
Entropy-Learned Hashing
Constant Time Hashing with Controllable Uniformity
Brian Hentschel

Harvard University

Utku Sirin

Harvard University

Stratos Idreos

Harvard University

ABSTRACT
Hashing is a widely used technique for creating uniformly ran-

dom numbers from arbitrary input data. It is a core component

in relational data systems, key-value stores, compilers, networks

and many more areas used for a wide range of operations includ-

ing indexing, partitioning, filters, and sketches. Due to both the

computational and data heavy nature of hashing in such opera-

tions, numerous recent studies observe that hashing emerges as a

core bottleneck in modern systems. For example, a typical complex

database query (TPC-H) could spend 50% of its total cost in hash

tables, while Google spends at least 2% of its total computational

cost across all systems on C++ hash tables, resulting in a massive

yearly footprint coming from just a single operation.

In this paper we propose a new method, called Entropy-Learned

Hashing, which reduces the computational cost of hashing by up

to an order of magnitude. The key question we ask is “how much

randomness is needed?”: We look at hashing from a pseudorandom

point of view, wherein hashing is viewed as extracting randomness

from a data source to create random outputs and we show that

state-of-the-art hash functions do too much work. Entropy-Learned

Hashing 1) models and estimates the randomness (entropy) of the

input data, and then 2) creates data-specific hash functions that

use only the parts of the data that are needed to differentiate the

outputs. Thus the resulting hash functions canminimize the amount

of computation needed while we prove that they act similarly to

traditional hash functions in terms of the uniformity of their outputs.

We test Entropy-Learned Hashing across diverse and core hashing

operations such as hash tables, Bloom filters, and partitioning and

we observe an increase in throughput in the order of 3.7X, 4.0X,

and 14X respectively compared to the best in-class hash functions

and implementations used at scale by Google and Meta.

KEYWORDS
hashing, hash tables, Bloom filters, point indexing

ACM Reference Format:
Brian Hentschel, Utku Sirin, and Stratos Idreos. 2022. Entropy-Learned

Hashing Constant Time Hashing with Controllable Uniformity. In Proceed-
ings of the 2022 International Conference on Management of Data (SIGMOD
’22), June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3514221.3517894

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3517894

Hashing

Hash tables
Filters
{x, y}

Partitioning

Networks
CompilersDatabases

Data structures &
algorithms

Applications

Genomics File systems

Load balancing Sketches

k

Figure 1: Hashing is a core element for numerous fundamen-
tal components across diverse classes of systems.

1 DATASET SPECIFIC HASHING
Hashing is Central to Computer Systems.Hashing is one of the
core concepts in computer science; data structures and algorithms

which use hashing exist in nearly every computer program. It’s

most ubiquitous use case, hash tables, is the standard way to access

individual data items. They are used both for fast access to hot

data in L1 cache across general purpose programs as well as for

accessing colder data that lies outside of cache either in memory

or on disk. For example, in relational database systems hash tables

are used for joins and group by operations. Beyond hash tables,

hashing is used in numerous other core parts of computer science

such as filters [11], data partitioning [55], load balancing [42], and

sketches [15, 25]. As a result of their many and important use cases,

hashing is not only central within relational databases [58, 59]

but acts as a core component of systems across compilers [3], file

systems [63, 69], gaming [28], genomics [43], and more. This effect

is depicted visually in Figure 1 where hashing is shown as the core

design element used to build numerous fundamental operations,

data structures, and algorithms (hash tables, filters, partitioning,

etc.) which in turn are are core components of diverse systems.

Hashing: Expensive at Scale. Because hashing is so ubiquitous,

hash functions and their uses are a substantial portion of overall

system cost. Google states that 2% of its total CPU usage and 5% of

its total RAM at the company is spent on just one hash-based data

structure, hash tables, in just one of the languages used, C++ [36].

Including other languages and other hash-based operations, the to-

tal CPU and memory usage spent on hashing overall is surely much

higher. Meta makes similar statements, with developers stating that

hash tables are such "a ubiquitous tool in computer science that

even incremental improvements have large impact" [16]. Moving

from large cloud infrastructure to particular applications, inside

databases hash-based joins and aggregations are amongst the most

expensive and used operators; as a concrete example they account

for over 50% of total time on 17 of the 22 queries on the TPC-H

benchmark for the Hyrise DBMS [23, 62]. A second example can be

seen in compilers, where using hash tables in linking is a substantial

https://doi.org/10.1145/3514221.3517894
https://doi.org/10.1145/3514221.3517894

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA Hentschel, Sirin, and Idreos

part of program compilation costs in Visual Studio [3]. Moving be-

yond hash tables, filters are a key computational bottleneck in LSM

trees [21, 71], while similarly sketches act as a key computational

bottleneck in network switches [40]

These observations across diverse industries, systems and data

structures spell out an important fact: despite numerous algorith-
mic and engineering advances, hashing use cases are still expensive
because of the frequency and scale at which they are used.
Randomness vs. Performance. To start drilling in at both the

source of the problem and our solution we will next discuss the

core mechanisms and trade-offs in hashing. A core component of

all hash-based data structures and algorithms is the hash function

itself, with hash functions having two primary goals. The first

is to create uniformly random outputs for any number of input

items. That is, the output should be jointly uniform as well as

marginally uniform. The second is computational efficiency. While

ideally both goals would be optimally achievable, these two goals

are practically at odds with each other. Thus a central question for

all hash-based operations is how much randomness is needed from

the hash function for the operation at hand.

Guarantees Without Assumptions on the Data. To get perfor-

mance guarantees on hash data structure performance without

assumptions on the data, all randomness needs to come from the

hash function. The main way to define this property is by bounding

the likelihood of collision for arbitrary input items. In universal

hashing [17], one guarantees that for any two items 𝑥,𝑦 and family

of functions 𝐻 : {0, 1}𝑛 → {0, 1}𝑚 , the probability when choosing

a random ℎ from 𝐻 of ℎ(𝑥) = ℎ(𝑦) is ≤ 1

𝑚 . However, this is not

enough randomness for many data structures [48, 50], and so an

expanded idea of hash randomness is k-independence, which is that

for any set of 𝑘 inputs 𝑥1, . . . , 𝑥𝑘 , and 𝑘 outputs 𝑦1, . . . , 𝑦𝑘 , the prob-

ability of 𝑃 (∩𝑖ℎ(𝑥𝑖) = 𝑦𝑖) =𝑚−𝑘
[68]. Given this model, it becomes

possible to provide guarantees about data structures and algorithms,

with larger amounts of independence being more computationally

expensive but providing better performance guarantees [48, 50, 68].

Hashing in Practice. In practice, systems designers avoid expen-

sive k-independent hash functions and instead opt for hash func-

tions which lack formal robustness guarantees but are faster to

compute [7]. For instance, RocksDB uses xxHash [19], Google heav-

ily uses CityHash, Wyhash, and FarmHash [53, 54, 66], and C++

compilers such as g++ often choose MurmurHash [1, 6]. This is

because the computational performance of hashing is too impor-

tant: systems designers are willing to give up concrete performance

guarantees in exchange for faster hashing.

Another reason systems designers choose hash functions with-

out formal guarantees is that empirically, their outputs appear

as random as if they were from perfectly random hash functions

[49, 56, 57]. One explanation for this phenomena is pseudorandom-

ness. The main idea is the following: most hash functions perform

well on most input data, and it takes careful manipulation of the

input data to craft scenarios where commonly used hash functions

fail. In other words, if we give up guaranteed performance on all
datasets and instead assume data itself is random enough, then hash

functions with weaker guarantees in terms of independence can be

shown to perform in expectation nearly identically to those that

are fully random [18, 41].

Problem Definition. Having given the core concepts in state-of-

the-art hashing, we can now restate the problem more concretely.

Modern systems across diverse areas and industries utilize fast hash

functions but without any guarantees. However, these fast hash

functions are still not fast enough: they are still slow in that they

occupy a large portion of total cost in all those systems. In this

paper, we ask the following question:

“Is it possible to improve on the speed of the best modern hash
functions such that this brings significant end-to-end impact across
diverse widely used hash-based operations, while at the same time

maintaining and controlling their uniformity properties”?

The Solution: A Dataset-specific view of Hashing. Our core
intuition is to utilize the inherent randomness in the data in a

controlled way. That is, if we know how random the input data is,

we can use this observed randomness to create faster hash functions

by doing just enough computation and data movement to create a

sufficiently random output. Our key insight is that hash functions

in state-of-the-art solutions are “fixed” in that they always do the

same work regardless of the input. As such they end up doing more

work than needed if data sources are already random enough. Our

goal is to utilize such “surplus randomness” in the data to minimize

cost by adapting the hash function to the data.

Our resulting solution, Entropy-Learned Hashing, designs the
hash function for a data source in two steps. In the first step, it uses

samples of past data items and queries to estimate the amount of

randomness in input keys at sets of byte locations. The second step

then uses this learned randomness to choose subsets of bytes from

input keys to hash. These subsets are chosen to have just enough

randomness for the task at hand, creating faster hash functions

while preserving the (approximate) uniformity of the hash func-

tion’s output. For instance, for a dataset with input keys of length

120 bytes, if some consistent subset of bytes (such as bytes 3,7,9,12,

and 15) is sufficiently random, Entropy-Learned Hashing computes

a hash function using only these bytes and requires approximately

only 1/24th the amount of computation.

Constant-Time Hashing. As a result of this view and its subse-

quent analysis, Entropy-Learned Hashing changes hashing from an

operation whose runtime is linear in the size of input keys to one

which is a constant-time operation with computational complexity

independent of key size. Thus when compared to traditional hash-

ing, it provides theoretical improvements which are unbounded as

key sizes grow.

Contributions.The rest of the paper builds out the idea of Entropy-
Learned Hashing, showing analytically and experimentally its im-

provements over traditional hashing. Specifically, we view our con-

tributions as:

• Entropy-Learned Hashing Formalization: We introduce a new way

to design hash functions that uses the entropy inside the data

source to reduce the computation required by hash functions.

• Optimization: We show how to choose which bytes to hash given

a collection of past queries and data items to analyze.

• Generalization: We show how the entropy of partial-key hashes

generalizes to data items outside the given sample of data.

• Concrete Trade-offs: We derive metric equations for three core

hash use cases of Entropy-Learned Hashing: hash tables, Bloom

filters, and data partitioning. This allows users to trade-off speed

Entropy-Learned Hashing
Constant Time Hashing with Controllable Uniformity SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

Identify Random Bytes

Analyze Randomness
Needed for Data Structures

Choose Bytes Needed for
Data Size and Structure

hashTable(size=10000)

[2] [4] [5]

[2] [4] [5] [7]

[2] [4] [5] [7]

Figure 2: The core steps in Entropy-Learned Hashing.

in hash computation for small changes in other metrics of interest

such as the number of comparisons, FPR, and partition variance.

• Experiments: Comparing against state-of-the-art designs and im-

plementations (e.g., Google’s and Meta’s hash tables), we show

that Entropy-LearnedHashing provides faster overall throughput

than traditional hashing. While this improvement is unbounded

with key size, for common medium-sized key types such as URLs,

we show this improvement is up to 3.7× for hash tables, 4.0× for

Bloom filters, and up to 14× for data partitioning.

The paper is curated to be self-contained with the most critical

material and we also accompany it with an online appendix with

detailed proofs and numerous additional experiments [29].

2 OVERVIEW & MODELING
We now move on with a detailed description of Entropy-Learned

Hashing which will span the next three sections. In this section, we

start with a more detailed overview as well as laying out the basics

for notation and modeling which we use throughout the paper.

Overview. The goal of Entropy-Learned Hashing is to learn how

much randomness is needed and to produce a hash function which

does just enough work by controlling the input given to the hash

function. To achieve this goal, Entropy-Learned Hashing looks

for bytes which are highly random on input objects and passes

just enough of these bytes to create a highly random output. Stated

more formally, Entropy-Learned Hashing consists of creating a hash

function 𝐻 ′
which is the composition of 1) a partial-key function 𝐿

which maps a key 𝑥 to any subkey of 𝑥 (including potentially the

full key 𝑥), and 2) 𝐻 , a traditional hash function. Our focus is on

designing 𝐿, and 𝐻 can be any of the many well-engineered hash

functions for full-keys.

