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ABSTRACT
DASlab is a new laboratory at the Harvard School of
Engineering and Applied Sciences (SEAS). The lab was
formed in January 2014 when Stratos Idreos joined Har-
vard SEAS. DASlab curently consists of 3 PhD students,
1 postdoctoral researcher and 9 undergraduate researchers
while it is set to double its graduate student popula-
tion in the next one to two years. The lab is part of
a growing community of systems and computer science
researchers at Harvard; computer science faculty is sched-
uled to grow by 50% in the next few years.

The main focus of DASlab is on designing data sys-
tems that (a) make it easy to extract knowledge out of
increasingly diverse and growing data sets and (b) can
stand the test of time.

1. INTRODUCTION
At DASlab our long-term goal is to assist in mini-

mizing the time it takes to turn data into knowledge
by designing and building novel data systems, tai-
lored for the new and ever-evolving challenges of a
data-driven world.
Today knowledge hides in plain sight. It is quite

likely that we already have all the raw data to dis-
cover solutions for many of the worlds big scientific
challenges and we just do not have the proper sys-
tems (i.e., algorithms and data structures) to an-
alyze the existing data or we simply do not know
what to look for. As the size of the data we collect
grows, data systems have become one of the most
fundamental bottlenecks for data analytics; storing,
accessing and analyzing raw data has to happen be-
fore any meaningful observations can take place and
as it stands today we cannot even move, let alone
store, access and analyze all our data.
In this document, we provide a brief overview of

some of the research projects that are currently un-
der way at DASlab and discuss our long term goal
and motivation. Our research is driven by two fun-
damental goals outlined below.

Everyone should be a data-scientist. Knowl-
edge is power and should be accessible to everyone.
The more data we collect, though, the harder it
becomes to make sense of the data. Today analyz-
ing data requires expertise and resources that very
few individuals hold. What if we made it equally
easy for data scientists, data systems experts, as-
tronomers, biologists, statisticians, as well as the
general public to extract knowledge out of data via
auto-tuning, interactive and intuitive data systems?

We should not have to design new data

systems every decade. Computer science is a
fast moving field. Every few years the environ-
ment changes dramatically with new hardware and
new application requirements (meaning new data
formats, models, etc.). What if we did not have
to completely and manually redesign our data sys-
tems, algorithms and data structures every decade?
What if we spend this energy designing more power-
ful ways to analyze data with systems that can au-
tomatically evolve to match the new environment?

The two high level goals above are strongly inter-
connected and they both lead to a vast array of fun-
damental computer science challenges. Our focus is
on designing big data systems that are easy to use,
i.e., with as few knobs as possible and with as little
human input as possible; systems that just work, no
matter the underlying hardware properties. Our vi-
sion is that data systems should be intuitive to use
and interactive, guiding the user towards the in-
teresting patterns in the data, doing just enough to
generate the maximum insight within a limited time
and resources budget. Indexing, tuning, optimiza-
tion and other complex technical features should all
be actions that are continuously active but always
hidden from the users.

2. RESEARCH DIRECTIONS
In this section, we briefly describe some of the

ongoing research projects at DASlab, focusing on
discussing motivation and goals.



2.1 Self-designing Data Systems
Di↵erent applications and di↵erent hardware re-

quire di↵erent system designs to achieve optimal
performance (i.e., throughput, query-latency, energy-
performance etc.). Yet, so far, all data system ar-
chitectures are static, operating within a single and
narrowly defined design space (NoSQL, NewSQL,
SQL, column-stores, row-stores, etc.) and hard-
ware profile. Historically, a new system architec-
ture requires at least a decade to reach a stable
design. However, as we go deeper into the big data
era, hardware and applications evolve continuously,
leaving data-driven applications locked with sub-
optimal systems. The more our businesses, sciences
and every day life become data-driven, the more
this becomes a fundamental shortcoming.
In this project, we ask the following question:

