a hash table stores pointers to all segment trees.

Segment trees are well-suited as a data structure for Data Canopy.
This is because to synthesize queries that request for statistics over
a data range, Data Canopy only needs aggregates over chunks that
fall within that data range, and not their actual values. Consider
Query 1 in our running example. Data Canopy stores basic ag-
gregates over 12 values (daily basic aggregates). A query that
requests weekly standard deviation only needs sum and sum of
squares over 14 consecutive basic aggregates, and not their actual
values. This way, Data Canopy can synthesize statistics in time
complexity which is logarithmic in the number of chunks involved.

Data Structure Configuration. For every basic aggregate kept
for every column, Data Canopy maintains a separate segment tree.
Every leaf of this segment tree stores a basic aggregate value cor-
responding to a chunk. An example layout of the Data Canopy
data structure over a single column is shown in Figure 5. In this
example, Data Canopy holds two basic aggregates (sum and sum
of squares), using two separate segment trees, one for each basic
aggregate.

By having a separate set of segment trees for every column, we
ensure that the internal nodes of each segment tree contain no sur-
plus nodes (i.e., those that maintain aggregates across columns or
across statistical measures). As a result, the overall memory re-

quirement of Data Canopy as well as the size of the individual seg-
ment trees is minimized. Also, since range queries are localized to
a single column or a set of columns (for multivariate statistics) in-
stead of the entire data set, we only have to search through a subset
of the total segment trees, instead of one big segment tree corre-
sponding to the entire data set. This arrangement still allows a data
scientist or application to request for individual statistics and com-
bine them in ways that make sense according to the domain and the
data set. A comparison of the memory requirement and query cost
of various possible configurations of segment trees is provided in
Table 3. The configuration used in Data Canopy (bottom row of
Table 3) has the lowest query cost and memory usage.

Flexibility. The separation of segment trees allows for maximum
flexibility in dynamic and exploratory workloads. There is no need
to construct or even allocate memory for the entire Data Canopy in
advance. Instead, Data Canopy can easily be extended, by adding
new segment trees, to cater for new columns or new basic aggre-
gates.

Parallelism. The construction of Data Canopy can be aggressively
parallelized as the process of calculating basic aggregates and stor-
ing them is an embarrassingly parallel one. To construct a univari-
ate Data Canopy, the columns can be divided between the number
of available hardware threads. Similarly, when constructing a mul-
tivariate Data Canopy, the segment trees for every combination of
the columns can be built independently.

2.4 Operation Modes
Depending on hardware properties, data size, and latency re-

quirements, Data Canopy can operate in one of three modes: of-
fline, online, and speculative.

Offline. In the offline mode, Data Canopy is built in advance. This
mode is useful when users know the data and statistical measures of
interest a priori and they can also wait until Data Canopy is built be-
fore they pose their first query. The offline mode builds the library
of basic aggregates fully for a set of rows, columns, and statistical
measures specified by the user.

Online. In the online mode Data Canopy populates the library of
basic aggregates incrementally online during query processing. For
every incoming query, Data Canopy generates and caches the basic
aggregates needed for this query if they do not already exist in the
library. As more queries are being processed, the library of basic
aggregates becomes more and more complete and can reduce data
access costs for future queries with higher probability.

The online mode can be combined with the offline mode. For
example, a user may generate any portion of the Data Canopy for
any part of the data offline (or generate as much as idle time allows)
and then during query processing, Data Canopy operates in online
mode to fill in the rest of the missing pieces.

Speculative. In the speculative mode, Data Canopy takes full ad-
vantage of moving the data through the memory hierarchy to gen-
erate more knowledge than what is strictly needed for the active
query. Every time it scans any part of the data set to answer a
query, it builds segment trees for all univariate statistics. We show
that this imposes a modest CPU and memory overhead for the cur-
rent query, and Data Canopy potentially avoids having to rescan the
data for future queries for other statistics – trading a modest CPU
and memory overhead now for I/O benefits later on. For example,
when Data Canopy answers a mean query in speculative mode, it
also builds a segment tree for sum of squares so that it is possible
to later efficiently synthesize the variance and standard deviation.

1 1 1

3 6 9 16
chunk

2 2 2 3 3 3 4 4 4

3 12 27 48Sum
of square ST

9 25

15 75

90

34

Sum
ST

Figure 5: Example of the Data Canopy
data structure with two segment trees (ST)
and a chunk size of three.

[Rs, Re)

{C}

Rs

s cecs

Query Plan

F, {f(⌧)}

[cs, ce], Rd

{C}

Data

DC data structure

Mapping the range of a query to a set of chunks and the
requested statistic to a set of basic aggregates.

Based on the query and the policy, probing the DC
data structure and materializing missing chunks

fk(⌧k)f1(⌧1)

StatMapper

Range Mapper

Find ST

Chunk
range

Policy

Offline

OnlineSpeculate

Result

S F ({f({⌧})})
⇤F

Recipe

RDC

Re

Rd RDC

Figure 6: The lifecycle of a statistical query in Data Canopy.

2.5 Query Processing
We now explain how Data Canopy uses its library of basic aggre-

gates to synthesize the results of statistical queries. We use terms
from Table 2.

Query. In Data Canopy, a query is defined by the set Q = {{C},
[Rs,Re),S}, where {C} is the set of columns targeted by the query;
Rs and Re define the query range i.e., the two positions on the col-
umn set C on which a statistic is requested; and S is the statisti-
cal measure to be computed. From our running example, Query 2
(mean temperature for the third week) can be represented as Qt =
{Ct , [336,504), mean}. Figure 6 depicts the steps taken to process
a query. The first step is to convert the query into a plan. To achieve
this, the query range is mapped to a range of chunks, and the statis-
tical measure is mapped to a set of basic aggregates.

Mapping Query Range to Chunks. Data Canopy first maps the
query range [Rs,Re) to a set of chunks [cs,ce], such that the whole
query range is covered. This process is depicted on the left side
of Figure 6, where the query range (shown in black and grey) is
mapped to the corresponding chunks. Given the mapping, we can
now distinguish between two parts of the query range. The first
part of the query range RDC (shown in grey) aligns perfectly with
the boundaries of the existing chunks. In this case, Data Canopy
can fully use the basic aggregates of these chunks to synthesize the
result. The second part of the query range Rd (shown in black) at
the two end-points of the query range might or might not align with
the existing chunks. Data Canopy has to scan the two chunks at the
end-points of the query range to compute basic aggregates for Rd .
We call this part of the query range that always requires access to
base data the residual range. When Data Canopy operates in online
mode, it may be that it has to access more than two chunks so as
to populate any missing chunks in any part of the query range, not
just at the end points.

Mapping Statistic to Basic Aggregates. The next step is to map
the requested statistical measure S to the corresponding set of basic
aggregates { f (τ)} and a function F to combine these basic aggre-
gates. This is achieved by the StatMapper as shown in Figure 6. For
every statistical measure supported by Data Canopy, the StatMap-
per stores a complete recipe to synthesize that statistic from basic
aggregates.

The StatMapper is implemented as a hash table, where the keys
are identifiers of statistical measures and each key corresponds to a
recipe. The recipe is a data structure that contains a list of basic ag-
gregates { f ({τ})} required to synthesize the statistical measure S
as well as a pointer to a function that operates on and combines the
basic aggregates as defined by F . Overall, Data Canopy converts a
query Q into a plan P, making the following set of mappings:

{{C}, [Rs,Re),S}→ {{C}, [cs,ce],Rd ,{ f ({τ})},F}

Evaluating the Plan. The plan is passed on to the evaluation en-
gine, where the result is synthesized based on the current policy
and state of Data Canopy (right side of Figure 6).

If Data Canopy is operating in the offline mode, all basic ag-
gregates have been precomputed and there is no need to touch the
base data except to evaluate the residual range Rd . In this mode
no new basic aggregates are added as a result of query processing.
In the online and the speculative mode, some of the required basic
aggregates (for some chunks) might not be computed and stored
already. In such cases, Data Canopy accesses base data to evalu-
ate basic aggregates on those chunks, and they are stored in Data
Canopy. Finally, when all basic aggregates required for the current
query are fetched and/or materialized, they are passed to function
F to generate the result.

2.6 Analyzing Query Cost
We formalize the cost of answering a query when both Data

Canopy and data fit in memory (we model the out-of-memory cost
in §2.8). This cost is modeled in terms of the amount of data ac-
cessed (cache lines).

We consider a query q for a statistic S over a data range. The
statistic S is defined over k different columns, and it is composed
of b total basic aggregates i.e., it accesses b segment trees. For
instance, in the case of a variance query, b = 2 (sum and sum of
squares) and k = 1 (univariate statistic), whereas for a correlation
query b = 5 (sum and sum of squares of both columns and sum of
products) and k = 2 (bivariate statistic).