In order to create the partial-key function 𝐿, Entropy-Learned

Hashing uses three steps as shown in Figure 2. First, it analyzes

the data source 𝑥 and identifies which bytes are highly random,

and how much entropy can be expected from a choice of 𝐿 (Section

3). Second, it reasons about how 𝐿 affects data structure metrics

(Section 4). Finally, it uses runtime information, such as the size of

the desired Bloom filter or hash table or the number of partitions

in partitioning to choose which bytes to use in 𝐿 (Section 5).

Notation. The notation for all variables used is given in Table 1.

Capital letters refer to either random variables or sets whereas

lower case variables refer to fixed quantities. The new notation is

because keys entered into 𝐻 are no longer unique. The set of keys

𝐾 contained in a hash-based data structure is broken down into

Notation Definition (filter, hash table, or load balancer)

𝑋, 𝑥 key stored in the filter or hash table

𝐻,ℎ hash function for filter or hash table

𝑌, 𝑦 query key in filter or hash table

𝑚 size of filter (in bits), table (in slots), or # bins

𝑛 number of keys in filter or table

𝐾 set of keys

𝑆 |𝐿 multi-set of partial keys. Equal to (𝐾|𝐿, 𝑧)
𝐾|𝐿 Set of all partial keys.

𝑧 maps each key 𝑥 ∈ 𝐾|𝐿 to |𝐿−1 (𝑥) |. 𝑧𝑥 is used as short-

hand for 𝑧 (𝑥) throughout.
Notation Definition (hash table only)

𝛼 fill of hash table:
𝑛
𝑚

𝑃 ′ number of comparisons to find non-existing key

𝑃 average # of comparisons to retrieve a key in the dataset

Table 1: Notation used throughout the paper.

the multi-set 𝑆 |𝐿 = (𝐾 |𝐿, 𝑧). Here, 𝐾𝐿 is the set of all partial-keys

(outputs of 𝐿 applied to keys in 𝐾), and 𝑧 maps each key in 𝐾𝐿 to

the cardinality of its pre-image in 𝐾 . For instance, if 𝐿 takes the

first two characters of an input and 𝐾 = {dog, dot, cat, fan}, then
𝐾 |𝐿 = {"do", "ca", "fa"}, 𝑧 ("ca") = 1, and 𝑧 ("do") = 2.

Hash Function Model. We assume that 𝐻 is ideally random,

i.e. that for any distinct inputs 𝑥1, . . . , 𝑥𝑛 , output range [𝑚] =

{1, . . . ,𝑚}, and outputs 𝑎1, . . . , 𝑎𝑛 ∈ [𝑚], we have

P(𝐻 (𝑥1) = 𝑎1, . . . , 𝐻 (𝑥𝑛) = 𝑎𝑛) =
𝑛∏
𝑖=1

P(𝐻 (𝑥𝑖) = 𝑎𝑖) = (1
𝑚
)𝑛

We do not use k-independent hashing; as noted before and as

shown again in our experiments, hash functions tend to perform

empirically like their perfectly random counterparts. Moreover,

most proofs using k-independent hashing give big-O guarantees

but drop constant factors [41, 48, 50]. These constant factors are of

significant importance for high performance hash functions.

Source Model. Conditioned on 𝐿 we assume that the partial-keys

𝐿(𝑋) are i.i.d. distributed because the main metrics for hash-based

algorithms tend to be order-independent. For instance, whether

keys are ordered 𝑥1, . . . , 𝑥𝑛 or in the reverse order 𝑥𝑛, . . . , 𝑥1, the

slots filled in a linear probing hash table or the length of the linked

lists in a separate chaining hash table are identical. Similar state-

ments hold for the false positive rate of Bloom filters and the parti-

tions produced by partitioning. Thus, even if the original source has

a temporal nature that might be better modelled by a Markovian

assumption, the marginal distribution over time is more important.

3 CREATING PARTIAL-KEY FUNCTIONS
The first step is to create the partial-key function 𝐿 which needs

knowledge about the data we expect. In the case of fixed datasets,

such as read-only indexes like those used in the levels of LSM-based

key-value stores [47], this is the actual dataset. With updates, we

need a sample of past data and queries.

Metric for Partial-Key Hash Functions. Partial-key functions

have two metrics. The first is the number of bytes in their output,

with fewer being better so that subsequent hash computation is

faster. The second is the Rényi Entropy of order 2 of their output,

also known as the collision entropy. For a given discrete random

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA Hentschel, Sirin, and Idreos

variable 𝑋 , its Rényi Entropy of order 2 is 𝐻2 (𝑋) = − log

∑𝑛
𝑖=1 𝑝

2

𝑖
where 𝑝𝑖 is the probability that 𝑋 takes on the 𝑖th symbol in an

alphabet A = {𝑠1, . . . 𝑠𝑛}. It draws its name from the fact that

if 𝑋1, 𝑋2 are drawn i.i.d. from the same distribution as 𝑋 , then

𝐻2 (𝑋) = − log
2
P(𝑋1 = 𝑋2). We use collision probability to refer to

P(𝑋) = P(𝑋1 = 𝑋2) and mean Rényi Entropy of order 2 whenever

we use the term entropy. For Entropy-Learned Hashing, Rényi

Entropy tells us how likely collisions are to occur. The following

lemma will be useful in our analysis:

Lemma 1. Given 𝑛 i.i.d. samples from a distribution 𝑋 , the num-
ber of observed collisions over the number of 2-combinations is an
unbiased estimator of the collision probability for 𝑋 . That is, if 𝑛𝑖 is
the number of times a symbol 𝑠𝑖 appears in the sample, then we have

E[
∑
𝑖

𝑛
2

𝑖

2

] = 𝑛2

2

P(𝑋)

where 𝑥2 = 𝑥 (𝑥 − 1) is the 2nd falling power. Equivalently,

E[
∑
𝑖

𝑛
2

𝑖

2

] = 𝑛2

2

2
−𝐻2 (𝑋)

Proof. There are

(𝑛
2

)
possible 2-combinations in 𝑛 samples, each

of which can produce a collision. The probability of collision is

2
−𝐻2 (𝑋)

and so the expected number of collisions is

(𝑛
2

)
P(𝑋). □

Optimization: Selecting the Bytes to Hash. The goal is to opti-

mize our two metrics on our optimization set, which is either the

fixed dataset or a training set of a sample of prior data items. Since

our two metrics are at odds, the goal is to find an optimal Pareto

frontier establishing for each 𝑘 = 1, 2, 3, . . . , what set of 𝑘 bytes

from our full-key input produces the most entropy.

Insight into this problem, as well as potential solutions, can be

found by analyzing the similar problem for maximizing Shannon

entropy (equivalently, Rényi entropy of order 1). In particular, for

Shannon entropy selecting the best subset of size 𝑘 of random

variables from amongst 𝑛 random variables is known to be NP-

hard [33], suggesting that an optimal solution for Rényi entropy

is likely computationally difficult. However, the greedy algorithm,

described in detail below, is known to provide a 1− 1

𝑒 approximation

to the best possible solution for Shannon Entropy because Shannon

Entropy is submodular [44]. Additionally, real-life applications of

the greedy algorithm tend to get solutions which are close to the

optimal solution [9].

Inspired by this success and by the connectedness of Rényi and

Shannon entropy, we use the greedy algorithm to optimize Rényi

entropy on our training set. In particular, we start by using a dummy

hash which reads zero bytes of the data items. Then, we continually

add new bytes to the partial key function 𝐿 in a way that decreases

the number of collisions the most on the training data. After each

new chunk of bytes, we record the entropy (either on the fixed

dataset or on a validation dataset if data is not fixed) and repeat the

process. We stop when 𝐿 has no collisions on the training data, and

note that at each iteration of the algorithm we need only to look

at data items which are not unique given previous bytes chosen

for 𝐿, reducing algorithm runtime substantially (items that are not

equal on a subset of bytes cannot be equal on a larger subset). At

Algorithm 1 ChooseBytes

Input: 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎: either data items or sample of past data items

Input: 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎: data to check entropy on (if not for fixed dataset)

1: positions = vector()

2: entropies = vector()

3: max_len = maximum length of any data item

4: while not all partial keys unique do
5: positions.push_back(NextByte(data,max_len,positions))

6: entropies.push_back(EstimateEntropy(test_data, positions))

7: data = NonUniqe(data, positions)

8: return positions, entropies

Algorithm 2 NextByte

Input: 𝑑𝑎𝑡𝑎: either data items or sample of past data items

Input: 𝑚𝑎𝑥_𝑙𝑒𝑛: maximum length item in dataset

Input: 𝑝𝑎𝑠𝑡_𝑏𝑦𝑡𝑒𝑠 : past bytes chosen
1: min_coll, min_i =∞,−1 // track of min # collisions, most entropic byte

2: for 𝑖 = 0 to max_len do
3: count_table, num_coll = {}, 0
4: for 𝑗 = 0 to len(data) do
5: p_key = 𝑑𝑎𝑡𝑎 [𝑗] using (past_bytes, i) // form partial-key

6: p_key = (len(data[j]), p_key) // length is always part of partial-key

7: count_table[p_key] + = 1 // increment count partial-key

8: num_coll += (count_table[p_key] - 1) // add collisions (if any)

9: if num_coll < min_coll then
10: min_coll, min_i = num_coll, i // update best byte

11: return min_coll, min_i

the end, we have a sequence of partial-key functions which are

our solutions for 𝑘 = 1, 2, 3, . . . bytes, with higher 𝑘 meaning more

input bytes are read but also monotonically increasing the entropy

of the output.

Algorithms 1 and 2 give (simplified) pseudocode for this proce-

dure. Additionally, Figure 4 shows example output from the proce-

dure. While for simplicity Algorithm 1 is shown choosing 1 byte at

a time, our implementation chooses 4 or 8 bytes at a time. This is

because most modern hash functions which come after 𝐿 operate

one word of data at a time. In addition, we limit the maximum byte

being chosen for partial-key hashing so that 90% of data items are

under that data size. In the end, 𝐻 ′
looks as follows:

if len(x) > last byte used in L:
return H(L(x))

else
return H(x)

Because we designed 𝐿 so that almost all keys satisfy the first

if statement, this makes the full hash function have predictable

branching statements. This initial if statement is also dropped if

the keys are of fixed length. The result, when 𝐿 is tightly integrated

into the hash function 𝐻 , is that 𝐻 ′
has predictable branches and a

small instruction count on average.

Evaluating the Resulting Entropy. To make decisions on how

many bytes are needed, we need an estimate of the entropy of 𝐿(𝑋).
When data is fixed, we use the training set as a ground truth value

for the entropy. When generalization to new data is needed, we use

separate validation data.

To estimate the entropy of 𝐿(𝑋), we compute the empirical

collision probability on the validation set 𝑉 by 1) computing 𝐿(𝑥)
for each 𝑥 in 𝑉 , 2) counting the number of collisions, and then

Entropy-Learned Hashing
Constant Time Hashing with Controllable Uniformity SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

3) dividing this by
𝑣2

2
where 𝑣 is the number of items in 𝑉 . From

Lemma 1, this gives an unbiased estimate of the collision probability.

To get an estimate �̂�2 of the entropy, we take the negative log of

this number.

Given this estimator, the natural question to ask is "how many

samples are needed?". The techniques of [4, 46] use the birthday

paradox to answer this question; namely, if we want to say that

the entropy is at least some value 𝐻2 with confidence, we need

𝑂 (2𝐻2/2) samples. As we will show in Section 4, data structures

or algorithms storing 𝑛 elements will generally need 𝐻2 to grow

at a rate of log
2
𝑛, suggesting 𝑂 (𝑛1/2) samples is enough to say

with probability approaching 1 whether or not 𝐿(𝑋) has enough
entropy for a given task. Giving a concrete example, when using

𝑣 validation samples a 99% confidence estimator for the entropy

is: 𝐻2 ≥ min

{
�̂�2 − 2

log
2

𝑣2

40

with probability 0.99. Thus if our data

structure needs entropy 𝐻2 = log
2
𝑛, setting 𝑣 >

√
40𝑛 is enough

validation samples to say with high probability whether or not

𝐿(𝑋) has the required entropy. More details can be seen on this

analysis in the technical report [29].