How many aspects of data system design can be ab-
stracted and automated? The end goal is that such
systems take the “shape” of the data and queries
with minimum human intervention during the de-
sign phase. This leads to systems that are fully
tailored for a specific scenario and hardware profile,
yet they are fast to design and implement. The ideal
end result is fully self-designed and self-implemented
systems.
We are currently experimenting with several ideas

and designs about how data systems can self-design
some of their most critical components. For ex-
ample, inspired by the theory of evolution, a self-
designing system may deploy multiple competing
solutions down at the low level of its architecture
such as using various combinations of data layouts,
access methods and execution strategies. Then “the
fittest design wins” and becomes the dominant ar-
chitecture until the environment (workload and hard-
ware) changes again. As new data and queries come
in, a system evolves such that its architecture matches
the properties of the incoming workload. Other re-
search directions include the adoption of ideas from
machine learning to make system design decisions,
the use of advanced statistic models and what if
analysis, as well as applying these concepts in com-
bination.
Essentially, there are two distinct opportunities

with this line of work. The first one targets system
design: Given a set of data, queries and hardware,
return a data system. The second one targets tun-
ing of an existing system in an environment with
diverse workload and hardware properties. In such
cases, the complexity of the system tuning options
makes it impractical to manually tune as the envi-
ronment often changes over time as well.

As a more concrete example to what a self-design-
ed system can be useful for, imagine the scenario
where a research lab or a company has multiple dif-
ferent workloads that require very di↵erent system
architectures while new requirements appear fre-
quently. With self-designed data systems the data
scientists would only need to point the system to the
di↵erent datasets and it would take the appropriate
shape for each one of them.

What does the appropriate shape mean? Query
languages, data models, data layouts, physical lay-
out, query processing operators are only a few of the
design dimensions that a self-designed data system
needs to decide upon. In our research, we started
working throughout the whole stack by keeping the
least common denominator so as the resulting sys-
tem is generic and expandable enough. We consider
the relational data model as well as RDF and other
hierarchical data models, and we currently inves-
tigate the physical storage of such data, including
the traditional row-store and column-store layouts
as well as hybrid layouts.

This line of research creates numerous opportuni-
ties to bootstrap new applications, to automatically
create systems that are tailored for specific scenar-
ios, to minimize system footprint and automatically
adapt to new hardware.

2.2 Queriosity: Auto-exploration
Data exploration is the natural paradigm for ex-

tracting knowledge out of data. It involves a series
of steps such as: take a look at the data, try out a
few models to see if they fit, look for outliers, learn
from this experience and data seen so far, zoom into
or out of this data set and repeat until satisfied with
the knowledge gained. The output of each step is
the input of the next one. Yet modern data systems
are not designed with data exploration in mind.

Modern data systems are based on strict forms of
interaction and they are designed for expert users
who know enough both about the application do-
main and about how to set-up, tune and interact
with data systems. This state of a↵airs restricts
significantly the range of people who can actually
explore data as well as the time it takes to extract
knowledge out of growing data sets.

In this project, we ask the following question:
What if we had systems that can automatically ex-
plore rich data sets and report back interesting facts?
We are designing an autonomous “data robot”, Que-
riosity, a portmanteau of query and curiosity.

Queriosity’s goal is to explore data sets and fig-
ure out interesting patterns. It continuously learns
about the fastest way to explore a given data set,



observes how interesting its findings are for the user
and adjusts its strategy accordingly. As a result,
with Queriosity the demanding task of data explo-
ration is reduced to just the following two steps on
the part of the user:

Here is a data set I want to explore;
Show me something interesting.

No more input from the user is needed other than
confirming that a given insight is useful or not. Que-
riosity finds new insights as well as new relevant
data sets automatically.
The design of an autonomous data exploration

system that learns continuously presents various chal-
lenges on the conceptual as well as the system level.
On the conceptual ground, for instance, we need
to answer questions such as the following: What
statistical properties of a dataset mirror user’s in-
terest? How can these indicators be determined
without a priori information of either the dataset,
the domain or both? What does it mean for an
exploratory system to learn from experience? On
the other hand, building the first autonomous data
exploration system we are confronted with system
level challenges such as the following: How to de-
sign a system that remains interactive while explor-
ing and learning from potentially Petabytes of data?
What form should the eventual system take i.e., col-
laborative, stand-alone or a hybrid? How does such
a system integrate with myriads of existing data
systems and data representations? How can it be
designed to remain relevant decades from now?
With the prevalence of paradigms such as data-

intensive science, Internet of things and information
governance, we envision Queriosity finding applica-
tion in virtually all domains as a personal data sci-
entist that assists, data scientists in businesses and
scientific research as well as people in every day life
that try to make sense of the data around us.