Let Csyn be the cost of answering query q. This cost is divided
in two parts: (1) probing b segment trees, and (2) scanning the
residual ranges of k columns. We denote these costs as Cst and Cr
respectively. The total cost is:

Csyn =Cst +Cr

First, we model Cst . To answer a query q, Data Canopy traverses
b segment trees. The number of leaves in each segment tree is r·vd

s ,
where r is the number of rows, vd is the record size (in bytes),
and s is the chunk size (in bytes). Moreover, the cost of probing a
segment tree with n leaves is at most 2 logn cache line reads [85] (as
a node fits in a cache line). Hence, we can express Cst as follows:

Cst = 2 ·b · log2

(r · vd

s

)
(3)

We now model Cr. A query on k columns has to scan at most
2k chunks i.e., at the end points of the query range. The cost of
scanning a chunk is s

. We get the following formula for Cr:

Cr =
2 · k · s

#
(4)

Using Equation 3 and 4, the total query cost becomes:

Csyn =
2 · k · s

#
+2 ·b · log2

(r · vd

s

)
(5)

 0

 5

 10

 15

 20

 25

1K 10K 100K 1M 10M 100M

Synthesize from basic aggregates

Scan
 Data

R
an

ge
 si

ze
 (%

 o
f r

)

Number of rows (r)

Rb

Figure 7: As the number of rows in the data
set increases, a greater proportion of the total
queries is answered through basic aggregates.

 180
 200
 220
 240
 260
 280
 300

so/2so 2so 3so 4so 5so 6so 7so

so=220B

Q
ue

ry
 C

os
t (

C
sy

n)

Chunk size (s)

1M rows
10M rows

100M rows

Figure 8: Query cost, a convex function of the
chunk size, is minimized at the optimal chunk
size so. Here #=64B, b=5, and k=2, so = 220B.

dq d
max

Given q, calculate the optimal
query depth

Tr
av

er
se

 th
e

op
tim

al

de
pt

h,
 th

en
 s

ca
n

th
e

da
ta

Figure 9: For each query, Data Canopy
traverses the optimal depth dq of the
segment trees.

For simplicity of presentation, here we do not distinguish be-
tween the cost of a cache miss (traversing the linked segment trees)
and a cache hit (scanning a sequential residual range). We study
the effects of these hardware dependent parameters when we tune
and verify the chunk size in Appendix E.

Synthesize or Scan. For queries with a small range, Data Canopy
directly scans the data if this results in a smaller query cost com-
pared to traversing the segment trees and synthesizing the answer.
We describe below how this optimization decision is made.

The cost of scanning the full query range of size R, Cscan can be
expressed as:

Cscan =
R · vd

#
(6)

Now we calculate the boundary query range size Rb, where Cscan
becomes equal to Csyn. Below Rb, answering the query by scanning
the complete query range is faster than synthesizing it from basic
aggregates. Using Equation 5 and 6, we get:

Rb =
2 · k · s

vd
+

2
vd
·# ·b · log2

(r · vd

s

)
(7)

Data Canopy answers a query with range size R from basic ag-
gregates when R > Rb, otherwise it answers the query by scanning
the full query range. Figure 7 shows how Rb (as a percentage of
the number of rows r) decreases as r increases. This shows that as
the number of rows in the data set increases a greater proportion of
total queries is answered through basic aggregates. Here # = 64B,
b = 5, k = 2, and vd = 4B.

2.7 Selecting the Chunk Size
We now explain how Data Canopy selects the chunk size so as

to optimize query performance.

Optimal Chunk Size. The chunk size has opposite effects on the
cost of scanning the residual range Cr and the cost of traversing
segment trees Cst . Increasing the chunk size, results in an increase
of Cr as the residual range increases. On the other hand, increasing
the chunk size decreases Cst as the size of segment trees shrinks. As
a result, Csyn is a convex function of the chunk size and has a global
minimum i.e., there is an optimal chunk size so that optimizes over-
all query performance. The convex behavior of the query cost is
shown in Figure 8 (# = 64B,b = 5,k = 2). To obtain a closed-form
expression for the optimal chunk size so, we differentiate Csyn with
respect to s and equate the derivative to zero:

so =
b ·#

k · ln2
(8)

The optimal chunk size so depends only on properties of the
hardware (i.e., cache line size) and the type of requested statistic
(i.e., the ratio between the number of segment trees and the columns

that are scanned for the residual range). This is because the opti-
mal chunk size strikes a balance between the number of cache lines
accessed when scanning the base data (for the residual range) and
when traversing the segment trees.

Optimal Chunk Size and Rb. Observe from Equation 7 that s <
Rb,∀r ≥ s. In other words, any chunk size (including the optimal
chunk size so) is always smaller than the boundary range size Rb
below which a given query is answered by scanning the range. A
corollary of this observation is that independent of the workload the
chunk size should not be below so. This is because Data Canopy
will answer any query with a smaller range size than so by directly
scanning the range instead of traversing the segment trees (because
this is faster i.e., it incurs fewer cache line reads).

Selecting the Chunk Size. By default, Data Canopy sets the chunk
size sDC to the lowest value of the ratio b

k . This value is 1 (for
b=k=1) and allows Data Canopy to store just enough information
(enough depth in the segment trees) to be optimal for queries that
access the least amount of segment trees (e.g., mean, max, min
etc.). Hence, to set the default chunk size, Data Canopy needs no
prior knowledge of the workload or the data.

Workload Adaptivity. To ensure optimal performance for queries
with b

k > 1 (i.e., those that access more than one segment trees),
Data Canopy makes an adaptive decision and traverses shorter paths
in the segment trees. This strategy is shown visually in Figure 9.
Given a query q, Data Canopy analytically computes the optimal
chunk size for this query sq using Equation 8. Then it calculates
the optimal depth of the segment tree for q:

dq = log2

(r · vd

sq

)

Data Canopy goes only as deep as dq in the segment trees, and
then scans the residual range (now up to a size of 2 · k · sq). This
strategy ensures that each query achieves optimal performance by
minimizing the data (cache lines) it has to read.

Overall, Data Canopy builds segment trees with a chunk size that
guarantees optimality for queries that need to access a single seg-
ment tree only (i.e., dmax) and can afford to do more cache misses
going all the way to the leaves of the segment tree. For queries
that will access more segment trees, though, (and thus they will
incur more cache misses) Data Canopy adaptively gets out of the
segment tree traversal sooner (i.e., at dq) reverting on sequentially
scanning more data chunks and thus achieving an optimal balance
tailored to each individual query. This optimization comes from
the fact that segment trees are binary trees and every node we read
when traversing the tree leads to a cache miss. As such there is a
point when reading a cache line full of useful data (when scanning
data chunks) becomes better than traversing a binary tree. Other di-
rections, one may explore here, as alternatives to the optimization

we propose, is the study of a more cache conscious layout of the
segment trees where every cache miss would bring a cache line full
of useful tree data.

Memory Requirement. Data Canopy’s memory requirement de-
pends on: (i) the types of statistical measure it maintains, (ii) the
chunk size, and (iii) the data size. For a given set of statistics S, we
define the Data Canopy footprint F (S) as the number of segment
trees per column required to synthesize S on the entire data set1.
The size (in bytes) of a full segment tree with the optimal chunk
size so and node size vst is given by vst · (2 · r·vd

so
− 1). Hence, the

total size of a complete Data Canopy (in bytes) on c columns is:

|DC(S)|= c · vst · (2 ·
r · vd

s
−1) ·F (S) (9)

2.8 Out-of-Memory Processing
Now we introduce a three-phase eviction policy that maintains

good performance guarantees as the data size and the size of Data
Canopy exceeds main memory capacity. The high level idea is that
Data Canopy maintains a cache of data pages, which are evicted
when there is memory pressure and reloaded if needed. Similarly,
parts of Data Canopy are also evicted and reloaded if needed. This
policy captures both the case when data does not fit in memory and
the case when Data Canopy does not fit in memory.

Phase 1. During the first phase, as main memory runs out, Data
Canopy shrinks horizontally by removing one layer of leaf nodes
from every segment tree in a round-robin fashion. This is equiva-
lent to doubling the chunk size. Both data and Data Canopy still
fit in main memory, and so the system maintains good performance
(i.e., query processing is in the order of hundreds of microseconds).
If there is more memory pressure and the chunk size exceeds the
size of a page (4KB to 64KB), Data Canopy stops shrinking and
moves on to Phase 2.

Phase 2. During Phase 2, Data Canopy maintains data pages in
memory only as a cache of frequently accessed data. It evicts data
pages from main memory using an LRU policy. Query cost remains
low since each query has to touch at most 2k pages to scan the
residual range, where k is the number of columns referenced by a
query. For example, a correlation query needs to access at most two
columns and thus touches at most four pages, which takes approx-
imately 40 ms on modern disks. Moreover, for frequently accessed
chunks, the cache prevents a query from going to disk.

Phase 3. In the extreme case, when none of the data can fit in mem-
ory, we reach the scenario, where parts of Data Canopy also need
to be evicted. In this case, Data Canopy evicts whole segment trees
using an LRU policy. These segment trees are spilled to disk and
reloaded if needed. To make it easy when reloading segment trees
from disk that may refer to potentially dirty chunks (updated), we
keep an in-memory bit vector for each segment tree, which marks
dirty chunks (1 bit per chunk). If memory pressure continues, bit
vectors are also dropped along with the on-disk segment trees.