The most important takeaway is the fact that the number of

validation samples needed both varies with the data size and also

grows slowlywith the data size. Thus, whenwewant to use Entropy-

Learned hashing on small data, the sample can be small because

we only need to make sure it has just enough entropy. When the

data is large, the number of samples needed grows but much more

slowly than the data size.

4 CONNECTING ENTROPY TO DATA
STRUCTURE PERFORMANCE

The next step in Entropy-Learned Hashing is understanding the

entropy needed for a given system task, i.e., a data structure or

algorithm used in a system. As Figure 1 shows, hashing is used in

a range of diverse systems to implement data structures and algo-

rithms for various complex operations. We study specifically the

entropy needed by three of the mostly widely used tasks, namely:

(1) Hash tables which are the default way to access data by

equality, and which are widely used across general purpose

programs including relational systems and key-value stores.

(2) Bloomfilterswhich are used to reduce accesses to a set and
are used in databases to reduce the costs of joins in OLAP

systems as well as point queries in key-value stores.

(3) Partitioning which is a core step in numerous algorithms.

Each of these tasks has multiple metrics of interest, including:

CPU cost, memory footprint, throughput, false positive rate, and

much more. The three hash-based operations above present a di-

verse set of expressions of these metrics. For example, Bloom filters

have small memory footprint compared to the other components,

while they all have drastically different characteristics in terms of

output write patterns which affects the overall throughput.

By creating cheaper to compute hash functions we improve the

computational efficiency; what is left to show is that the small in-

crease in expected collision probability does not result in significant

degradation on other metrics. For hash tables, the metric of interest

for performance is the number of comparisons needed to retrieve a

key. For Bloom filters, it is the false positive rate and for Partitioning

the variance of the distribution of data amongst bins.

There are two takeaways from the analysis in this section. The

first is that we can argue formally about the needed entropy from

partial-keys for data structures to behave as desired. This allows

us to design Entropy-Learned hash functions which bring end-to-

end performance benefits. Second, the analysis shows that across

all tasks, Hash tables, Bloom filters, and Partitioning, the needed

amount of Renyi entropy in 𝐿(𝑋) is approximately log
2
𝑛 plus a

constant 𝑐 . Thus, for a fixed dataset size, hashing needs only a

constant number of bytes for enough uniformity in output and

can be independent of key size. Additionally, the dependence on

𝑛 reaffirms our central thesis and further clarifies where Entropy-

Learned Hashing is most useful: for large (hence random) objects

or small datasets state-of-the-art hash functions do more work than

necessary. The value of 𝑐 depends on how much collisions affect a

data structure; for instance, hash collisions in Bloom filters produce

a certain false positive and so this has a high value of 𝑐 , whereas

for hash tables a collision produces an extra comparison which is

more tolerable and so 𝑐 is lower.

4.1 Hash Tables
Two prototypical designs of hash tables are separate chaining and

linear probing [20]. Separate chaining stores an array of linked lists.

To query for an item, separate chaining hash tables 1) perform a

hash calculation to get a slot 𝑎 between 0 and𝑚 − 1 and then 2)

traverse the linked list at slot 𝑎 until either the key is found or the

end of the list is reached (the key is not present). Linear probing

stores an array of keys and queries the table by 1) performing a hash

calculation to get an initial slot 𝑎, and then 2) traversing the array

in sequential order until either the key is found, or until an empty

slot is found (the key is not present). Separate chaining tables are

easier to manage and analyze because collisions only matter for the

same slot, however they have poor data locality because of many

pointer traversals and require extra space for the many pointers.

In contrast, linear probing offers better performance but is more

difficult to analyze and manage because of complex dependencies

between hash values.

4.1.1 Hash Tables: Separate Chaining.
Fixed Data.We first analyze separate chaining hash tables when

the data is known which is an important class of indexed data. We

then show this analysis translates from known data to random data.

Given 𝑆 |𝐿 = (𝐾 |𝐿, 𝑧), when querying for an item 𝑦 not in 𝐾 , the

expected number of comparisons 𝑃 ′ is

E[𝑃 ′ |𝑦] = 𝑧𝑦 +
𝑛 − 𝑧𝑦
𝑚

≈ 𝑧𝑦 + 𝛼

This is because the (likely 0) 𝑧𝑦 items which have the same partial

key for sure are in the same slot, and the other 𝑛 − 𝑧𝑦 items have

1/𝑚 chance of being in the same slot. This cost of querying for a

missing key is also equal to the cost of adding a new item into the

hash table, and this relationship holds true for linear probing as

well. This is because additions first verify the item is missing and

then put the item into the first empty slot they find.

By the same logic, querying for a key 𝑥 in 𝐾 costs 1 + 1

2
(𝑧𝑥 −

1 + 𝑛−𝑧𝑥
𝑚) comparisons on average. The leading 1 is because the

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA Hentschel, Sirin, and Idreos

query key for sure compares with itself, and the second term is 1/2
times the expected number of items in the same slot as 𝑥 . Summing

across all data, the average cost 𝑃 of querying for a key satisfies:

E[𝑃] ≤ 1 + 1

2

𝛼 + 1

2

∑
𝑥 ∈𝐾|𝐿

𝑧
2

𝑥

𝑛

Random Data.When generalizing partial-key hashing to unseen

(random) data, the above equations can be viewed as conditional

expectations where we condition on the data. By using Adam’s Law,

i.e. 𝐸 [𝑋] = 𝐸 [𝐸 [𝑋 |𝑌]], we can average over the possible produced

datasets given by the random data. Using the union bound and

Lemma 1, the expected cost of querying for a missing key and the

average cost for querying for a key satisfy

E[𝑃 ′] ≤ 𝛼 + 𝑛2−𝐻2 (𝐿 (𝑋))
(1)

E[𝑃] ≤ 1 + 1

2

𝛼 + 1

2

(𝑛 − 1)2−𝐻2 (𝐿 (𝑋))
(2)

Comparison with Full-Key Hashing. For full key hashing, the

corresponding costs for querying for a missing key and the average

cost to query for a key are

E[𝑃 ′] = 𝛼

E[𝑃] = 1 + 1

2

𝑛 − 1

𝑚
≈ 1 + 1

2

𝛼

This shows the tradeoff between partial key hashing and full key

hashing. The number of comparisons is lower for full-key hashing,

but this advantage goes exponentially fast to 0 as the entropy of

the partial key hash increases. At the same time, the partial-key

hash is significantly cheaper to compute.

Looking at the required relationship between 𝑛 and the needed

entropy of the input sub-keys further clarifies when andwhy partial-

key hashing is useful. When 𝐻2 (𝐿(𝑋)) > log
2
𝑛, the number of

extra comparisons needed drops below 1 and continues to drop

exponentially fast with more entropy. Since hashing objects is more

expensive than comparing them, this point represents near definite

savings; the hash computation for the table is much faster while

the work after the hash function is nearly the same.

4.1.2 Hash Tables: Linear Probing.
Because of the complex dependencies between hash values and

collisions, linear probing is significantly more complicated to ana-

lyze resulting in lengthier proofs. We provide a high level overview

of the results while all detailed proofs can be found at the technical

report [29]. We start with full-key hashing.We analyze the expected

length of a full chain 𝑇 for a new item added to the hash table. The

chain includes the empty position on a chain’s right side but not

on its left side. Figure 3 shows an example.

Full-KeyHashing. In the technical report [29], we provide a novel
analysis of linear probing showing that the expected length of 𝑇

satisfies 𝐸 [𝑇] = 𝑄1 (𝑚,𝑛) where 𝑥𝑘 is the 𝑘-th falling power and

𝑄𝑖 (𝑚,𝑛) =
∑
𝑘≥0

(𝑘+𝑖
𝑖

)
𝑛𝑘

𝑚𝑘 . For a new item, each location in a probe

chain is equally likely as a hash location and so the expected probe

cost given𝑇 is 𝐸 [𝑃 ′ |𝑇] = 1

2
+ 1

2
𝑇 . Using Adam’s law, it follows that

𝐸 [𝑃 ′] = 1

2

(1 +𝑄1 (𝑚,𝑛)) ≤
1

2

(1 + 1

(1 − 𝛼)2
)

which matches the known equations given by Knuth in [32].

X

Hash location

T

First empty location

Figure 3: Example of a linear probing chain.

The average cost to query a key is then equal to the average cost

to insert each key. Since the insertion cost 𝐸 [𝑃 ′] depends on 𝑛, we
use 𝑃 ′

𝑖
to denote the cost when there are 𝑖 keys in the table. The

average cost to query a key is then

𝐸 [𝑃] = 1

𝑛

𝑛−1∑
𝑖=0

𝐸 [𝑃 ′𝑖] =
1

2

(1 +𝑄0 (𝑚,𝑛 − 1)) ≤ 1

2

(1 + 1

1 − 𝛼)

Partial-Key Hashing: Fixed Data. When given 𝑆 |𝐿 = (𝐾 |𝐿, 𝑧),
the expected length of the probe chain 𝑇 depends on the number

of partial key matches for the inserted key 𝑦, and satisfies

𝐸 [𝑇] ≤ 𝑄1 (𝑚,𝑛) + 𝑧𝑦𝑄0 (𝑚,𝑛) +
∑
𝑥≠𝑦

𝑧
2

𝑥

𝑚
𝑄1 (𝑚,𝑛)

≤ 1

(1 − 𝛼)2
+

𝑧𝑦

1 − 𝛼 +
∑
𝑥≠𝑦

𝑧
2

𝑥

𝑚(1 − 𝛼)2

When the new key is unique, the most common scenario when

𝐻2 (𝐿(𝑋)) is high, each location in the probe chain is equally likely

and so 𝐸 [𝑃 ′ |𝑇] = 1

2
+ 1

2
𝑇 . However, when the new key is not unique,

each position in the chain is no longer equally likely. Thus we make

the worst case assumption that it is at the end of the probe chain.

𝐸 [𝑃 ′] ≤

1

2

(
1 + 1

(1−𝛼)2 +
∑
𝑥≠𝑦

𝑧
2

𝑥

𝑚 (1−𝛼)2
)

if 𝑧𝑦 = 0

𝑧𝑦
1−𝛼 + 1

(1−𝛼)2 +
∑
𝑥≠𝑦

𝑧
2

𝑥

𝑚 (1−𝛼)2 if 𝑧𝑦 > 0

(3)

When translating from 𝑃 ′ to 𝑃 , we again have that 𝐸 [𝑃] =∑𝑛−1
𝑖=0 𝐸 [𝑃 ′𝑖]. Since the cost of inserting each key is no longer the

same, there is the question of how to evaluate this expression. Here,

we make use of a fact first noticed in [52], that the average cost of

querying is equal for any order inwhich the items are inserted. Thus,

in evaluating 𝐸 [𝑃] = ∑𝑛−1
𝑖=0 𝐸 [𝑃 ′𝑖], we may choose the insertion or-

der of the items. Inserting all keys with non-unique partial-keys

first and then inserting all keys with unique partial-keys gives the

following bound for 𝐸 [𝑃].

𝐸 [𝑃] ≤ 𝑛 − 𝑑
2𝑛

+ 1

2

𝑄0 (𝑚,𝑛) +
𝑐

𝑚
𝑄0 (𝑚,𝑛) +

𝑐 + 𝑑
2𝑛

𝑄0 (𝑚,𝑑)

≈ 1

2

(1 + 1

1 − 𝛼) +
𝑐

𝑛
+ 𝑐

𝑚

1

1 − 𝛼
≤ (1

2

+ 𝑐

𝑛
) (1 + 1

1 − 𝛼) (4)

We use 𝑐 =
∑
𝑥 𝑧

2

𝑥 for the number of collisions and𝑑 =
∑
𝑥 :𝑧𝑥 ≥2 𝑧𝑥

as the number of items that are duplicated keys. The above approxi-

mation assumes that 𝑑/𝑚 is small, which is the case whenever most

keys are unique. This holds true with probability near 1 if entropy

is sufficiently large.