2.3 Interactive and Visual Analytics
Why should researchers and data scientists have

to learn complex languages and interfaces to use
a data system? Why should they wait for several
hours or days to analyze big piles of data if they only
care about a small part? A data scientist should be
able to simply point to the data and start extracting
knowledge immediately.
The fundamental problem we are addressing in

this project is that it is not easy anymore to ex-
tract knowledge out of data. Modern data scien-
tists are confronted with complex systems and tools
that lead to the following problems: (a) they are
slow as they are designed with the traditional no-
tion of processing all data to always give complete

answers, (b) they rely on complex interfaces and
languages which are meant only for experts of a spe-
cific system category and (c) they require expertise
in terms of system tuning. The side e↵ect is that
data analysis becomes slow and requires expertise
which becomes harder and harder for a single per-
son to acquire. This directly translates to a signifi-
cant financial overhead for businesses and scientific
research labs. For example, a delay in the acquisi-
tion of knowledge implies lost business opportuni-
ties, while the need for more expertise implies that
more personnel is required.

In this project we enable data analytics via in-
tuitive touch interfaces and gestures and work to-
wards a new class of data systems that are designed
from the ground up to be interactive and tailored
for data exploration. A data scientist can see, touch
and explore data directly on a tablet device and can
fully drive low-level query processing actions and
complex analytics via gestures. The new paradigm
is that the system continuously adjusts its storage
and data access patterns to match the exploration
path, it accesses only as much data as needed to in-
stantly provide enough visual feedback to the data
scientist, introducing a radically new data process-
ing paradigm that is tailored for interactive explo-
ration. Instead of having to learn complex lan-
guages and interfaces, data scientists interact with
the data system via intuitive gestures. Instead of
having to wait to set up and tune the system and
its low level knobs, the system automatically ad-
justs to the tasks a data scientist performs. Instead
of having to wait long stretches of time to get a com-
plete answer over a big data set, the system gives a
quick answer back and data exploration takes place
as a continuous interaction between the data sys-
tem and the data scientist which step by step leads
to the interesting part in the data.

For example, in our current working prototype a
data scientist can work directly over an iPad tablet
using touch gestures. Data is visualized in the form
of various geometric shapes (e.g., rectangles) and
a data scientist can declare various queries/actions
such as scans and aggregations and can start touch-
ing the data with slide and zoom-in/out gestures
as opposed to using complex query languages. As
data is being touched, the system plots interactive
graphs to communicate the observed data patterns
only for the actions performed and only for the data
touched. As the data scientist adjusts the gesture
characteristics and area of the data touched, the
graphs get increasingly more complete and the data
patterns become more and more apparent. The
system is interactive enough such that every sin-



Figure 1: Interactive gesture-based exploration with dbTouch [18,26].

gle touch instantly translates to a visual change in
the interactive graphs and data scientists can im-
mediately use this information as feedback on which
parts of the data they should focus next. Figure 1
depicts a screen-shot of our current prototype; the
grey circle shows where a finger touches a data ob-
ject which results in data plotted on the right hand
side. With a few simple slide gestures we can get a
quick understanding about the data distribution in
the data set represented by the rectangle objects.
The x-axis in the plot represents row-ids while the
y-axis represents data values.
We are currently exploring similar ideas for data

analytics via 3D gestures and in virtual reality en-
vironments. The common challenge is the design
of data systems kernels that are interactive at their
core regardless of the data sizes as opposed to state
of the art systems that are monolithic.

2.4 Indexing in Modern Data Systems
Modern data systems do not rely on indexing in

the same way past systems did. At a first glance this
is for a good reason. For example, modern systems
that target analytical workloads can perform very
e�cient scans using technologies such as column-
storage which allows for reading fewer data items
than a traditional row-store. In addition, relying
on fixed width and dense columns allows for scans
with tight for-loops which give excellent opportuni-
ties for prefetching and eliminate if statements and

branch misses from the critical path. Similarly, ex-
ploiting SIMD and modern multi-core CPUs, as well
as working directly over compressed data, allow for
extremely fast scans. Another significant trend is
that with larger memory sizes, data systems appli-
cations will store all hot data in memory, remov-
ing the major bottleneck of reading data from disk.
At the same time, advanced query processing tech-
niques allow for scans to answer multiple queries
at the same time in environments where concurrent
query requests are the norm; essentially we can an-
swer N queries with the cost of a single scan.

In light of all these developments here we ask the
question: Are secondary indexes still useful today
and if so in what form? In our research we con-
sider multiple variations of secondary indexes, from
full indexes like a B+-Tree to partial indexes like
zonemaps. We analyze modern data systems us-
ing both models and experimentation. Our initial
findings suggest that the decision of index use re-
quires not only the traditional parameter of query
selectivity but also other system conditions. This
is especially true in light of a new trend in modern
analytical workloads: increasing query concurrency.