Offline Mode and Memory Pressure. When Data Canopy is set
to offline mode it is given a set of data (row and columns) and a
set of statistics to be precomputed. Data Canopy first computes
the overall memory footprint that the resulting structure will have
and if it exceeds available memory, Data Canopy has to operate
immediately in Phase 3. Before doing so, Data Canopy first gives
the user a warning and option if they want to reduce the amount of
data or statistics to be included so that it fits in the memory budget.
Otherwise, Data Canopy proceeds in Phase 3.
1For a complete discussion of the Data Canopy footprint and com-
posability of statistics look at Appendix A and B.

Column
Query
range

The segment tree
doubles in row capacity

The right sub-tree is
materialized incrementally as
needed by incoming queries.

The original segment tree is
completely reused as the left

sub-tree.

New rowsExisting rows

Figure 10: Data Canopy adaptively handles new data (rows).

2.9 Updates
We now discuss how Data Canopy handles insertions, updates,

and deletes. Data Canopy handles updates incrementally to avoid
overheads during online exploration.

Inserting Rows. When new rows are inserted and the new total
number of rows exceeds the existing capacity of Data Canopy, then
Data Canopy needs to expand. It does so by doubling the capacity
of its segment trees without doubling the size immediately. This
means that a root is added in each segment tree with the previous
root as a left child and a new empty right child (and subtree). This
results in effectively no immediate memory overhead. Data Canopy
then populates the new right sub-tree adaptively only when and if
the new rows are queried. This process is shown in Figure 10.

Inserting Columns. When a new columns is added, Data Canopy
needs to simply add this column in its catalog. Given that columns
are treated independently there is no further complexity resulting
from the addition of a new column. As data in the new column is
queried, Data Canopy allocates segment trees for this column and
then populates them incrementally.

Updating Rows. When a record x at row r of column c is updated,
Data Canopy first retrieves the old value xold of x and uses it along
with the new value xnew of x to update all segment trees that involve
column c. For each segment tree, Data Canopy looks up the basic
aggregate yold for the chunk where row r resides, and it updates it
as follows2: ynew = yold − τ(xold)+ τ(xnew).

Assuming a univariate segment trees on column c, the cost of
updating them is a · log2

r·vd
s (where log2

r·vd
s is the depth of the

segment trees). Moreover, assuming b bivariate segment trees on
column c, the cost of updating them is b · log2

r·vd
s +b. The additive

b term derives from the fact we need to fetch one value from another
column per segment tree to adjust the sum of products. The overall
update cost Cupdate is:

Cupdate = 2 · (a+b) · log2
r · vd

s
+b (10)

Deleting Rows. Data Canopy deletes rows in-place using a stan-
dard technique for fixed-size slotted pages, where the granularity of
a page is the chunk. Each chunk has a counter that keeps track of
the number of valid rows in a chunk, and the valid rows are placed
first in the chunk. When a row is deleted, we replace each deleted
value xold with the last valid value in the chunk, and we decrement
the counter.

To update the segment trees, we probe all of them for the basic
aggregate for the chunk of the deleted row and update it as follows3:
ynew = yold − τ(xold). In addition, we maintain one invalidity seg-
ment tree per table that keeps track of the number of invalid entries
per chunk for subsequent statistical queries, as we can no longer

2More generally, we update y using the aggregation function F and
its inverse F−1 as follows: ynew = f

(
f−1 (τ(xold),yold) ,τ(xnew)

)
.

3More generally, we apply: ynew = f−1 (τ(xold),yold).

Workload Column Dist. Range Size Repetition
U Uniform Unif(5,10) % low
Z Zipfian Unif(5,10) % moderate
U+ Uniform Zoom-in high
Z+ Zipfian Zoom-in very high

Table 4: Evaluation workloads.

assume that each chunk is full. The cost model is the same as for
updates with one more additive term of 2 · log2

r·vd
s for updating the

invalidity segment tree: Cdelete =Cupdate +2 · log2
r·vd

s .

3. EXPERIMENTAL ANALYSIS
We now demonstrate that Data Canopy accelerates statistical anal-

ysis and machine learning algorithms.

Experimental Setup. All experiments are conducted on a server
with an Intel Xeon CPU E7-4820 processor, running at 2 GHz with
16 MB L3 cache and 1 TB of main memory. This server machine
runs Debian “Jessie” with kernel 3.16.7 and is configured with a
hard disk of 300GB operating at 15KRPM. We implemented Data
Canopy from scratch in C++ compiled with gcc version 4.9.2 at op-
timization level 3. The current prototype supports three univariate
statistics: mean, variance, and standard deviation; and two bivariate
statistics: correlation, and covariance.

We compare the performance of Data Canopy with two widely
used statistical packages: NumPy [1] in Python and Modeltools
[34] in R. Also, we show how Data Canopy compares to Mon-
etDB [16]. In addition to these systems, we compare Data Canopy
against our own statistical system StatSys. StatSys shares the code
base with Data Canopy, but it has none of the design concepts that
allow Data Canopy to synthesize statistics from basic aggregates;
instead, it needs to fully compute each query from scratch.

Benchmark. There are no standard benchmarks for exploratory
statistical analysis. To test Data Canopy we develop a benchmark
that captures a wide range of core scenarios and stress tests Data
Canopy’s capability to reuse data access and computation.

We generate exploratory statistical analysis pipelines as sequenc-
es of queries. Each query requests to compute a statistical measure
on a range over a data column (or a set of data columns for mul-
tivariate statistics). The benchmark consists of four distinct work-
loads generated by varying two parameters: the probability with
which queries are distributed over columns and the distribution of
query range sizes. These workloads are summarized in Table 4.
We investigate two different distributions of queries over columns:
column-uniform (U and U+) and column-zipfian (Z and Z+). In the
column-uniform workloads, queries are equally divided between all
columns. In the column-zipfian workloads, queries are divided over
columns conforming to the zipfian distribution (s=1) i.e., the col-
umn with the highest number of queries has twice as much queries
in the workload as compared to the column with the second highest
number of queries.

Similarly, we investigate two different distributions for the query
range sizes. In the range-uniform workloads (U , Z), the range sizes
are uniformly distributed between 5 and 10 % of the total column
size. The range-zoom-in workloads (U+, Z+) emulate a case where
data scientists progressively zoom into the data set increasing the
resolution at which statistics are computed. In this case, the range
size follows a sequence, where the first query is over an entire
range. All subsequent pairs of queries divide the range of previ-
ous queries into two equal parts, then compute statistics on both.
Then we randomly pick one of these parts to continue doing the

same. For example, zoom-in over a range of size 100 can be the
sequence: {[0,100), [0,50),[50,100), [50,75), [75,100) ... }.

These workloads allow us to test Data Canopy with different
kinds of repetition (similar to those presented in Figure 1). They
map to patterns followed by data scientists during data exploration:
The initial phase of exploratory analysis, often classified as the for-
aging phase [12, 64], exhibits patterns similar to column-uniform
workloads. This is when data scientists compute statistics uni-
formly over multiple columns. Over time, the analysis focuses on
a smaller set of columns (column-zipfian workloads), and requests
for more detailed information (range-zoom-in workloads) [12, 64].
Moreover, the size of the data sets we use is derived from real world
data sets (for a characterization of these data sets see Appendix C).

3.1 Reuse in Exploratory Statistical Analysis
In our first experiment we compare Data Canopy against state-

of-the-art systems and we demonstrate its ability to reuse data ac-
cess and computation. We set-up this experiment as follows: The
data set contains 40 million rows and 100 columns. Each column is
populated with double values randomly distributed in [−109,109).
The total data size is 32GB. Data Canopy is automatically config-
ured with the optimal in-memory chunk size. For our experimental
system, this results in a chunk size of 256 bytes or 32 data values
(in Appendix E we verify the chunk selection model). Data Canopy
operates in the online mode, which provides an apples-to-apples
comparison across all systems as it assumes no preprocessing steps.

Figure 11 shows the results for all four workloads. Each one of
the four graphs in Figure 11 corresponds to one of the workloads in
Table 4. Each graph depicts the evolution of the query performance
(response time on the y-axis) as the query workload evolves, i.e., as
we run more exploratory queries (x-axis). In total we run 2000
queries for each workload. Each graph shows the performance of
NumPy, R, MonetDB, and Data Canopy.

The main observation across all graphs in Figure 11 is that while
all state-of-the-art systems maintain a relatively constant behavior
across all workloads, Data Canopy improves as it processes more
queries. The y-axis is logarithmic and depicts the response time
per query. For example in Figure 11(a) after just a hundred com-
pletely uniform queries, the average response time of Data Canopy
is 1.9× lower than NumPy and 11.4× lower than MonetDB. After
2000 queries, the performance improvement per query goes up to
6.7× and 34.5× respectively. Thus, in most cases Data Canopy
results in an overall benefit (during an exploration path, i.e., over a
sequence of queries) of multiple orders of magnitude. The longer
the exploration path the bigger the benefit.