Entropy-Learned Hashing
Constant Time Hashing with Controllable Uniformity SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

Random Data. Using equations (3), (4), and Lemma 1 as well as

Adam’s Law, we have

𝐸 [𝑃 ′] ≤ 1

2

(1 + 1

(1 − 𝛼)2
) + 𝑛2−𝐻2 (𝐿 (𝑋)) 3

2(1 − 𝛼)2
(5)

𝐸 [𝑃] ≤ 1

2

(1 + 1

1 − 𝛼) + 𝑛2
−𝐻2 (𝐿 (𝑋)) (1 + 1

1 − 𝛼) (6)

Comparison With Full-Key Hashing. The tradeoffs between

partial-key hashing and full-key hashing are similar to separate

chaining. Again, we have a slight increase in comparisons as a trade-

off for significantly faster hash function evaluation. The expected

number of comparisons again drops exponentially fast with the

source entropy and 𝐻2 (𝐿(𝑋)) needs only to be in the same order of

magnitude as log
2
(𝑛) for the extra needed comparisons to be small.

Thus, as before, partial-key hashing makes the work of computing

hash functions significantly cheaper while the work after the hash

function is near identical, producing a net performance benefit.

4.2 Bloom Filters
For Bloom filters, the central trade-off is between the speed of the

filter and the false positive rate (FPR) of the filter. As the number of

bytes given as input to the hash becomes smaller, hashing becomes

faster but there is a greater possibility of a partial-key collision,

creating a certain false positive.

More formally, let 𝐹𝑃𝑅(𝑚,𝑛, 𝐻) denote the false positive rate
of a Bloom Filter using𝑚 bits, storing 𝑛 items and using a hash

function𝐻 . For a Bloom Filter using partial-key hash𝐻 ′ = 𝐻 ◦𝐿, its
number of set bits is a function of the number of distinct items fed

to 𝐻 . If no keys collide on 𝐿, then it becomes a traditional Bloom

Filter storing 𝑛 items and using 𝐻 . If there are 𝑛′ < 𝑛 distinct items

after 𝐿, then the resulting filter structure has the same number of

set bits as one containing 𝑛′ items. So for query key 𝑦 ∉ 𝐾𝐿 , it has

a false positive rate of 𝐹𝑃𝑅(𝑚,𝑛′, 𝐻), whereas if 𝑦 ∈ 𝐾𝐿 it has a

false positive rate of 1. It follows that our Bloom Filter using ℎ′ has
exactly the following false positive rate:

𝐹𝑃𝑅(𝑚,𝑛, 𝐻 ′) = P(𝑌 |𝐿 ∈ 𝐾𝐿) + 𝐹𝑃𝑅(𝑚,𝑛′, 𝐻) (7)

The second term is less than 𝐹𝑃𝑅(𝑚,𝑛, 𝐻) as Bloom Filters’ false

positive rates increase with the number of items stored. If keys and

non-keys are very different conditioned on the set of bytes 𝐿, then

it is possible to make the FPR less than that of a standard Bloom

filter by having 𝑛′ << 𝑛 and P(𝑌 |𝐿 ∈ 𝐾𝐿) ≈ 0. However, we will

generally ignore this case and focus on the case where keys and

non-keys have the same distribution conditioned on 𝐿. In this case,

a convenient bound for (7) is

𝐹𝑃𝑅(𝑚,𝑛, 𝐻 ′) ≤ P(𝑌 |𝐿 ∈ 𝐾𝐿) + 𝐹𝑃𝑅(𝑚,𝑛, 𝐻) (8)

which is the FPR of a standard Bloom filter plus the probability that

the query key matches some item in the key set on the bytes 𝐿.

Using the union bound, equation (8) translates to:

𝐹𝑃𝑅(𝑚,𝑛,ℎ′) ≤ 𝑛2−𝐻2 (𝐿 (𝑋)) + 𝐹𝑃𝑅(𝑚,𝑛,ℎ) (9)

Comparison With Full-Key Hashing. The above analysis reaf-
firms the central takeaway of our analysis of hash tables; the

entropy of the dataset needs to be on the order of log
2
𝑛. For

Bloom filters, a reasonable additional goal is that the increase

in FPR be no more than some chosen 𝜀. In this case, we need

𝐻2 (𝐿(𝑋)) > log
2
𝑛 + log

2
(1/𝜀). So an additional entropy term is

needed to say that collisions are very rare for new partial-keys. As

we show in our experiments, datasets often have this surplus en-

tropy and so the Bloom Filter becomes significantly faster without

suffering any false positive rate increase.

4.3 Partitioning & Load Balancing
With Partitioning the goal is to distribute 𝑛 items, e.g., tuples or

computational tasks, to a set of𝑚 bins. Here, we characterize how

even this allocation is by analyzing the variance of the number of

items assigned to each bin when each input key is unique. At lower

variances, each bin is distributed closely around the average number

of items 𝑛/𝑚 whereas higher variance suggests the bins are highly

uneven. One important challenge comes when keys are skewed

and heavy hitters exist. While challenging, the unevenness comes

from the existence of heavy hitters rather than the quality of the

hash function, and so we focus on the hash quality by considering

the partitioning of all unique items.

Full-Key Hashing. With full-key hashing, the variance of each

bin is the variance of a binomial with 𝑛 balls each with probability

1/𝑚. Thus for a specific bin, its number of assigned objects 𝑌 has

𝑉𝑎𝑟 (𝑌) = 𝑛
𝑚 − 𝑛

𝑚2
.

Partial-Key Hashing: Fixed Data. The probability of each key in

𝐾𝐿 being assigned to a specific bin is distributed as an independent

Bernoulli trial with probability
1

𝑚 . Letting 1𝐻 (𝑥)=𝑖 be the event

that 𝑥 was hashed to bin 𝑖 , the variance of the number of objects 𝑌

assigned to bin 𝑖 is

𝑉𝑎𝑟 (𝑌 |𝐾 |𝐿) = 𝑉𝑎𝑟 (
∑
𝑥 ∈𝐾|𝐿

𝑧𝑥1𝐻 (𝑥)=𝑖) = (𝑛 +
∑
𝑥 ∈𝐾|𝐿

𝑧
2

𝑥) (
1

𝑚
− 1

𝑚2
)

Partial-Key Hashing: Random Data. For random data, we use

the same conditioning arguments as before. Using Eve’s Law, i.e.

𝑉𝑎𝑟 (𝑌) = E[𝑉𝑎𝑟 (𝑌 |𝐾𝐿)] + 𝑉𝑎𝑟 (E[𝑌 |𝐾𝐿]), we can calculate the

variance on random data. First, we note that for any set𝐾𝐿 , the value

of 𝐸 [𝑌 |𝐾𝐿] is 𝑛/𝑚 by the randomness of the hash function (each

bin is equally likely to contain any item). Thus 𝑉𝑎𝑟 (E[𝑌 |𝐾𝐿]) = 0

and again using Lemma 1, we have

𝑉𝑎𝑟 (𝑌) ≤ (1 + 𝑛2−𝐻2 (𝐿 (𝑋))) (𝑛
𝑚

− 𝑛

𝑚2
) (10)

Comparison With Full-Key Hashing. As before, 𝐻2 > log
2
𝑛 is

enough for partial-key hashing to have similar variance to full-key

hashing in terms of absolute terms. Thus, as in prior cases, once

𝐻2 > log
2
𝑛 we have faster computation in terms of partitioning

without sacrificing on the quality of our partitioning.

An important secondary argument for load balancing is whether

we care about the absolute deviation from the mean or the percent-

age deviation away from the mean. While the absolute variance

grows with 𝑛, the relative standard deviation, i.e. the standard devi-

ation over the mean, of the bins decreases with 𝑛 so that it becomes

less and less likely that some bin has 𝑥% more than its expectation.

In particular, the relative standard deviation is less than√
𝑚

𝑛

√
1 + 𝑛2−𝐻2 (𝐿 (𝑋)) ≈

√
𝑚2

−𝐻2 (𝐿 (𝑋))
(11)

Since the expected distance from the mean for a binomial is domi-

nated by its standard deviation [12], the above statement actually

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA Hentschel, Sirin, and Idreos

Start Location
8-byte Word

Estimated
Entropy

48

56
40

80
72

11.3

29.1
22.4

29.2
infty

Capacity of separate chaining hash table
10,000

Chosen Bytes
40-47,48-55

Average Added Comparisons
2-22.4 * 10000 = 0.001

Figure 4: The amount of bytes needed is based on the data
and the current data structure capacity.

says that a bin’s expected proportional deviation away from its

mean is less than (11). So for instance, if we want a partition to be

within 5% of its mean on average, we can achieve this by having

𝐻2 ≥ 2 log
2

1

0.05 + log
2
𝑚.

Thus partitioning and load balancing have two regimes with

regards to Entropy-Learned Hashing. When small absolute variance

is required, we need 𝐻2 (𝐿(𝑋)) > log
2
𝑛; however, when 𝑛 is large

and we are simply interested in bins being relatively similar sizes,

we can let 𝐻2 (𝐿(𝑋)) be greater than log
2
𝑚 plus a small constant,

where the constant controls how much deviation is allowed.

5 RUNTIME INFRASTRUCTURE
Section 3 showed how to estimate the entropy of datasets when con-

ditioned on partial-keys and Section 4 showed how much entropy

is needed for important hashing-based tasks. This section brings

everything together by explaining how to utilize Entropy-Learned

Hashing at run time: namely, given a hash-based task and analysis

of a dataset, choose the Entropy-Learned Hash function to have just

enough randomness. Additionally, this section covers runtime in-

frastructure related to robustness so that Entropy-Learned Hashing

retains the trustworthiness of traditional hash data structures.

Creating Hash Tables. Hash tables have a maximum capacity

beyond which they need to rehash the stored items into a new

larger table. This keeps the load factor low and therefore query

times low. For Entropy-Learned Hashing, we use this maximum

capacity before rehashing to decide 𝐿. In particular, for separate

chaining hash tables, we choose 𝐿 such that 𝐻2 (𝐿(𝑋)) > log
2
𝑛 + 1,

where 𝑛 is the maximum number of items the current table will

hold before rehashing. For linear probing hash tables, we choose 𝐿

so that𝐻2 (𝐿(𝑋)) > log
2
𝑛+ log

2
5. Both values are chosen based on

the equations governing the number of comparisons, i.e. equations

(1), (2), (3), and (4), and make sure the number of comparisons

executed using partial-key hashing and full-key hashing are similar.

An example of how the current capacity is used to choose 𝐿 is

shown in Figure 4, where an initial table with capacity 1000 uses

just the 8-byte word at location 48 to hash keys.

As the capacity of a hash table changes (as new items are in-

serted), a rehash is triggered causing each item to be reinserted.

Entropy-Learned Hash tables uses this opportunity to change the

hash function; for instance, when key 1001 is inserted into the hash

table from Figure 4, a rehash is triggered causing the table to grow.

If the new capacity is above 2
11.3 = 2521, the partial-key function

adds another word to increase entropy to the required amount. As

a result, the hash table maintains just the right amount of entropy

needed throughout its life cycle, using as cheap a hash function as

possible without adding substantial extra collisions.

Bloom Filters. Bloom Filters need an estimate on the number of

items they will hold before their creation. This is because, without

access to their base items, they have no access to grow the number

of bits being used. While there are techniques around this [5], these

come with space and computation tradeoffs and it remains true that

standard Bloom filters need an up-front estimate of the number of

data items. For Entropy-Learned Hashing, this makes it simple to

choose the hash function. Given a maximum number of items 𝑛 and

an allowable added FPR of 𝜀, we set the partial-key hash function

to have entropy 𝐻2 (𝐿(𝑋)) > log
2
𝑛 + log

2
(1/𝜀).

Partitioning. For partitioning we require an estimate on the max-

imum number of items to be partitioned. We also need user input

on how even they want partitions to be. If absolute variance is

of primary importance (so that partitions are unlikely to vary by

more than some # of tuples regardless of partition size), then set-

ting 𝐻2 (𝐿(𝑋)) > log
2
𝑛 + 𝑐 assures that variance is no more than

(1 + 2
−𝑐) times its usual amount. The default value of 𝑐 which we

use is 3. When relative variance is more important, and users need

partitions to be roughly even (i.e. within 100c% of each other’s size),

we set 𝐻2 (𝐿(𝑋)) > log
2
𝑚 − 2 log

2
𝑐 as dictated by equation (11).

We use 𝑐 = 0.05 by default so that partitions are expected to be

within 5% of their expected size.