We also find that designing strict index structures
sacrifices performance when the workload changes.
This leads to the investigation of dynamic and mor-
phable data structures that can balance read, write
and space amplification on-the-fly.



2.5 Hardware Software Co-design
Typically, software is being designed based on,

apart from the workload, the available hardware.
In this line of research, we investigate opportunities
to reverse this relationship. The driving force of
hardware development has been the applications,
hence, in a perfect world hardware should be co-
designed with the software. As a concept this is
not a new idea; database machines have been stud-
ied extensively in the past and have been revisited
in recent years. There were good reasons to aban-
don such ideas in the past especially given how
fast commodity hardware was evolving and scal-
ing but there are also exciting new opportunities
today. Rather than proposing a full hardware re-
design, in this project we investigate more hybrid
solutions where the architecture of a database sys-
tem remains generic enough and can be assisted by
strategically placed accelerators that exploit game-
changing modern hardware properties. Below we
describe two of the directions we are pursuing.
Near Memory Processing. As the cost of ac-
cessing main memory becomes increasingly expen-
sive and the memory size becomes larger, the main
bottleneck of any data system is caused by fetching
data to the processor. Here we ask the question:
Which parts of the processing can be o✏oaded in a
generic enough way to functional units near mem-
ory or disk? We design near-data query operators
like select and project and we currently investigate
the design of other operators, like hashing, sorting,
and aggregations. Envisioning a complete architec-
ture for near memory processing hardware is not as
straightforward as pushing all actions close to the
data. For example, while it is easy to see that it
makes sense to push all selections, when it comes to
more complex operators such as joins the discussion
becomes more interesting; data after a join may be
bigger than before, and so we may end up pushing
more data up the memory hierarchy.
The Relational Disk. One of the most chal-
lenging questions in data management recently has
been the bridging of the requirements of transac-
tional and analytical workloads. There have been
many proposals on the data systems layer, while,
arguably, it has proven to be very di�cult to pro-
vide a system capable of doing both analytical and
transactional processing equally e�ciently. Here we
ask the question: What is needed from the hardware
in order to build a data system capable of bridg-
ing the analytical and transactional processing? A
disk-subsystem capable of delivering column-store
performance when accessing a single column, yet
supporting row-wise updates is the ultimate goal.

Such a storage subsystem which we call The Rela-
tional Disk requires either a radically new hardware
design assuming, instead of generic file structure,
relational file organization, or enough add-on func-
tionality (accelerators) to present the “illusion” of
optimal row-wise and column-wise accesses.

3. INSPIRATION AND PAST WORK
For our work at DASlab we draw inspiration from

several lines of work in the DB community. Most
prominently we align with other exciting work on
database architectures, adaptive systems and data
exploration. Our own past work lies on a breadth
of topics and is joint work with several labs, more
frequently with colleagues from the database groups
at CWI, EPFL, HP Labs, Microsoft Research, IBM
Research, Google, Paris Descartes University, and
NUS. The big chunk of our past work has focused
on a series of topics on how to minimize the cost of
bootstrapping database systems. Below we briefly
point to some of these research projects.

With our work on adaptive indexing we have stud-
ied the design of modern data systems where index-
ing requires zero human intervention and tuning.
Indexes are created adaptively and incrementally as
a side-e↵ect of query processing [10, 15, 17, 9, 16, 7,
20, 32, 35, 31, 8]. Building on top of such adaptive
ideas our work on column/row hybrids proposes a
system with adaptive storage components [4] that
can choose the optimal layout on-the-fly.

Similarly, our work on adaptive loading presents
the design of systems that do not require data load-
ing up front. Instead, such systems can work di-
rectly on top of raw data, while matching the per-
formance of traditional systems [12, 2, 3].

Our work on touch-based interactive systems in-
troduced the idea of systems that are interactive
enough to immediately react on gestures that rep-
resent query actions over big data sets [18, 26].

Our past work also includes work on core archi-
tecture topics such as column-store architectures [1,
5, 13], exploiting compressed indexes [14], designing
column-stores that support stream processing [25,
29, 30], e↵ectively utilizing compression during join
processing [24] as well as proposing statistics obliv-
ious access paths [6].

Furthermore, our past work has also focused on
distributed query processing, for several di↵erent
data models, e.g., relational [22, 19], information
retrieval [33, 34] and RDF [28, 27].

Finally, much of the above work can be captured
under the umbrella of data exploration techniques
in an e↵ort to design database kernels that support
data exploration at their core [11, 23, 21].
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