In addition, Data Canopy is faster than all other systems even
for the very first query across all workloads in Figure 11. This is
because contrary to NumPy and R, Data Canopy is a tailored C++
implementation for statistics. MonetDB is a performant analytical
system but it is not tailored for statistics.

Similar observations hold for Figures 11(c) and 11(d) where the
workloads exhibit zoom-in patterns. In these workloads, the range
size decreases by half after the first 500 queries. Then, it decreases
by half every 1000 queries. This constant decrease in range sizes
is reflected in the response times of all systems. In other words,
all systems can improve nearly linearly to the size of the range on
which statistics are computed. This is because they simply do com-
putations on fewer data items. On the other hand, Data Canopy
improves drastically by being able to reuse previous data accesses
and computations. For all queries after the first 500 queries, the av-
erage response time goes down to sub-milliseconds. Even during
the first 500 queries, there is a continuous sharp improvement in
Data Canopy’s response time. In both workloads, Data Canopy is

100

101

102

103

0 400 800 1200 1600 2000

Query sequence

R
es

po
ns

e
tim

e
(m

s)

(a) Workload U
0 400 800 1200 1600 2000

(b) Workload Z

10-2

100

102

104

0 400 800 1200 1600 2000
(c) Workload U+

0 400 800 1200 1600 2000
(d) Workload Z+

NumPy (Python) Modeltools (R) MonetDB Data Canopy

Figure 11: Data Canopy, in online mode, out performs state-of-the-art systems across a variety of workloads for exploratory statistical
analysis by being able to incrementally improve its performance and minimize data access.

0.1

1

10

100

1000

Statsys Online DC Offline DC

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Scenarios

U
Z

U+
Z+

Figure 12: Online and offline Data Canopy
result in one and two orders of magnitude
improvement respectively.

10-2
10-1
100
101
102
103
104
105

Simple Linear
Regression

Bayesian
Classification

Collaborative
Filtering

R
un

ni
ng

 ti
m

e
(s

)

Algorithm

Statsys Online Offline

Figure 13: Data Canopy accelerates core
machine learning classification and filtering
algorithms.

1
4

16
64

256
1024
4096

100M 250M 500M 1B

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Number of rows

U Z U+ Z+

Figure 14: Data Canopy scales almost lin-
early with the number of rows in the data
set for all workloads.

completely built at the end of the first 500 queries, and all future
queries are directly synthesized from the basic aggregates within
Data Canopy.

For all systems and for all these experiments we make sure that
all data is hot in memory before we query it. This is the least favor-
able scenario for Data Canopy as its goal is to reduce data access
costs.

Data Canopy Scenarios. Next we evaluate the offline and online
modes of Data Canopy. In addition, we compare against StatSys,
which effectively uses the Data Canopy code to compute statistics
but does not cache and reuse basic aggregates.

The set-up of this experiment is exactly the same as before. The
results are shown in Figure 12. This time we report the cumulative
response time to run all queries. For all workloads Data Canopy
results in significant benefits over the no reuse approach of Stat-
Sys (up to one order of magnitude i.e., 4.7× to 15.8×). If we
can allow to precompute the library of basic aggregates up front
this brings yet another benefit of two orders of magnitude (194×
to 470.8×). In this scenario all queries are directly synthesized
from Data Canopy (each query may at most scan two chunks at the
boundaries of its range). Overall, the improvement is bigger for
range-zoom-in workloads (U+ and Z+). This is because for these
workloads the first query on every column results in a complete
scan, due to which basic aggregates required for future queries on
that column are already computed. Overall, Data Canopy is effec-
tive in both online and offline mode bringing drastic improvements
in response time.

3.2 Accelerating Machine Learning
We now show how Data Canopy accelerates core machine learn-

ing classification and filtering algorithms. Specifically we study
linear regression, bayesian classification, and collaborative filter-
ing [14]. All three algorithm can utilize statistics (basic aggregates)
cached in Data Canopy as primitives. The set-up is the same as in
previous experiments (40 million rows and 100 columns) and we

run each of the algorithms on the entire data set as follows: (i) Sim-
ple linear regression is ran on all pairs of columns, (ii) A gaussian
naive bayes classifier is trained on the entire data set. In this case,
the rows in the data set are divided between 40 different classes
(one million samples per class), (iii) Collaborative filtering (using
correlation as the similarity measure) is ran on the entire data set.

Figure 13 shows the performance of these three machine learn-
ing algorithms with Statsys (brute force), online, and offline Data
Canopy. We observe that online Data Canopy (no preprocessing
step) results in up to 8× improvement. This is because running
these algorithms results in repetitive calculation of statistics. Fur-
thermore, if there is enough idle time to build Data Canopy of-
fline, we observe up to six orders of magnitude improvement in
running time for simple linear regression and collaborative filtering
and three orders of magnitude improvement for bayesian classifi-
cation. The lower improvement for bayesian classification is due to
the fact that we have to compute statistics for every class in the data
set (i.e., 40 times more queries and each query results in scan of up
to two chunks per column at the end-points of the query range).

3.3 Scalability
Here we show that Data Canopy scales with the number of colum-

ns and rows in the data set. Appendix D also offers a discussion on
how Data Canopy scales with hardware contexts and queries.

Scaling with Number of Rows. First, we show how Data Canopy
scales when we increase the number of rows in the data set. The
set-up is the same as in previous experiments. This time we vary
the rows from 100 million to one billion.

Figure 14 reports the results. It depicts the cumulative time to
run all four workloads. As we increase the number of rows from
100 million to 250 million, the total execution time increases by
2.51x (average across all workloads) i.e., an approximately linear
increase in execution time. As we double the number of rows be-
yond 250 million, the trend diverges slightly from a linear trend.
The increase in cumulative response time as we increase the num-

 1
 2
 4
 8

 16
 32
 64

100 200 400 800 1600 3200

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Number of columns

U
Z

U+
Z+

Figure 15: Data Canopy scales with the
number of columns resulting in sub-linear
increase in query execution time.

0
10
20
30
40
50
60
70
80
90

0 2.0x104 4.0x104 6.0x104 8.0x104 1.0x105

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)

Query sequence

Figure 16: Data Canopy gracefully handles
memory pressure, keeping query processing
time within an interactive range.

0.001

0.01

0.1

1

10

100

Max U workload Max U workload

s=so

s=64KB

M
em

or
y

fo
ot

pr
in

t (
G

B
) Univariate DC

Bivariate DC

Figure 17: Under memory pressure, Data
Canopy can vary its chunk size between the
memory-optimized and disk-optimized size.

ber of rows from 250 million to 500 million and from 500M to 1
billion is 2.26x and 2.3x respectively. This super-linear increase in
cumulative response time is due to the fact that with more rows, the
size of the query range (unif(5,10)% of r) increases. This results
in more chunks being added to the Data Canopy data structure, for
every query that is executed. The overhead of adding these chunks
results in this super-linear increase in the overall response time.

Scaling with Number of Columns. Now, we show how Data
Canopy scales as we vary the number of columns from 100 to 3200.
In this experiment, the number of rows is fixed to one million.

Figure 15 reports the cumulative time to run all four workloads.
As we double the number of columns, we see an average increase of
1.68x and 1.22x in the total execution time for the uniform (U and
U+) and zipfian (Z and Z+) workloads respectively. In all cases
the execution time increases in a sub-linear fashion. For uniform
workloads there is a higher increase in the total execution time be-
cause they target all columns equally and it takes longer to populate
the library of basic aggregates. For the zipfian workloads, since the
columns are targeted following a zipfian distribution, increasing the
number of columns does not substantially affect the overall execu-
tion time – columns that are frequently accessed will have their
corresponding library of basic aggregates completely materialized.

Overall, Data Canopy scales in a robust way, being able to absorb
the increased amount of rows and columns.

3.4 Handling Memory Pressure
We now demonstrate that Data Canopy can gracefully handle

memory pressure. For this experiment we allow a memory bud-
get of 8GB. The size of the data is set to 7.2 GB (90 columns, 10
million rows, 8 bytes record size). This means that initially the
entire data set fits in main memory. Data Canopy operates in on-
line mode which means that initially it has zero memory footprint
and it grows as more queries arrive. We run a sequence of queries
from the U workload. This implies that Data Canopy incrementally
materializes new segment trees, increasing memory pressure.

Figure 16 shows how the average response time of Data Canopy
evolves as memory pressure increases. The dotted line depicts the
point beyond which Data Canopy operates in Phase 2 of the out-
of-memory policy i.e., some data is now accessed from disk. We
observe that as Data Canopy enters Phase 2, there is an initial in-
crease in query response time. This is because Data Canopy is still
being built, and every query may result in a scan of data on disk.
However, as the query sequence evolves and Data Canopy material-
izes further, the query response time decreases. Now, Data Canopy
scans at most two chunks per query.

In Appendix F, we provide a study of how Data Canopy behaves
when the memory pressure is due to data size.