Robustness. While Entropy-Learned Hashing makes only weak

assumptions, namely that data which are somewhat random remain

somewhat random, it recovers good performance quickly when

assumptions are violated. Entropy-Learned Hashing is the most

robust for hash tables. This is for multiple reasons, namely: 1) if

collisions are as expected on items in the dataset, queries for both

keys in the data and not in the data return quickly (Section 4),

2) hash tables can monitor collisions during insertions with little

overhead, and 3) rehashing is an acceptable operation in hash tables

by default (it occurs in all standard hash table libraries). This third

point is the most key, and Entropy-Learned Hashing can rehash

hash tables if collisions ever deviate from what is expected, falling

back to full-key hashing if needed. For Bloom filters, their # of set

bits concentrates sharply around their expected value [14], and this

fact is used during construction of Entropy-Learned Bloom filters

to validate that the data items fit the expected level of randomness.

However, if they do not, or if queries are substantially different

than the inserted items, the filter must be rebuilt. For partitioning,

the cost of overloaded bins depends on the context, but for many

contexts, such as in-memory radix partitioning, this can be solved

by dividing the one or two overloaded bins into multiple bins.

Section 5 of the technical report covers robustness in more detail.

6 EXPERIMENTAL EVALUATION
We now demonstrate that, by identifying and utilizing surplus

randomness in data, Entropy-Learned Hashing brings critical per-

formance benefits against the top hash functions used at scale today

by Google and Meta and across a diverse set of hash-based core

components of modern systems.

Our experimental evaluation consists of 3 parts. The first part,

which contains the bulk of our experiments, shows that Entropy-

Learned Hashing produces sizable benefits of up to 3.7×, 4.0×, and
14× for common medium-sized key types such as URLs and text

data. The second part of our experimental section covers benefits

from Entropy-Learned Hashing on large keys such as those that

would appear in deduplicating file blocks, with speedups of several

Entropy-Learned Hashing
Constant Time Hashing with Controllable Uniformity SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

orders of magnitude. Finally, we cover training time for Entropy-

Learned Hashing and present the run times for applying the greedy

algorithm to select bytes to hash.

6.1 Setup and Methodology
Data Structures and Operations. We use a diverse set of data

structures and operations to apply Entropy-Learned Hashing: we

test with Hash tables, Bloom filters, and Partitioning.

Forhash tables, we compare against Google’s hardware-efficient

linear-probing hash table implementation, SwissTable [27, 36]. This

is the default hash table used in C++ throughout all Google op-

erations, and has been heavily optimized as a result of the large

computational footprint of hash tables at Google. A particular im-

plementation note for SwissTable is that it first does linear probing

into an array of tag bits (8 bits per key) to see if chosen bits from

hash values match, and only if they do, compares the full items. This

means probing for keys not in the table is cheaper than probing for

keys stored in the table. We also compared against F14, the default

hash table used at Facebook [16]. The results are extremely similar

and so we include only results with SwissTable.

For Bloom Filters, we implemented register blocked Bloom

filters from [37]. To cut down hashing time, and thus to be con-

servative with respect to our benefits, we used a variant of double

hashing wherein we compute one 64 bit hash function, split it into

two 32-bit hash values, and then use these as the inputs to dou-

ble hashing [31]. We also utilize the techniques for fast modulo

reduction by multiplication from [61].

For partitioning, many of the techniques devised by database

research such as software write buffers [67] and non-temporal

stores [10] do not apply to large data types or variable length data

types. Thus our partitioning is a simple for loop that computes hash

values and writes out data directly to a partition.

Base Hash Functions. We use three state-of-the-art hash func-

tions. For hash tables, we use wyhash, which is one of the two

default options used in SwissTable. We use both the version con-

tained in SwissTable as well as the most recent optimized version

of wyhash given directly by the author [66]. For Bloom filters we

use xxh3, which is used widely at Facebook and is the default for

the Bloom filters in RocksDB [19]. For partitioning we use the im-

plementation of CRC32 from the OLAP database Clickhouse [70].

Implementation. We modify each of the three base hash func-

tions. We maintain their basic interface (input is an array of bytes

plus a key length), and tightly integrate Entropy-Learned Hashing.

Thus there is Entropy-Learned xxh3, Entropy-Learned wyhash, and

Entropy-Learned CRC32. The bytes chosen to hash are selected at

hash function construction and stored in a const array. The func-

tions read from 𝑑𝑎𝑡𝑎[𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 [𝑖]] instead of 𝑑𝑎𝑡𝑎[𝑖], and we use

templates to generate efficient code for partial-key hash functions

using 1,2,3,4,.. words. These templates modify the initial function

to reduce branching statements because of the known length of the

partial-key. All implementation is in C++. All experiments for hash-

based tasks are in-memory since hash-based tasks typically run

in-memory. For example, a hash table should always fit in memory

to get good performance while a Bloom filter will also typically

reside in memory to protect from expensive disk access. Thus such

structures are both created and utilized in memory. When disk is

Processor

Intel Xeon

E7-4820 v2

#sockets 4

#cores per socket 8

Hyper-threading 2-way

Turbo-boost Off

Clock speed 2.00GHz

L1I / L1D (per core) 32KB / 32KB

L2 (per core) 256KB

L3 (shared) 16MB

Memory 1TB

Table 2: Server Parameters

Dataset

name

Avg. key

length
keys

UUID 36 100K

Wikipedia 129 22K

Wiki 22 99K

HN URLs 75 247K

Google URLs 81 1.2M

Table 3: Real-world data.

LP Hash Table - 10,000 Items

1 Million Items

100 Million Items

a) b)

Figure 5: The entropy of a dataset grows quickly with the
amount of words being hashed. By 4 words, most datasets
support data structures with millions of elements.

involved, the CPU cost of hashing is typically not highly visible in

terms of operational latency unless very fast disk devices such as

SSDs are used (although CPU usage is still reduced).

Datasets.We use five real-world datasets for experimentation. Two

datasets consist of URLs, with one containing the URLs of stored

Google Landmarks and the other all URLs posted to Hacker News

during 2015 [2, 45]. The other three, UUID, Wikipedia, and Wiki,

are database columns taken from a recent research study [13]. They

contain universally unique identifiers, sampled text fromWikipedia,

andWikipedia entry titles respectively. Table 3 presents the number

of items and average key length for each real-world dataset. In

addition, we use synthetic data to have finer control over key size

and data size. Section 6.3 uses 80 byte keys with bytes 32-39 drawn

randomly from the alphabet (26 possible values), and all other bytes

constant. Section 6.6 uses 8KB keys with each byte ideally random.

Experimental Setup. We use an Intel Ivy Bridge server. Table 2

summarizes the server parameters. We use Debian GNU/Linux 10

operating system. Data structures are queried for a warmup phase

before timing and input keys for queries are in cache. We pin the

thread to a particular core and locally allocate memory. We use

Intel VTune’s uarch-exploration [30] for performing hardware-level

time breakdown and Linux perf [39] for performing memory-level

parallelism tests and software-level time breakdown.

6.2 Number of Words vs. Entropy
Before demonstrating performance results, we first make the idea

of surplus randomness more concrete with examples from real data.

We show that for many datasets with medium-sized keys, good

hashing properties can be achieved for data structures with millions

of elements while hashing only parts of the keys. We divide each

dataset in Table 3 in half. We use the first part to choose which

bytes to hash in a greedy manner as described in Section 3. This

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA Hentschel, Sirin, and Idreos

0

40

80

120

UUID Wp. Wiki Hn Ggle

Ha
sh

 T
ab

le
 P

ro
be

Ti

m
e

(n
s)

Google SwissTable wyhash Entropy-Learned Hashing

UUID Wp. Wiki Hn Ggle

Thpt numbers – with dummy hash – small – new
(1K small dataset, ½ of max_size for large)

UUID Wp. Wiki Hn Ggle
0

100

200

300

400

UUID Wp. Wiki Hn Ggle

In-cache
Hit rate = 1

In-cache
Hit rate = 0

In-memory
Hit rate = 0

In-memory
Hit rate = 1(a) (b) (c) (d)

Figure 6: Entropy-Learned Hashing reduces probe times for hash tables across datasets, data sizes, and hit rates.

produces an ordered list of bytes (or words) to choose. Choosing

more bytes from the list produces a partial-key function providing

more entropy. We use the second half of the dataset to get an

unbiased estimate of the entropy for each combination of bytes

as described in Section 3. Figure 5a shows that the entropy of the

result of the partial-key function increases for all datasets with the

number of words included. We see that by 3 words being included

all datasets have an entropy of at least 18, and 3 of the 5 have

entropies above 25. For Wikipedia and UUID, infinite entropy is

estimated because no collisions are observed with the partial-key

function. Figure 5b shows how this entropy translates into data

structures, where we see that the Google URLs dataset is capable

of using partial-key hashing with hundreds of millions of elements

while hashing just a couple words. Similar results can be seen

by transposing the other four datasets onto Figure 5b, with most

datasets supporting hash data structures larger than the actual

number of elements found in the dataset.

6.3 Hash Table Probe Time
After showing that datasets have enough entropy for partial-key

hashing to be used,we now turn to showing the performance bene-

fits which can be gained by using Entropy-Learned hash functions

for data structures and algorithms. We first focus on hash tables. We

examine the probe time per hash table lookup, where we perform

the lookups one after the other without any blocking, e.g., similar

to the probe-phase of the hash join algorithm.

Entropy-Learned Hashing Reduces Hash Table Probe Time.
We first test hash table probe times on real-world datasets for small

(L1-resident) and large data (L3/DRAM-resident) with 0% (hit rate =

0) and 100% (hit rate = 1) hit rates. We test with Google’s SwissTable

using three hash functions: (i) the default hash function provided

by SwissTable (GST), (ii) the most recent version of wyhash (FK),

and (iii) the Entropy-Learned wyhash hash function (ELH). The

small data contains one thousand keys, and the large data contains

half of the number of keys of the dataset (we use the other half

to generate probes for missing keys). Figure 6 shows the results,

wherein Entropy-Learned Hashing provides speedups across all

data sizes, datasets, and hit rates over full-key hashing. Across the

20 experiments, the average speedup using ELH over wyhash and

SwissTable’s default hash function is 1.40×, with these speedups

being as high 3.7× over the default hash function of SwissTable and

as high as 2.9× over wyhash, both of which are well engineered

functions and implementations.

Entropy-Learned Hashing Scales with Entropy, not Key Size.
To understand the reasons behind the speed up observed in Figure 6,

we first need to return to Table 3 and Figure 5. For full-key hashing,

Call stack breakdown

0

10

20

30

40

50

wy. EL wy. EL wy. EL wy. EL

UUID Wp. Hn Ggle

Ha
sh

 T
ab

le
 P

ro
be

 T
im

e
(n

s)

Hash computation Table access

0

20

40

60

80

100

wy. EL wy. EL wy. EL wy. EL

UUID Wp. Hn Ggle

In-cache
Hit rate = 0

In-cache
Hit rate = 1

0

25

50

wy. EL wy. EL wy. EL wy. EL

UUID Wp. Hn Ggle

Ha
sh

 T
ab

le
 P

ro
be

Ti

m
e

(n
s)

Hash computation Table access

0

50

100

wy. EL wy. EL wy. EL wy. EL

UUID Wp. Hn Ggle

In-cache
Hit rate = 0

In-cache
Hit rate = 1

(a) (b)
Figure 7: Entropy-Learned Hashing significantly reduces
computation time bringing speedup as high as 2.9× for
cache-resident hash tables with (a) low and (b) high hit rates.

it needs to hash each byte of the dataset, and so the number of

bytes processed is on average the key length given in Table 3. For

Entropy-Learned Hashing, the number of bytes it hashes is when

the entropy of the dataset (seen in Figure 5a) crosses the entropy

needed by the data structure (seen in Figure 5b). When there is a

large gap between these two numbers, Entropy-Learned Hashing

produces large speedups. For instance, the large gap between the

number of bytes hashed is why ELH achieves 2.9× speedup over

wyhash and 3.9× speedup over default SwissTable in Figure 6a.

Similarly, it is why ELH is 1.67× faster than wyhash and 1.81×
faster than default SwissTable on the Google dataset in Figure 6d.

While faster hashing computation uniformly brings speedups

to hash table probes, the amount of this speedup depends on other

factors of hash table queries, namely the hit rate and hash table

size. We now explain how the combination of these factors with

Entropy-Learned Hashing affects performance.