3.5 Memory Footprint and Feasibility
We discuss the memory footprint of Data Canopy in two scenar-

ios: (1) when it is built with the optimal in-memory chunk size (256
bytes for our experimentation system) and (2) when, under memory
pressure, it operates in Phase 2 of the out-of-memory policy (the
chunk size grows to 64KB). These two scenarios correspond to the
maximum and the minimum memory footprint of Data Canopy re-
spectively. The experiment is on 100 columns and 40 million rows.
Each node in Data Canopy is 8B. The analysis is conducted with
the U workload and Data Canopy operates in online mode.

Figure 17 shows both the maximum memory footprint of Data
Canopy in each scenario and the memory footprint after executing
2000 queries. We report the memory footprint of both univariate
and bivariate statistics. In the case of univariate statistics, the max-
imum memory footprint is 1GB, and under memory pressure, it can
incrementally shrink down to just 10MB. The maximum memory
footprint of bivariate statistics is 32GB and, in a similar fashion,
can shrink down to just 490MB. More generally, Data Canopy is
able to vary its overall size (by changing its chunk size) to fit within
the available main memory. Overall, the usage of the U workload
remains less than one-third of the maximum size. In Appendix G,
we provide a study of the feasibility of bivariate statistics in Data
Canopy.

Update Experiments. We evaluate how Data Canopy handles up-
dates in Appendix H.

4. RELATED WORK
Here we position Data Canopy against related efforts and we

discuss how it advances the state of the art.

Modern Data Systems and Statistics. Data systems provide sup-
port to compute different statistics in the form of aggregate op-
erations such as AVG, CORR etc. [84]. Also, query optimizers
estimate query cardinality by using histogram statistics [21]. Re-
cent approaches employ statistics for data integration [24, 42], time
series analysis [66, 86], and learning [40, 68].

Despite widespread use of statistics in data systems, a frame-
work to synthesize and reuse various statistical measures during
exploratory statistical analysis does not exist. Data Canopy in-
troduces such a framework, which replaces ad hoc calculation of
statistics and brings opportunities to efficiently synthesize statistics
from basic aggregates; compute and cache these basic aggregates
ahead of time, and employ them to accelerate exploratory statis-
tical analysis. Statistics in Data Canopy, primarily computed for
exploratory analysis, can also be used within the data system for
other tasks such as query optimization and data integration.

Improving Statistics. The widespread use of statistics has led to
research on calculating fast statistics on large data sets. Some re-

search directions reduce the amount of data touched to compute
statistics while providing guarantees on the accuracy: Robust sam-
pling techniques are applied to trade accuracy for performance [19,
20, 23, 36, 79] and techniques based on discrete Fourier transform
approximate all-pair correlations for time series [60]. Other re-
search directions present solutions to compute statistics at scale in
distributed settings: Cumulon is an end-to-end system, which opti-
mizes the cost of calculating statistics on the cloud [46]. Similarly,
other research directions optimize the calculation of various statis-
tical measures by properly partitioning data in distributed settings
[10, 23].

All these approaches innovate on how statistics are computed.
Therefore, these approaches are all compatible with Data Canopy:
Data Canopy can adopt one or even multiple of these approaches
for computing basic aggregates. For example, Data Canopy in
distributed settings, can incorporate aforementioned partitioning
techniques to ensure that relevant data is stored at local nodes.
The primary advantage that combining Data Canopy with these ap-
proaches has is that Data Canopy synthesizes statistics from basic
aggregates and reuses these basic aggregates. In the presence of
workloads exhibiting high locality and repetition, this significantly
reduces data movement.

Data Cubes. Data cubes, widely applied in mining data ware-
houses, store data aggregated across multiple dimensions [38, 62].
Operators like roll-up, slice, dice, drill-down, and pivot allow data
scientists to summarize or further resolve information along any
particular dimension in the data cube. Various techniques to im-
prove data cube performance have been studied: Sampling and
other approximation techniques are used to reduce both the time
required to construct the data cube and answer queries from it [11,
54, 81]. Some approaches only partially materialize data cubes [30,
31, 82], whereas others present strategies to build them adaptively
[13], and in parallel settings [22]. One line of work proposes a
simplified and flexible version of the data cube concept in form of
small aggregates [59]. Furthermore, recent research designs data
cubes for exploratory data analysis: Some research directions vi-
sualize aggregates stored in data cubes [50], others use them for
ranking [80] as well as for interactive exploration [65].

Data cubes do not support a wide range of statistical measures.
Specifically, they have no support for multivariate statistics such as
correlation, covariance, or linear regression. Also, data cubes come
with a high preprocessing and memory cost that results from calcu-
lating and storing aggregates grouped by multiple dimensions. In
contrast, Data Canopy is both light-weight and is able to reuse and
synthesize an extendible set of statistics using a relatively small set
of basic aggregates. Furthermore, slices obtained from data cubes
in OLAP settings can be explored using Data Canopy. Once data
scientists have developed an understanding of the data set, then they
can construct more complicated OLAP structures or run more de-
tailed analytics on features and subsets of data that they have iden-
tified to be of interest. This approach is more efficient compared to
building heavy OLAP structures up front for exploratory statistical
analysis.

Query Caching and Prefetching. Query result caching enables
database systems to reuse results of past queries to speed up fu-
ture queries [44]. Most relevant to Data Canopy are approaches
that enable reuse across different ranges by breaking down queries
and caching query results [27, 51]. Data Canopy is inspired from
these approaches and takes a step further: In addition to decom-
posing ranges, Data Canopy decomposes statistical measures into
a set of basic aggregates that can be reused between them. As such,

Data Canopy can synthesize descriptive and dependence statistics
directly from this library of basic aggregates.

More recently, different approaches prefetch both data and query
results to accelerate the process of data exploration. Forecache
breaks the data down into regions called tiles, and prefetches them
based on a data scientist’s exploration signature [12]. Similar cachi-
ng and prefetching strategies have been proposed for the process of
data visualization [57]. Data Canopy advances this direction of
work by providing a smart cache framework that can compute and
maintain a library of basic aggregates that can be used as building
blocks for a variety of statistical measures and machine learning
algorithms.

Incremental Stream Processing. Similarly, in streaming scenar-
ios incremental query processing decomposes data streams into
smaller chunks and runs queries on these chunks: Window-based
approaches partition data and queries such that future windows can
make use of past computation [17, 18, 35, 56]. Certain approaches
present strategies to incrementally monitor time series data [86] as
well as update materialized views [15, 39]. Data Canopy is inspired
from these approaches, and is readily applicable in streaming set-
tings as it can be constructed in a single pass over the data set.
When processing huge streams with limited memory, Data Canopy
can function as a synopsis for answering a configurable set of sta-
tistical queries for exploratory statistical analysis. This synopsis
can be constructed and updated incrementally.

In Appendix I we also discuss how Data Canopy relates to mod-
ern data exploration efforts.

5. CONCLUSION
We present Data Canopy a smart cache framework to accelerate

the computation of statistics. Data Canopy breaks statistics down to
their basic primitives, it caches and maintains those primitives, and
uses them to synthesize future computations of (the same or differ-
ent) statistics on the same or overlapping data. Contrary to state-of-
the-art systems that need to always scan the whole data set to com-
pute statistical measures, Data Canopy can interactively compute
statistical measures without repeatedly touching the data; a prop-
erty that becomes ever more important as data grows. Data Canopy
can be computed both offline and online to speed up queries that
overlap on data and on statistical measures. We demonstrate that
Data Canopy brings significant speedup to exploratory statistical
analysis and machine learning algorithms. This speedup continues
to hold as the size of the data and the complexity of the exploration
scenario (i.e. the number of repeated queries required to find the
desired pattern) increases.

Acknowledgements. We thank the reviewers and Johannes Gehrke
for their valuable feedback.

6. REFERENCES
[1] NumPy. http://www.numpy.org, 2013.
[2] Psycopg. http://initd.org/psycopg/, 2014.
[3] National Centers for Environmental Information (NCEI).

https://www.ncei.noaa.gov, 2016.
[4] Kaggle Datasets. https://www.kaggle.com/datasets, 2017.
[5] The General Social Survey Datasets. http://gss.norc.org/Get-The-Data, 2017.
[6] The Quality of Government Institute Datasets. http://qog.pol.gu.se/data, 2017.
[7] Wofram – Descriptive Statistics.

https://reference.wolfram.com/language/tutorial/DescriptiveStatistics.html,
2017.

[8] A. Abouzied, J. M. Hellerstein, and A. Silberschatz. Playful Query
Specification with DataPlay. Proceedings of the VLDB Endowment,
5(12):1938–1941, 2012.

[9] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very

http://www.numpy.org
http://initd.org/psycopg/
https://www.ncei.noaa.gov
https://www.kaggle.com/datasets
http://gss.norc.org/Get-The-Data
http://qog.pol.gu.se/data
https://reference.wolfram.com/language/tutorial/DescriptiveStatistics.html

Large Data. In Proceedings of the ACM European Conference on Computer
Systems (EuroSys), pages 29–42, 2013.