Computation Dominates for Cache-Resident Hash Tables.
For cache-resident hash tables, memory requests return quickly

and so computation dominates the overall cost of probes. In this

case, the savings created by Entropy-Learned Hashing depend on

how much work there is beyond the hash function evaluation. Fig-

ure 7 shows how the work beyond hashing differs for queries for

non-existing keys and for existing keys. When queries are for non-

existing keys, computation usually consists of the hash function

plus small amounts of computation using the tag bits. As Figure

7a shows, in this case the hash function evaluation is most of the

cost and Entropy-Learned Hashing brings significant benefits. This

explains the 1.5×, 2.9×, 1.8×, and 1.8× speedup over wyhash seen

in Figure 6a for the UUID, Wikipedia, Hacker News, and Google

datasets, respectively. When queries are for keys in the dataset,

Figure 7b shows the comparison after the hash function evaluation

takes significant time. As a result, Entropy-Learned Hashing still

provides benefits but not quite as large as before, with the sav-

ings being 1.23×, 1.41× 1.28×, and 1.28× for the UUID, Wikipedia,

Entropy-Learned Hashing
Constant Time Hashing with Controllable Uniformity SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

HN & Google MLP

0

100

200

300

400

wy EL wy EL

Hn Ggle
Ha

sh
 T

ab
le

 P
ro

be
 T

im
e

(n
s) Instructions

Memory
Other

(a) (b)

0

0.5

1

1.5

2

2.5

wy EL wy EL

Hn Ggle

M
LP

In-memory, Hit rate = 1

Figure 8: (a) MLP is significantly higher for ELH than it is
for full-key hashing. (b) As a result, ELH reduces both the
number of instructions executed andmemory waiting time.

Hacker news, and Google datasets, respectively. Thus in cache,

Entropy-Learned Hashing provides up to a 40% speedup for queries

on existing keys and up to a 3× improvement on non-existent keys.

Memory Parallelism Dominates for Large Hash Tables. At
large data sizes, the increase in computational performance from

faster hashing leads to more efficient use of the memory hierarchy.

This is due to the effects of CPU pipelining. Namely, when hash

table lookups are done one after the other without blocking, then

the CPU typically pipelines multiple hash table lookups which are

then executed in parallel [34]. Entropy-Learned Hashing reduces

the amount of computation required, and as a result, the CPU fits a

larger number of hash table lookups into its pipeline. The effect of

this increased pipelining is what creates the speedups seen at large

data sizes in Figure 6c and 6d across datasets, with Entropy-Learned

Hashing being as much as 1.67× faster than the nearest competitor.

The amount of this savings depends on the costs of memory

accesses, with more expensive memory accesses leading to larger

improvements. For instance, in Figure 6d we see that the larger

datasets Google and Hacker News produce greater savings than the

smaller datasets Wikipedia, UUID, and Wiki. Similarly, comparing

Figure 6d to 6c, querying for existing keys produces greater savings

because we view both tag bits and full-keys in comparison to just

the tag bits most often for missing keys.

Figures 8a and 8b refine this analysis. Figure 8a shows thememory-

level parallelism (MLP), which is defined as the number of L1 data

cache misses per CPU cycle, for the Hacker News and Google

datasets using hit rate = 1. The higher MLP in 8a indicates that a

large number of data cache misses are being executed in parallel

by Entropy-Learned Hashing than by full-key hashing. Figure 8b

shows how this affects the overall runtime of hash table probes

under the same setup, with Entropy-Learned Hashing reducing

both the number of instructions executed and memory waiting

time. This analysis corroborates the results seen in Figure 6c and

6d, where Entropy-Learned Hashing provides a 1.31× speedup on

average over full-key hashing.

Entropy-Learned Hashing Scales with Data. We now turn to

experiments with synthetic data so that we can more finely control

the data size and experiment with larger data sizes. Figure 9a shows

the main result, which is that Entropy-Learned Hashing provides

benefits for hash tables across small and large data sizes. At small

data sizes of 1K tuples, Entropy-Learned Hashing provides 2.33×
speedups on queries for non-existing keys and 1.30× speedups for

existing keys. For large data sizes of 100M tuples, this speedup is

1.3× for missing keys and 1.7× for existing keys. Figure 9b shows

Data size experiments

0

0.5

1

1.5

2

1K 10K 100K 1M 10M 100M

Sp
ee

du
p

Number of keys

Hit rate = 0 Hit rate = 1

0

0.5

1

1.5

2

2.5

1K 10K 100K 1M 10M 100M 1K 10K 100K 1M 10M 100M

Hit rate = 0 Hit rate = 1

M
em

or
y-

le
ve

l p
ar

al
le

lis
m

Number of keys

Full key
Entropy-learned key

0

1

2

1K 10
K

10
0K 1M 10
M

10
0M

Sp
ee

du
p

Number of keys

Hit rt. = 0 Hit rt. = 1

0
0.5

1
1.5

2
2.5

1K 10
K

10
0K 1M 10
M

10
0M 1K 10

K
10

0K 1M 10
M

10
0M

Hit rt. = 0 Hit rt. = 1

M
LP

Number of keys

wyhash ELH

(a) (b)
Figure 9: (a) Entropy-Learned Hashing provides larger ben-
efits for missing keys at small data sizes and larger bene-
fits for existing keys at large data sizes. (b) Entropy-Learned
Hashing improves memory-level parallelism.

that the reason for these speedups is as discussed before for the

real-world datasets. Namely, at small data sizes the savings in com-

putation directly produce speedups for Entropy-Learned Hashing,

whereas for large data sizes the more efficient hash computation

leads to better MLP which produces faster probe times.

6.4 Bloom Filter Lookup Time & FPR
In this section, we evaluate Entropy-Learned Hashing for Bloom

filters. We examine the lookup time and false positive rate (FPR)

metrics. As input parameters, we let the FPR of the filter be 3%

and allow the Entropy-Learned Hashing filter to deviate in FPR

by 1%. The filter uses 3 hash functions, but computes only 1 due

to double hashing. All parameters are tunable; this experimental

setup is meant to reflect high-throughput filters such as those in

filter push-down before joins [37]. For the small data size we use

1K keys and for the large data size we again use half the number of

keys in the data.

Entropy-Learned Hashing Reduces Filter Lookup Time. Fig-
ures 10a and 10b present results for Bloom filters lookup time and

FPR using xxHash and Entropy-Learned Hashing. Figure 10a shows

that Entropy-Learned Hashing improves performance on high en-

tropy datasets such as Google, Hacker News, UUID, and Wikipedia.

The speedup is consistently between 1.85× and 4.51×. For Wiki,

which has both small key size and low entropy, the speedup is

small. Across all datasets, the average speedup is 2.10×, so that

Entropy-Learned Hashing consistently provides drasticaly faster

throughput on Bloom filter queries.

Entropy-Learned Hashing has Tunable Added FPR. Figure
10b presents the FPR of Bloom filters using Entropy-Learned Hash-

ing and full-key hashing. Most importantly, as can be seen in Figure

10b, the FPR is within 1% as our tuning parameter suggests so that

our analytical bounds hold. Additionally, Figure 10b shows that the

increase in FPR is usually much less than this tuning parameter, in

this case being only 0.1%. Thus, for most datasets the difference in

FPR is negligible. Additionally, this FPR increase can be adjusted

down or up as needed. Reducing the allowed increase in FPR in-

creases the entropy needed and so requires more hash computation,

and so this represents a tunable FPR vs. speed tradeoff.

Bloom Filters require more entropy than Hash Tables. For a
dataset size of 𝑛 and added FPR of 𝜀, ELH requires log

2
𝑛+ log

2
(1/𝜀)

entropy, which is approximately log
2
(1/𝜀) more entropy than hash

tables. For certain datasets such as Wiki or Hacker News, this goes

beyond the entropy they can provide using small partial-keys and

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA Hentschel, Sirin, and Idreos
Blocked Bloom filter numbers

0

15

30

45

UU
ID

W
p.

W
iki Hn

Gg
le

UU
ID

W
p.

W
iki Hn

Gg
le

Small data Large data

Lo
ok

up
 ti

m
e

(n
s) xxh3 ELH

0

0.02

0.04

UU
ID

W
p.

W
iki Hn Gg
le

UU
ID

W
p.

W
iki Hn Gg
le

Small data Large data
FP

R
(a) (b)

Figure 10: Improving Bloom filter lookup time (a) and false
positive rates (b) for small and large data sizes.

Pure hashing Pos. id. Data

Par. 64 1024 64 1024 64 1024

UUID 3.15 3.15 2.05 1.38 1.01 1.00

Wp. 14.10 14.09 6.18 2.66 1.23 1.18

Wiki 1.25 1.09 1.37 1.10 1.01 1.01

Hn 4.29 1.00 2.72 1.00 1.17 1.03

Ggle 7.83 7.82 2.51 1.42 1.01 1.00

Table 4: Speeding up when partitioning.

so they revert to using full-key hashing at large data sizes as can be

seen in Figures 10a and b. For Google URLs, Wikipedia, and UUID,

they have more than enough entropy and each can support at least

100× more data or a 100× lower added FPR. Thus, these datasets

maintain consistent speedups at no cost to FPR for very large data

sizes as seen in Figure 10b.

6.5 Partitioning Time & Variance
Partitioning is used in many contexts. For instance, tuples may be

sent across the network in settings such as map-reduce or simply

partitioned in memory as in radix-partitioning before hash joins.

Because of this, the cost of partitioning depends very heavily on

the application it is used in. To help guide users in terms of whether

Entropy-Learned Hashing can be useful for their application, we

provide three micro-benchmarks. These benchmarks show the in-

creased computational efficiency of Entropy-Learned Hashing on

partitioning and put this computational efficiency in context. In the

first micro-benchmark, we only compute the partition assigned to

each input key. In the second, we keep a list of positional identifiers

for each partition and write out the position of each key assigned

to each partition. In the third, we write out the actual keys assigned

to each partition. As we progress through the microbenchmarks,

we move from a computationally heavy task with few writes to a

memory bandwidth intensive task which is mostly memory bound.

Depending on the setup, the benefit in performance from using

Entropy-Learned Hashing may be between 14× and 18%. Thus, the

benefit of Entropy-Learned Hashing for partitioning depends on

whether the saved computational cycles are of use, either directly

through speedups on the task at hand, or indirectly, by allowing

other computation to take place while network or memory I/O is

being performed. Like Bloom Filters, partitioning has a tunable pa-

rameter which allows the variance (equivalently standard deviation)

to increase in exchange for faster hashing. We set this parameters

so that each partition is expected to be within 5% of its mean.

Entropy-Learned Hashing Reduces Partitioning Time. Table
4 presents the speedups of Entropy-Learned Hashing for the three

Pure hashing Pos. id. Data

Par. 64 1024 64 1024 64 1024

UUID 1.44 0.95 1.44 0.95 1.44 0.95

Wp. 0.92 1.02 0.92 1.02 0.93 1.02

Wiki 1.35 1.01 1.35 1.01 1.35 1.01

Hn 2.06 1.00 2.06 1.00 2.05 1.00

Ggle 1.09 1.08 1.09 1.08 1.09 1.08

Table 5: The relative standard deviations of Entropy-
Learned Hashing and full-key hashing are similar.

configurations we examine. Entropy-Learned Hashing dramati-

cally improves the hashing computation as can be seen by the left

side of Table 4, with increases in speed of above 3× for 4 of the

5 datasets and speedups of up to 14.1×. Partitioning by writing

out positional identifiers, seen in the middle column of Table 4, is

similar, with increases in speed of greater than 2× for 4 of the 5

datasets and speedups of up to 6.2×. Thus, the results show that

the computational cost of partitioning is significantly cheaper us-

ing Entropy-Learned Hashing. At the same time, writing out large

amounts of data can limit the benefits of using ELH for partitioning,

as seen in the right side of Table 4. By writing out long-key strings

at each iteration of the partitioning, limitations on write bandwidth

limit gains from Entropy-Learned Hashing. Still, even in this case

the speedups can be as much as 20%, and additionally CPU usage

is reduced which frees up the CPU for other tasks.