[10] F. Alvanaki and S. Michel. Tracking set correlations at large scale. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 1507–1518, 2014.

[11] D. Barbara and M. Sullivan. Quasi-cubes: Exploiting Approximations in
Multidimensional Databases. ACM SIGMOD Record, 26(3):12–17, 1997.

[12] L. Battle, R. Chang, and M. Stonebraker. Dynamic Prefetching of Data Tiles for
Interactive Visualization. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 1363–1375, 2016.

[13] K. Beyer and R. Ramakrishnan. Bottom-up Computation of Sparse and Iceberg
CUBE. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 359–370, 1999.

[14] C. M. Bishop. Pattern recognition. Machine Learning, 128:1–58, 2006.
[15] J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently Updating

Materialized Views. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 61–71, 1986.

[16] P. Boncz, S. Manegold, and M. L. Kersten. Database architecture optimized for
the new bottleneck: Memory access. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 54–65, 1999.

[17] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt,
J. F. Terwilliger, and J. Wernsing. Trill: A High-performance Incremental
Query Processor for Diverse Analytics. Proceedings of the VLDB Endowment,
8(4):401–412, 2014.

[18] S. Chandrasekaran, M. A. Shah, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, and F. Reiss.
TelegraphCQ: continuous dataflow processing. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 668–668,
2003.

[19] S. Chaudhuri, G. Das, and U. Srivastava. Effective Use of Block-Level
Sampling in Statistics Estimation. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 287–298, 2004.

[20] S. Chaudhuri, R. Motwani, and V. R. Narasayya. Random Sampling for
Histogram Construction: How much is enough? In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 436–447,
1998.

[21] S. Chaudhuri and V. R. Narasayya. AutoAdmin ’What-if’ Index Analysis
Utility. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 367–378, 1998.

[22] Y. Chen, A. Rau-Chaplin, F. Dehne, T. Eavis, D. Green, and E. Sithirasenan.
cgmOLAP: Efficient Parallel Generation and Querying of Terabyte Size
ROLAP Data Cubes. In Proceedings of the IEEE International Conference on
Data Engineering (ICDE), page 164, 2006.

[23] G. Cormode and S. Muthukrishnan. An Improved Data Stream Summary: The
Count-Min Sketch and its Applications. Journal of Algorithms, 55(1):58–75,
2005.

[24] N. N. Dalvi and D. Suciu. Answering Queries from Statistics and Probabilistic
Views. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), pages 805–816, 2005.

[25] W. W. Daniel. Biostatistics: a foundation for analysis in the health sciences.
New York, 1987.

[26] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf.
Computational geometry. In Computational geometry, pages 1–17. Springer,
2000.

[27] P. Deshpande, K. Ramasamy, A. Shukla, and J. F. Naughton. Caching
Multidimensional Queries Using Chunks. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 259–270, 1998.

[28] K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Explore-by-Example: An
Automatic Query Steering Framework for Interactive Data Exploration. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 517–528, 2014.

[29] M. Drosou and E. Pitoura. YmalDB: A Result-Driven Recommendation System
for Databases. In Proceedings of the International Conference on Extending
Database Technology (EDBT), pages 725–728, 2013.

[30] C. E. Dyreson. Information Retrieval from an Incomplete Data Cube. In
Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 532–543, 1996.

[31] Y. Feng, D. Agrawal, A. El Abbadi, and A. Metwally. Range cube: efficient
cube computation by exploiting data correlation. In Proceedings. 20th
International Conference on Data Engineering, pages 658–669, 2004.

[32] M. Finnemore. Constructing statistics for global governance.
[33] S. Foundation. Sloan digital sky survey.
[34] T. R. Foundation. The R Project for Statistical Computing.

https://www.r-project.org, 2016.
[35] T. M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref, and A. K.

Elmagarmid. Incremental Evaluation of Sliding-Window Queries over Data
Streams. IEEE Transactions on Knowledge and Data Engineering (TKDE),
19(1):57–72, 2007.

[36] P. B. Gibbons, Y. Matias, and V. Poosala. Fast Incremental Maintenance of

Approximate Histograms. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 466–475, 1997.

[37] P. B. Gibbons, V. Poosala, S. Acharya, Y. Bartal, Y. Matias, S. Muthukrishnan,
S. Ramaswamy, and T. Suel. AQUA: System and Techniques for Approximate
Query Answering. Bell Labs - Technical Report, 1998.

[38] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh. Data Cube: A Relational Aggregation Operator
Generalizing Group-by, Cross-Tab, and Sub Totals. Data Mining and
Knowledge Discovery, 1(1):29–53, 1997.

[39] T. Griffin and L. Libkin. Incremental Maintenance of Views with Duplicates. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 328–339, 1995.

[40] Z. Guan, J. Wu, Q. Zhang, A. K. Singh, and X. Yan. Assessing and ranking
structural correlations in graphs. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 937–948, 2011.

[41] P. J. Guo. Software Tools to Facilitate Research Programming. PhD thesis,
Stanford University, 2012.

[42] A. Y. Halevy. Structures, Semantics and Statistics. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), pages 4–6, 2004.

[43] P. Hanrahan. VizQL: A Language for Query, Analysis and Visualization. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, page 721, 2006.

[44] J. M. Hellerstein and J. F. Naughton. Query Execution Techniques for Caching
Expensive Methods. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 423–434, 1996.

[45] B. Howe, F. Ribalet, D. Halperin, S. Chitnis, and E. V. Armbrust. Sqlshare:
Scientific workflow via relational view sharing.

[46] B. Huang, S. Babu, and J. Yang. Cumulon: Optimizing Statistical Data Analysis
in the Cloud. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 1–12, 2013.

[47] S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview of Data Exploration
Techniques. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Tutorial, pages 277–281, 2015.

[48] S. Jain, D. Moritz, D. Halperin, B. Howe, and E. Lazowska. SQLShare: Results
from a Multi-Year SQL-as-a-Service Experiment. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 281–293,
2016.

[49] A. E. W. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng,
M. Ghassemi, B. Moody, P. Szolovits, L. Anthony Celi, and R. G. Mark.
Mimic-iii, a freely accessible critical care database. Scientific Data, 3:160035
EP –, 05 2016.

[50] M. Kahng, D. Fang, and D. H. P. Chau. Visual Exploration of Machine
Learning Results Using Data Cube Analysis. In Proceedings of the Workshop
on Human-In-the-Loop Data Analytics (HILDA), pages 1:1—-1:6, 2016.

[51] A. M. Keller and J. Basu. A Predicate-based Caching Scheme for Client-Server
Database Architectures. The VLDB Journal, 5(1):35–47, 1996.

[52] A. Key, B. Howe, D. Perry, and C. R. Aragon. VizDeck: self-organizing
dashboards for visual analytics. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 681–684, 2012.

[53] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg. Searching for
snps with cloud computing. Genome Biology, 10(11), 2009.

[54] X. Li, J. Han, Z. Yin, J.-G. Lee, and Y. Sun. Sampling Cube: A Framework for
Statistical OLAP over Sampling Data. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 779–790, 2008.

[55] E. Liarou and S. Idreos. dbTouch in action database kernels for touch-based
data exploration. In Proceedings of the IEEE International Conference on Data
Engineering (ICDE), pages 1262–1265, 2014.

[56] E. Liarou, S. Idreos, S. Manegold, and M. Kersten. Enhanced stream processing
in a DBMS kernel. In Proceedings of the International Conference on
Extending Database Technology (EDBT), pages 501–512, 2013.

[57] Z. Liu, B. Jiang, and J. Heer. imMens: Real-time Visual Querying of Big Data.
Computer Graphics Forum, 32(3):421–430, 2013.

[58] D. Madigan and R. Wasserstein. Statistics and science. London Workshop on
the Future of the Statistical Sciences, 2013.

[59] G. Moerkotte. Small Materialized Aggregates: A Light Weight Index Structure
for Data Warehousing. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 476–487, 1998.

[60] A. Mueen, S. Nath, and J. Liu. Fast approximate correlation for massive
time-series data. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 171–182, 2010.

[61] H. Mühleisen and T. Lumley. Best of Both Worlds: Relational Databases and
Statistics. In Proceedings of the International Conference on Scientific and
Statistical Database Management (SSDBM), pages 32:1—-32:4, 2013.

[62] I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of Data Cubes and
Summary Tables in a Warehouse. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 100–111, 1997.

[63] A. Nandi. Querying Without Keyboards. In Proceedings of the Biennial
Conference on Innovative Data Systems Research (CIDR), 2013.

[64] P. Pirolli and S. Card. The sensemaking process and leverage points for analyst
technology as identified through cognitive task analysis. pages 2–4, 2005.

https://www.r-project.org

[65] S. Sarawagi and G. Sathe. I3: Intelligent, Interactive Investigation of OLAP
Data Cubes. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 589—-, 2000.

[66] S. Sathe and K. Aberer. AFFINITY: Efficiently Querying Statistical Measures
on Time-Series Data. In Proceedings of the IEEE International Conference on
Data Engineering (ICDE), pages 841–852, 2013.