Partitioning quality is maintained using Entropy-Learned
Hashing. Table 5 presents normalized relative standard deviation

for partitioning, where relative standard deviation is obtained by di-

viding the standard deviation by the average. We calculate relative

standard deviation for both full-key and Entropy-Learned Hashing

and normalize the Entropy-Learned Hashing to the full-key hash-

ing. As Table 5 shows, the normalized relative standard deviations

concentrate around one, which shows that the partitions produced

by the full-key hashing and the partitions produced by the entropy-

learned hashing are similar. In the case they are not, such as for

Hacker News with 64 partitions, the relative standard deviation

of Entropy-Learned Hashing is less than 3% so that partitions are

within 3% of their expected number of items on average.

6.6 Large Key Experiments
A key point of Entropy-Learned Hashing is that its runtime is

independent of key size. While this already provides speedups for

medium sized keys such as URLs and text, this speedup is much

larger for large keys such as file blocks. To show the effects of

Entropy-Learned Hashing on large keys, we repeat our previous

experiments for hash tables, bloom filters, and partitioning but

with synthetic random keys of 8192 bytes each. Figure 11 shows

the results. For hash tables with all successful lookups, the benefits

of Entropy-Learned Hashing are bounded because comparing keys

limits the throughput of these tasks. For hash table lookups that

are misses, Bloom filter probes, and partitioning, this speedup is

unbounded and can be one to two orders of magnitude. Thus, when

keys are large, speedups from using Entropy-Learned Hashing can

be extremely sizable with respect to runtime.

Entropy-Learned Hashing
Constant Time Hashing with Controllable Uniformity SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1.48 1.61

10.2
23.9

47.2

228

1

10

100

1000

HT
(mem,
hit=1)

HT
(cache,
hit=1)

HT
(mem,
hit=0)

HT
(cache,
hit=0)

Bloom
Filter

Partit-
itiong

Speedup over optimized full-key hash

Figure 11: Entropy-LearnedHashing provides orders ofmag-
nitude speedups at large key sizes.

6.7 Training Time
Beyond the benefits produced from using Entropy-Learned Hashing

in data structures, an additional goal is that the algorithms to select

bytes are cheap to perform. To evaluate the training time, we show

the runtimes of our training algorithms on the full Google dataset.

bytes 1 4 8

Optimized 214 s 11.6 s 6.4 s

Naive 29 min. 13 min 5 min

Table 6: Training runtime

Table 6 shows the re-

sults, displaying al-

gorithm run times

for our naive im-

plementation which

keeps all data points at each iteration, and for our optimized imple-

mentation which discards unique keys after each iteration. There

are three main takeaways. First, the training time is reasonable

for all sizes of contiguous bytes chosen, with runtimes between

several minutes and several seconds. Second, pruning items which

are unique from the dataset after each iteration produces substan-

tial runtime benefits (if an item is unique on some subset of bytes,

adding new bytes cannot create a collision for that item). Third, as

the size of the contiguous byte locations we choose increases, the

runtime decreases significantly because there are fewer options at

each iteration and because after fewer iterations the number of data

items that are non-unique is low (making each step, i.e. Algorithm

2, fast).

6.8 Additional Experiments
The paper focuses on a curated set of experiments which best

showcase the properties of Entropy-Learned Hashing. Due to space

constraints, this leaves out several experiments which cover other

key metrics. Briefly, this includes experiments on 1) the efficiency of

creating Entropy-Learned Hash data structures, 2) probing separate

chaining hash tables, 3) experiments with dependent accesses (i.e.

hash table lookups and Bloom filter lookups which must run one

after the other instead of in parallel), 4) additional experiments on

Bloom filters showing a range of desired false positive rates, and

5) experiments showing robustness properties. We include all of

these results in the technical report [29].

7 RELATEDWORK
Entropy&Hashing.Chung,Mitzenmacher, andVadhan’swork [18,

41] explains why current hash functions perform well, hypothesiz-

ing that data randomness is the reason this occurs. Our work makes

a step forward to change the practice of hashing by recognizing

this randomness, choosing how much and which parts of the data

we need to hash, and making hash functions cheaper.

Non-Cryptographic Hash Functions. New hash functions are

continually designed and fitted to modern processors [64]. This

includes works with some form of data-independent randomness

guarantees such as multiply-shift [22], CLHash [38], and tabula-

tion hashing[51, 72]. These works are complementary to Entropy-

Learned Hashing as they can be modified to work over subsets of

bytes to achieve even better speeds.

Data-Dependent hashing. Hash functions which depend on the

data have been considered before. For point lookups, this includes

perfect hashing [26] and learned hash indexes [35]. Both these

methods introduce computational overhead while trying to reduce

the number of collisions. Entropy-Learned Hashing is complemen-

tary to such works and it can be used in conjunction with these

techniques to get both better computation and a lower number of

collisions. An additional line of work which is related in terms of

learning from data but for a very different application is using data

to learn what items are approximately nearest neighbors [65].

Cryptographic Hash Functions. Cryptographic hash functions

such as MD5 [60], SHA1 [24] and newer variants have more strin-

gent measures on the ability to invert hash function outputs, but can

and have been used for hash-based data structures. A cryptographic

hash function specifically designed for hash-based data structures

is SipHash [8]. While development of newer cryptographic hash

functions has made cryptographic hashing faster, it remains an

order of magnitude slower than non-cryptographic hashing [19].

8 CONCLUSION & FUTUREWORK
This paper introduces Entropy-Learned Hashing, a way to reduce

the cost of hash functions by modelling the input data to produce

hash functions that give just enough randomness. We demonstrate

that this approach leads to substantial benefits in terms of com-

putational speed on hash tables, Bloom filters, and load balancing.

We also derived key relationships between the entropy of the data

source and the performance of data structures, deriving how much

entropy is needed for each data structure when given access to a

suitably good hash function.

Future work includes investigating the relationship between the

distribution of source data and the necessary operations inside

the hash function. For instance, experimentally the fastest hash

function for integer tables for most datasets is multiply-shift [59];

however, theoretically it is known that certain datasets produce

non-constant access times for linear probing when using this hash

function [48]. A dataset-specific view of this approach would illu-

minate when and why we can use this hash function.

9 ACKNOWLEDGEMENTS
This work is partially funded by the USA Department of Energy

project DE-SC0020200 and by the Swiss National Science Founda-

tion Early Postdoc Mobility scholarship P2ELP2_199749.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA Hentschel, Sirin, and Idreos

REFERENCES
[1] [n.d.]. gcc libstdc++ hash. https://github.com/gcc-mirror/gcc/blob/master/

libstdc%2B%2B-v3/libsupc%2B%2B/hash_bytes.cc. Accessed: 2021-05-23.

[2] 2015. Hacker News Posts. https://www.kaggle.com/hacker-news/hacker-news-

posts. Accessed: 2021-05-23.

[3] 2019. Linker Throughput Improvement in Visual Studio 2019.

https://devblogs.microsoft.com/cppblog/linker-throughput-improvement-

in-visual-studio-2019/.

[4] Jayadev Acharya, Alon Orlitsky, Ananda Theertha Suresh, and Himanshu Tyagi.

2017. Estimating Renyi Entropy of Discrete Distributions. IEEE Transactions on
Information Theory 63, 1 (2017), 38–56. https://doi.org/10.1109/TIT.2016.2620435

[5] Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, and David Hutchison.

2007. Scalable Bloom Filters. Inf. Process. Lett. 101, 6 (March 2007), 255–261.

[6] Austin Appleby. [n.d.]. murmurhash3. https://github.com/aappleby/smhasher/

wiki/MurmurHash3. Accessed: 2021-05-23.

[7] Austin Appleby. [n.d.]. smhasher suite. https://github.com/aappleby/smhasher.

Accessed: 2021-05-23.

[8] Jean-Philippe Aumasson and Daniel J. Bernstein. 2012. SipHash: A Fast Short-

Input PRF. In Progress in Cryptology - INDOCRYPT 2012, Steven Galbraith and

Mridul Nandi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 489–508.

[9] Eric Balkanski, Sharon Qian, and Yaron Singer. 2021. Instance specific approxi-

mations for submodular maximization. In International Conference on Machine
Learning. PMLR, 609–618.

[10] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. 2013. Multi-

Core, Main-Memory Joins: Sort vs. Hash Revisited. Proc. VLDB Endow. 7, 1 (Sept.
2013), 85–96. https://doi.org/10.14778/2732219.2732227

[11] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422–426.

[12] Colin R. Blyth. 1980. Expected Absolute Error of the Usual Estimator of the

Binomial Parameter. The American Statistician 34, 3 (1980), 155–157. http:

//www.jstor.org/stable/2683873

[13] Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: Fast Random Access

String Compression. 13, 12 (2020), 2649–2661.

[14] Andrei Broder, Michael Mitzenmacher, and Andrei Broder I Michael Mitzen-

macher. 2002. Network Applications of Bloom Filters: A Survey. In Internet
Mathematics. 636–646.

[15] Andrei Z. Broder. 1997. On the resemblance and containment of docu-

ments.. In SEQUENCES, Bruno Carpentieri, Alfredo De Santis, Ugo Vaccaro, and

James A. Storer (Eds.). IEEE, 21–29. http://dblp.uni-trier.de/db/conf/sequences/

sequences1997.html#Broder97

[16] Nathan Bronson and Xiao Shi. [n.d.]. Open-sourcing F14 for faster, more memory-

efficient hash tables. https://engineering.fb.com/2019/04/25/developer-tools/f14/.

[17] J. Lawrence Carter and Mark N. Wegman. 1977. Universal Classes of Hash Func-

tions (Extended Abstract). In Proceedings of the Ninth Annual ACM Symposium
on Theory of Computing (Boulder, Colorado, USA) (STOC ’77). Association for

Computing Machinery, New York, NY, USA, 106–112.

[18] Kai-Min Chung, Michael Mitzenmacher, and Salil Vadhan. 2013. Why Simple

Hash Functions Work: Exploiting the Entropy in a Data Stream. Theory of
Computing 9, 30 (2013), 897–945. https://doi.org/10.4086/toc.2013.v009a030

[19] Yann Collet. [n.d.]. xxHash. https://cyan4973.github.io/xxHash/. Accessed:

2021-05-23.

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[21] Niv Dayan and Moshe Twitto. 2021. Chucky: A Succinct Cuckoo Filter for LSM-

Tree. In Proceedings of the 2021 International Conference on Management of Data
(Virtual Event, China) (SIGMOD/PODS ’21). Association for Computing Machin-

ery, New York, NY, USA, 365–378. https://doi.org/10.1145/3448016.3457273

[22] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen.

1997. A Reliable Randomized Algorithm for the Closest-Pair Problem. Journal of
Algorithms 25, 1 (1997), 19–51.

[23] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.

Quantifying TPC-H Choke Points and Their Optimizations. Proc. VLDB Endow.
13, 8 (April 2020), 1206–1220. https://doi.org/10.14778/3389133.3389138

[24] D. Eastlake and P. Jones. 2001. RFC3174: US Secure Hash Algorithm 1 (SHA1).

[25] P. Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hyper-

LogLog: the analysis of a near-optimal cardinality estimation algorithm. Discrete
Mathematics & Theoretical Computer Science (2007), 137–156.

[26] Michael L. Fredman, Michael L. Fredman, Michael L. Fredman, Michael L. Fred-

man, Janos Komlos, Janos Komlos, Janos Komlos, Janos Komlos, Endre Szemeredi,

Endre Szemeredi, Endre Szemeredi, and Endre Szemeredi. 1982. Storing a sparse

table with O(1) worst case access time. In 23rd Annual Symposium on Foundations
of Computer Science (sfcs 1982). 165–169. https://doi.org/10.1109/SFCS.1982.39

[27] Google. [n.d.]. Abseil Common Libraries. https://github.com/abseil/abseil-cpp.

[28] Jason Gregory. 2009. Game engine architecture (1 ed.). Taylor & Francis Ltd.

[29] Brian Hentschel, Utku Sirin, and Stratos Idreos. [n.d.]. Entropy-

Learned Hashing Technical Report. https://bhentsch.github.io/

doc/EntropyLearnedHashingTechnicalReport.pdf. https://github.

com/AnonymousSigmod2022/EntropyLearnedHashing/blob/master/

TechnicalReport.pdf

[30] Intel. 2021. Intel VTune Amplifier XE Performance Profiler.

http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/.