[67] J. B. Saxe and J. L. Bentley. Transforming Static Data Structures to Dynamic
Structures. In Proceedings of the Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 148–168, 1979.

[68] M. Schleich, D. Olteanu, and R. Ciucanu. Learning linear regression models
over factorized joins. In Proceedings of the International Conference on
Management of Data (SIGMOD), New York, NY, USA, 2016. ACM.

[69] SciDB. SciDB-Py. http://scidb-py.readthedocs.io/en/stable/, 2016.
[70] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik. Discovering

Queries Based on Example Tuples. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 493–504, 2014.

[71] L. Sidirourgos, M. L. Kersten, and P. A. Boncz. SciBORQ: Scientific data
management with Bounds On Runtime and Quality. In Proceedings of the
Biennial Conference on Innovative Data Systems Research (CIDR), pages
296–301, 2011.

[72] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J. Efron,
R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson. Big data: astronomical or
genomical? PLoS Biol, 13(7):e1002195, 2015.

[73] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A System for Query, Analysis, and
Visualization of Multidimensional Relational Databases. IEEE Transactions on
Visualization and Computer Graphics (TVCG), 8(1):52–65, 2002.

[74] M. Stonebraker and J. Kalash. TIMBER: A Sophisticated Relation Browser
(Invited Paper). In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 1–10, 1982.

[75] C. Surajit. Data Exploration Challenges in the Age of Big Data. In Proceedings
of the International Workshop on Business Intelligence for the Real-Time
Enterprise (BIRTE), 2016.

[76] A. Wasay, M. Athanassoulis, and S. Idreos. Queriosity: Automated Data
Exploration. In Proceedings of the IEEE International Congress on Big Data,
pages 716–719, 2015.

[77] M. L. Williams, K. M. Fischer, J. T. Freymueller, B. Tipoff, and A. M. TrÃl’hu.
An earthscope science plan 2010-2020, feb 2010.

[78] E. Wu, L. Battle, and S. R. Madden. The case for data visualization
management systems. Proceedings of the VLDB Endowment, 7(10):903–906,
2014.

[79] S. Wu, B. C. Ooi, and K.-L. Tan. Continuous Sampling for Online Aggregation
Over Multiple Queries. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 651–662, 2010.

[80] T. Wu, D. Xin, and J. Han. ARCube: Supporting Ranking Aggregate Queries in
Partially Materialized Data Cubes. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 79–92, 2008.

[81] X. Xie, X. Hao, T. B. Pedersen, P. Jin, and J. Chen. OLAP Over Probabilistic
Data Cubes I: Aggregating, Materializing, and Querying. In Proceedings of the
IEEE International Conference on Data Engineering (ICDE), pages 799–810,
2016.

[82] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Computing Iceberg Cubes
by Top-down and Bottom-up Integration. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 476–487, 2003.

[83] J. X. Yu, L. Qin, and L. Chang. Keyword Search in Relational Databases: A
Survey. IEEE Data Engineering Bulletin, 33(1):67–78, 2010.

[84] Y. Zhao, P. Deshpande, and J. F. Naughton. An Array-Based Algorithm for
Simultaneous Multidimensional Aggregates. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 159–170,
1997.

[85] C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed segment tree: Support of
range query and cover query over DHT. In International workshop on
Peer-To-Peer Systems, IPTPS 2006, Santa Barbara, CA, USA, February 27-28,
2006.

[86] Y. Zhu and D. Shasha. StatStream: Statistical Monitoring of Thousands of Data
Streams in Real Time. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 358–369, 2002.

APPENDIX
A. DATA CANOPY FOOTPRINT

As mentioned in Section 2.7, the Data Canopy footprint (F)
quantifies the memory overhead of Data Canopy. We define the
Data Canopy footprint with respect to both a single statistic and a
set of statistics, as the number of basic aggregates per column re-
quired to synthesize all instances of that statistic or set of statistics
from Data Canopy. Below we elaborate how it applies to univariate
and bivariate statistics.

Univariate Statistics. The Data Canopy footprint of univariate
statistics is independent of the number of columns c. This is be-
cause to compute univariate statistics on a column, we require no
information from other columns. For example, the Data Canopy
footprint of mean is 1 because we need to keep only the sum for
every column to synthesize the mean. Similarly the Data Canopy
footprint of variance and standard deviation is 2.

Bivariate Statistics. The Data Canopy footprint of bivariate statis-
tics depends on the number of columns c as they require informa-
tion from pairs of columns. For example, to synthesize all pairwise
correlations, we need sums and sums of squares of all c columns
as well as c·(c−1)

2 sums of pairwise products i.e., a total of 2+(c−1)
2

basic aggregates per column.

Set of Statistics. The Data Canopy footprint is similarly defined
for a set of statistics. For example, the Data Canopy footprint of
mean and variance is 2 whereas the Canopy footprint of standard
deviation, mean, and correlation is 2+(c−1)

2 .
Using terms from Table 2, we define the size of Data Canopy

storing a set of statistics S as follows:

|DC(S)|= c · (2 ·h−1) ·F (S) · vst

B. COMPOSABILITY
Here we define the concept of composability, which can be used

to characterize the reusability of the basic aggregates cached by
Data Canopy. Composability is the extent to which basic aggre-
gates are shared by the set of statistics S supported by Data Canopy.
Formally, it is the ratio between the number of basic aggregates
shared by all members of S and the total number of basic aggre-
gates required to synthesize S.

Let B(S) be the set of basic aggregates required to synthesize a
statistic S, then the composability of S, given by C (S) is:

C (S) =
⋂i=|S|

i=1 B(Si)⋃i=|S|
i=1 B(Si)

For instance, the composability of S = {mean, variance, standard
deviation} is one-half. C (S) is zero when none of the statistics
share any of the basic aggregates. On the other hand, C (S) is one
when the same set of basic aggregates can be used to compute every
member of S. A highly composable set of statistics will result in
better reusability and lower memory requirement.

C. REAL WORLD DATA SETS
We quantify the number of columns and rows in publicly avail-

able data sets in healthcare, social science, and data science. We
use these properties of real world data sets to design our experi-
ments, and establish the feasibility of Data Canopy.

For healthcare, we look at MIMIC, a database with information
about patients admitted to critical care units [49]. For quantitative
social science, we look at data sets from the General Social Survey
(GSS) [5] and the Quality of Government (QOG) Institute [6]. For
data science, we look at the ten most frequently analyzed datasets
on Kaggle, an online platform that hosts data science competitions
[4]. All these data sets are both widely used and cited in their re-
spective fields. Table A shows the number of columns and rows
(range) for each of the data sets. Alongside, we provide the size of
an optimal in-memory Data Canopy for each of the data sets.

Data sets Columns (c) Rows (r) max |DC| (GB)
MIMIC 4 - 27 134 - 33M 0.9
QOG 44 - 2500 75 - 13885 2.9
GSS 10 - 296 100 - 10M 30.7
Kaggle 38 - 211 1.3M - 1.35M 2.1

Table A: Typical data sizes for data sets from healthcare, social
science, and data science.

D. SCALABILITY
Here we provide additional experiments for scalability. In par-

ticular, we show how Data Canopy scales with hardware contexts
and the number of queries.

64

128

256

512

1 2 4 8

C
on

st
. t

im
e

(s
)

Number of cores

Figure A: The construction of Data
Canopy scales linearly with the
number of cores.

Scaling with HW contexts.
We first show the construc-
tion of Data Canopy scales
as we increase the number
of cores. We construct a
complete Data Canopy (on
40 million rows and 100
columns) as we increase the
amount of cores. Figure A
shows that the construction
time of Data Canopy goes
down linearly with the num-
ber of cores. This is because
the basic aggregates can be
computed and cached completely in parallel.

Scaling with the Number of Queries. We now show how Data
Canopy scales when we increase the number of queries. We keep
the same overall setting as before. We report scaling results only
for the range-uniform workloads (U and Z). This is because for
the range-zoom-in workloads (U+ and Z+), Data Canopy is com-
pletely built after the first 500 queries. Thus, all future queries are
synthesized directly from Data Canopy (with minor data accesses
to compute residual ranges), and the average response time remains
constant thereafter.

Figure B shows the results. To make it easier to interpret, we re-
port the average response time for every sequence of 50K queries.
The more queries are processed, the more Data Canopy improves.
For example, the last query takes up to 190.9× less time to com-
pute than the first one. Toward the second half of the query se-
quence, the pace of improvement decreases as more queries can
be synthesized directly from the library of basic aggregates with-
out accessing the base data. The initial improvement in average
response time is higher for workload Z as compared to workload
U because queries exhibit more locality in the first one; once the
library of basic aggregates is constructed, though, performance is
nearly the same for both workloads as all queries are resolved di-
rectly from this library with only minor access to base data (for
residual chunks).

E. MODEL VERIFICATION
We now verify the query cost model that we developed in Section

2.7. Similar to the analysis in Figure 8, we vary the chunk size for
various number of rows and observe how this affects performance.
The results are shown in Figure C. We report the total execution
time of 10K queries from the U workload on 100 columns.

There are two observations. First, the experimental results ver-
ify the behavior we see from the model in Figure 8. That is, there
is a convex shape and for all data sizes there is a common chunk
size area where we get the optimal overall performance. Second,
this area is actually quite large (the x-axis is logarithmic) and so
picking any chunk size that is close enough to the center of this
area gives optimal behavior. A positive side-effect of this is that
we do not have to make our query cost model any more complex,
i.e., by adding separate weights for when a cache access is a miss
or a hit to capture the different latencies (traversing a segment tree
will typically cause cache misses while scanning chunks at the end-
points of the query range (residual range) will typically cause a
cache miss followed by more than one cache hits). Capturing sim-
ply the number of accessed cache lines allows us to get an estimate
close enough in the optimal range, i.e., our analysis (as shown in
Figure 8) estimates the optimal chunk size to be 220 bytes while
Figure C shows that indeed 220 bytes is within the optimal range.
An important side-effect of taking advantage of this behavior is that
we do not need a training process for different machines (e.g., to
figure out the cost of different accesses) - all we need is the cache
line size. To fully optimize performance we pick a chunk size that
is a multiple of the cache line. That is, the model gives us an opti-
mal chunk size of 220 bytes, which we translate to a default chunk
size of 256 bytes (4 times 64 which is the cache line size).

F. HANDLING MEMORY PRESSURE
Here we continue our analysis for the scenario when there is in-

creased memory pressure. Specifically, we show how Data Canopy
compares with Statsys (our baseline system that shares the code-
base with Data Canopy but always compute statistics from data in-
stead of basic aggregates). We set up an experiment with 8GB of
main memory and Data Canopy operates in the online mode. The
number of columns is fixed to 100 and we vary the number of rows
to test the performance of Data Canopy across different stages of
Phase 1 and 2 of out-of-memory policy.

Figure D shows the total execution time of 10K queries from the
U workload under different memory pressures. In Phase 1, Data
Canopy remains consistently 4× faster than Statsys. As the mem-
ory pressure builds up and Data Canopy transition to Phase 2, it
continues to give a performance improvement of 4× even when
only 50 percent of the data fits in memory. Under extreme memory
pressure (only 25 percent of the data fits in memory) Data Canopy
still results in 2× performance improvement.

G. BIVARIATE STATISTICS FEASIBILITY
Next, we show that under memory pressure Data Canopy can still

efficiently support tens of thousands of bivariate statistics over a
wide range of data sizes. In this analysis, the main memory budget
is set to 16GB, and Data Canopy operates in Phase 2 of the out-
of-memory policy. The chunk size is equal to a page size (64KB).
All univariate segment trees are in memory. Figure E shows the
number of bivariate segment trees that Data Canopy supports in the
remaining amount of main memory across a wide range of data
sizes. Each of the segment trees can be used to answer a bivariate
statistic over any range of a pair of columns.

We observe that even for large data sets (1T rows and 1000
columns, data size to memory ratio of 1:250), Data Canopy can
still efficiently support up to 10000 bivariate statistics, in addition
to all univariate statistics.

0

1

2

3

4

5

0 2x105 4x105 6x105 8x105 1x106

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)

Query sequence

U Z

Figure B: As we increase the number of
queries, the query response time continu-
ously goes down (up to 190×).

4
8

16
32
64

128
256

16 64 256 1024 4096 16384 65536

To
ta

l E
xe

cu
tio

n
tim

e
(s

)

Chunk size (bytes)

1M
10M

100M
1B

Figure C: The query performance of Data
Canopy is a convex function of the chunk
size.

0
500

1000
1500
2000
2500

2.4 3.9 5.7 6.6 7.9 9.6

100 100 100 75 50 25

Phase 1

Phase 2

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Number of rows (M)

Base data in memory (%)

DC
StatSys

Figure D: In memory-constrained settings,
Data Canopy provides 4× performance im-
provement over Statsys.

104

105

106

107

108

1 100 200 300 400 500 600 700 800 900 1000

1M rows

10M rows

100M rows

1T rows

In
-m

em
or

y
bi

va
ria

te
 st

at
is

tic
s

Number of columns
Figure E: Data Canopy can support tens of
thousands of bivariate statistics.

 0
 10
 20
 30
 40
 50
 60
 70

0 1x103 2x103 3x103 4x103 5x103 6x103 7x103 8x103

x2 rows

x2 columns

x2 both

R
es

po
ns

e
tim

e
(s

)

Query sequence

Insert
Reconstruct

Figure F: Data Canopy gracefully handles
new data.

 0

 5

 10

 15

 20

 25

0 1 2 5 25 50 75 100

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Point updates (%)

Query
Update

Figure G: Updates in Data Canopy result in
negligible overhead.

H. UPDATES
Now we show that Data Canopy seamlessly handles updates.

Insertions. First, we show that Data Canopy efficiently handles
insertions of new rows and new columns. We compare how Data
Canopy incrementally handles updates to a strategy, where Data
Canopy is built anew every time new data is added. We call this
the reconstruct strategy. In this experiment, Data Canopy starts off
with 25 columns and 100 million rows and operates in the online
mode. New data is added in three phases: (1) the number of rows
are doubled, (2) the number of columns are doubled, and (3) both
the number of rows and columns are doubled. There is an interval
of 2000 queries between each of the phases. At any point in time,
we run the U workload that targets all data that is in the system. We
report the response time as the sequence of queries passes through
the three phases in Figure F. We observe that as new data is added,
there is an initial increase in response time that converges to the
optimal for both strategies. The incremental strategy employed by
Data Canopy results in lower initial overhead as well as converges
faster to stable performance as compared to the reconstruct strat-
egy. This is because in the incremental strategy, both the insertion
of new rows and new columns is handled in a lightweight manner
(merely adding metadata to the catalog) and basic aggregates are
materialized only when and if queries target the new data. In ad-
dition to this, the existing library of basic aggregates is completely
reused, whereas with the reconstruct strategy, the library is built
from scratch after every insertion phase.

Updates. Next, we show that response time is minimally impacted
in the presence of updates to existing data. We show this for a vary-
ing percentage of updates in the workload. We set up an experiment
with 100 columns and 100 million rows. We run 2000 queries from
the U workload with varying percent of point updates in the work-
load. Figure G shows the total execution time as we increase the
proportion (percentage) of point updates in the workload. As we in-
crease the proportion of point updates in the workload, the number
of read queries decreases resulting in an overall decrease in execu-
tion time. Throughout this time, the overhead introduced by point

updates remains low. In low updates scenarios (1 to 5 percent point
updates) the overhead is less than 1 percent. For extremely high up-
date scenarios (25 to 75 percent point updates), the average update
overhead is still below 10 percent of the total execution time.

I. DATA EXPLORATION
Here we discuss how Data Canopy relates to modern data explo-

ration efforts. Data Exploration has received a lot of research inter-
est within the data systems community [47, 76]. Exploratory Inter-
faces steer data scientists through the data space by providing both
insights and further queries: Recent approaches discover relevant
data objects based on relevance-feedback [28] or by performing a
variation of faceted search [29]; Query recommendation systems
help data scientists ask relevant questions based on the data set and
their past interests [8, 70, 83]. Visual Analytics reduce the cognitive
effort of data exploration by augmenting data systems with visual
and gestural interfaces: Various approaches enable data scientists
to visually browse data sets [73, 74, 78]; Recommendation systems
automatically select an appropriate visualization given a data set
[52]; DbTouch [55] and GestureDB [63] develop database kernels
and languages that can be controlled by fingertips; recent efforts
also work toward novel visualization languages [43]. Approximate
query processing provides estimated answers to exploratory queries
in orders of magnitude less time, by touching a fraction of base
data. It uses samples of the data set to answer queries satisfying a
user-defined accuracy [9, 37, 71].

Data Canopy as a framework for exploratory statistical analysis
is complementary to all aforementioned efforts. None of the works
described above are about making the process of computing statis-
tics more interactive. Data Canopy can help make any process that
contains iterative computation of statistics more interactive. Simi-
larly, recommendation systems can make use of various descriptive
and dependence statistics for faster and more informed recommen-
dations. Data Canopy can also benefit from many of these research
directions in the general field of data exploration. For instance,
sampling and approximation techniques can be applied to create
Data Canopy with approximate guarantees.

	Introduction
	Data Canopy
	Example
	Design Concepts
	Data Structure
	Operation Modes
	Query Processing
	Analyzing Query Cost
	Selecting the Chunk Size
	Out-of-Memory Processing
	Updates

	Experimental Analysis
	Reuse in Exploratory Statistical Analysis
	Accelerating Machine Learning
	Scalability
	Handling Memory Pressure
	Memory Footprint and Feasibility

	Related Work
	Conclusion
	References
	Data Canopy Footprint
	Composability
	Real World Data Sets
	Scalability
	Model Verification
	Handling Memory Pressure
	Bivariate Statistics Feasibility
	Updates

	Data Exploration