[31] Adam Kirsch and Michael Mitzenmacher. 2006. Less hashing, same performance:

building a better bloom filter. In European Symposium on Algorithms. Springer,
456–467.

[32] Donald E. Knuth. 1998. The Art of Computer Programming, Volume 3: (2nd Ed.)
Sorting and Searching. Addison Wesley Longman Publishing Co., Inc., USA.

[33] Chun-Wa Ko, Jon Lee, and Maurice Queyranne. 1995. An exact algorithm for

maximum entropy sampling. Operations Research 43, 4 (1995), 684–691.

[34] Onur Kocberber, Babak Falsafi, and Boris Grot. 2015. Asynchronous Memory

Access Chaining. Proc. VLDB Endow. 9, 4 (2015), 252–263.
[35] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The case for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data. ACM, 489–504.

[36] Matt Kulukundis. [n.d.]. Designing a Fast, Efficient, Cache-friendly Hash Table,

Step by Step. https://www.youtube.com/watch?v=ncHmEUmJZf4.

[37] Harald Lang, Thomas Neumann, Alfons Kemper, and Peter Boncz. 2019.

Performance-optimal filtering: Bloom overtakes cuckoo at high throughput. Pro-
ceedings of the VLDB Endowment 12, 5 (2019), 502–515.

[38] Daniel Lemire and Owen Kaser. 2016. Faster 64-bit universal hashing using carry-

less multiplications. Journal of Cryptographic Engineering 6, 3 (2016), 171–185.

[39] Linux. 2021. Perf Wiki. https://perf.wiki.kernel.org/.

[40] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,

Roy Friedman, and Vyas Sekar. 2019. Nitrosketch: Robust and General Sketch-

Based Monitoring in Software Switches. In Proceedings of the ACM Special Interest
Group on Data Communication (Beijing, China) (SIGCOMM ’19). Association for

Computing Machinery, New York, NY, USA, 334–350. https://doi.org/10.1145/

3341302.3342076

[41] Michael Mitzenmacher and Salil Vadhan. 2008. Why simple hash functions work:

Exploiting the entropy in a data stream. Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms, 746–755.

[42] Michael David Mitzenmacher and Alistair Sinclair. 1996. The Power of Two Choices
in Randomized Load Balancing. Ph.D. Dissertation. AAI9723118.

[43] Hamid Mohamadi, Justin Chu, Benjamin P. Vandervalk, and

Inanc Birol. 2016. ntHash: recursive nucleotide hashing. Bioin-
formatics 32, 22 (07 2016), 3492–3494. https://doi.org/10.1093/

bioinformatics/btw397 arXiv:https://academic.oup.com/bioinformatics/article-

pdf/32/22/3492/19397493/btw397_Sup.pdf

[44] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis

of approximations for maximizing submodular set functions—I. Mathematical
programming 14, 1 (1978), 265–294.

[45] Hyeonwoo Noh, Andre Araujo, Jack Sim, and Bohyung Han. 2016. Large-Scale

Image Retrieval with Attentive Deep Local Features. International Conference on
Computer Vision (ICCV) (2016). http://arxiv.org/abs/1612.06321

[46] Maciej Obremski and Maciej Skorski. 2017. Renyi Entropy Estimation Revisited.

In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA
(LIPIcs, Vol. 81), Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S.

Vempala (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 20:1–20:15.

[47] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.

The Log-Structured Merge-Tree (LSM-Tree). Acta Inf. 33, 4 (1996), 351–385.

http://dblp.uni-trier.de/db/journals/acta/acta33.html#ONeilCGO96

[48] Anna Pagh, Rasmus Pagh, and Milan Ružić. 2011. Linear Probing with 5-Wise

Independence. SIAM Rev. 53, 3 (Aug. 2011), 547–558. https://doi.org/10.1137/

110827831

[49] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo Hashing. J. Algorithms
51, 2 (May 2004), 122–144. https://doi.org/10.1016/j.jalgor.2003.12.002

[50] Mihai Pǎtraşcu and Mikkel Thorup. 2010. On the k-Independence Required

by Linear Probing and Minwise Independence. In Automata, Languages and
Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, 715–726.

[51] Mihai Patrascu and Mikkel Thorup. 2011. The Power of Simple Tabulation

Hashing. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of
Computing (San Jose, California, USA) (STOC ’11). Association for Computing

Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/1993636.1993638

[52] W. W. Peterson. 1957. Addressing for Random-Access Storage. IBM Journal of
Research and Development 1, 2 (1957), 130–146. https://doi.org/10.1147/rd.12.0130

[53] Geoff Pike and Jyrki Alakuijala. 2011. CityHash.

https://github.com/google/cityhash.

[54] Geoff Pike and Jyrki Alakuijala. 2014. FarmHash.

https://github.com/google/farmhash.

[55] Orestis Polychroniou and Kenneth A. Ross. 2014. A Comprehensive Study of

Main-Memory Partitioning and Its Application to Large-Scale Comparison- and

Radix-Sort. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for

Computing Machinery, New York, NY, USA, 755–766. https://doi.org/10.1145/

2588555.2610522

https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/libsupc%2B%2B/hash_bytes.cc
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/libsupc%2B%2B/hash_bytes.cc
https://www.kaggle.com/hacker-news/hacker-news-posts
https://www.kaggle.com/hacker-news/hacker-news-posts
https://doi.org/10.1109/TIT.2016.2620435
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher
https://doi.org/10.14778/2732219.2732227
http://www.jstor.org/stable/2683873
http://www.jstor.org/stable/2683873
http://dblp.uni-trier.de/db/conf/sequences/sequences1997.html#Broder97
http://dblp.uni-trier.de/db/conf/sequences/sequences1997.html#Broder97
https://engineering.fb.com/2019/04/25/developer-tools/f14/
https://doi.org/10.4086/toc.2013.v009a030
https://cyan4973.github.io/xxHash/
https://doi.org/10.1145/3448016.3457273
https://doi.org/10.14778/3389133.3389138
https://doi.org/10.1109/SFCS.1982.39
https://bhentsch.github.io/doc/EntropyLearnedHashingTechnicalReport.pdf
https://bhentsch.github.io/doc/EntropyLearnedHashingTechnicalReport.pdf
https://github.com/AnonymousSigmod2022/EntropyLearnedHashing/blob/master/TechnicalReport.pdf
https://github.com/AnonymousSigmod2022/EntropyLearnedHashing/blob/master/TechnicalReport.pdf
https://github.com/AnonymousSigmod2022/EntropyLearnedHashing/blob/master/TechnicalReport.pdf
https://www.youtube.com/watch?v=ncHmEUmJZf4
https://doi.org/10.1145/3341302.3342076
https://doi.org/10.1145/3341302.3342076
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw397
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/32/22/3492/19397493/btw397_Sup.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/32/22/3492/19397493/btw397_Sup.pdf
http://arxiv.org/abs/1612.06321
http://dblp.uni-trier.de/db/journals/acta/acta33.html#ONeilCGO96
https://doi.org/10.1137/110827831
https://doi.org/10.1137/110827831
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1145/1993636.1993638
https://doi.org/10.1147/rd.12.0130
https://doi.org/10.1145/2588555.2610522
https://doi.org/10.1145/2588555.2610522

Entropy-Learned Hashing
Constant Time Hashing with Controllable Uniformity SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

[56] M. V. Ramakrishna. 1988. Hashing Practice: Analysis of Hashing and Universal

Hashing. In Proceedings of the 1988 ACM SIGMOD International Conference on
Management of Data (Chicago, Illinois, USA) (SIGMOD ’88). Association for

Computing Machinery, New York, NY, USA, 191–199. https://doi.org/10.1145/

50202.50223

[57] M. V. Ramakrishna. 1989. Practical Performance of Bloom Filters and Parallel

Free-Text Searching. Commun. ACM 32, 10 (Oct. 1989), 1237–1239. https:

//doi.org/10.1145/67933.67941

[58] Raghu Ramakrishnan and Johannes Gehrke. 2002. Database Management Systems
(3 ed.). McGraw-Hill, Inc., USA.

[59] Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A Seven-Dimensional

Analysis of Hashing Methods and Its Implications on Query Processing. Proc.
VLDB Endow. 9, 3 (Nov. 2015), 96–107. https://doi.org/10.14778/2850583.2850585

[60] R. Rivest. 1992. RFC1321: The MD5 Message-Digest Algorithm.

[61] Kenneth A. Ross. 2007. Efficient Hash Probes on Modern Processors. In Proceed-
ings of the 23rd International Conference on Data Engineering, ICDE 2007, The
Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, Rada Chirkova, Asuman Dogac,

M. Tamer Özsu, and Timos K. Sellis (Eds.). IEEE Computer Society, 1297–1301.

[62] Utku Sirin and Anastasia Ailamaki. 2020. Micro-Architectural Analysis of OLAP:

Limitations and Opportunities. Proc. VLDB Endow. 13, 6 (2020), 840–853.
[63] Oracle ZFS Steve Tunstall. 2017. DeDupe 2.0. https://blogs.oracle.com/wonders-

of-zfs-storage/dedupe-20-v2. Accessed: 2021-05-23.

[64] Reini Urban. [n.d.]. SMHasher - Reini Urban Fork. https://github.com/rurban/

smhasher. Accessed: 2021-05-23.

[65] Jingdong Wang, Ting Zhang, jingkuan song, Nicu Sebe, and Heng Tao Shen. 2018.

A Survey on Learning to Hash. IEEE Transactions on Pattern Analysis and Machine
Intelligence 40, 4 (2018), 769–790. https://doi.org/10.1109/TPAMI.2017.2699960

[66] Yi Wang, Diego Barrios Romero, Daniel Lemire, and Li Jin. 2020. Modern Non-

Cryptographic Hash Function and Pseudorandom Generator. (2020).

[67] Jan Wassenberg and Peter Sanders. 2011. Engineering a Multi-Core Radix Sort.

In Proceedings of the 17th International Conference on Parallel Processing - Volume
Part II (Bordeaux, France) (Euro-Par’11). Springer-Verlag, 160–169.

[68] Mark N. Wegman and J.Lawrence Carter. 1981. New hash functions and their use

in authentication and set equality. J. Comput. System Sci. 22, 3 (1981), 265–279.
https://doi.org/10.1016/0022-0000(81)90033-7

[69] Oracle ZFS. 2019. ZFS Deduplication. https://blogs.oracle.com/bonwick/zfs-

deduplication-v2. Accessed: 2021-05-23.

[70] Tianqi Zheng, Zhibin Zhang, and Xueqi Cheng. 2020. SAHA: A String Adaptive

Hash Table for Analytical Databases. Applied Sciences 10, 6 (2020). https:

//doi.org/10.3390/app10061915

[71] Zichen Zhu, Ju Hyoung Mun, Aneesh Raman, and Manos Athanassoulis. 2021.

Reducing Bloom Filter CPU Overhead in LSM-Trees on Modern Storage Devices.

In Proceedings of the 17th International Workshop on Data Management on New
Hardware (DaMoN 2021) (Virtual Event, China) (DAMON’21). Association for

Computing Machinery, New York, NY, USA, Article 1, 10 pages. https://doi.org/

10.1145/3465998.3466002

[72] A. Zobrist. 1990. A New Hashing Method with Application for Game Playing.

ICGA Journal 13 (1990), 69–73.

https://doi.org/10.1145/50202.50223
https://doi.org/10.1145/50202.50223
https://doi.org/10.1145/67933.67941
https://doi.org/10.1145/67933.67941
https://doi.org/10.14778/2850583.2850585
https://blogs.oracle.com/wonders-of-zfs-storage/dedupe-20-v2
https://blogs.oracle.com/wonders-of-zfs-storage/dedupe-20-v2
https://github.com/rurban/smhasher
https://github.com/rurban/smhasher
https://doi.org/10.1109/TPAMI.2017.2699960
https://doi.org/10.1016/0022-0000(81)90033-7
https://blogs.oracle.com/bonwick/zfs-deduplication-v2
https://blogs.oracle.com/bonwick/zfs-deduplication-v2
https://doi.org/10.3390/app10061915
https://doi.org/10.3390/app10061915
https://doi.org/10.1145/3465998.3466002
https://doi.org/10.1145/3465998.3466002

	Abstract
	1 Dataset Specific Hashing
	2 Overview & Modeling
	3 Creating Partial-Key Functions
	4 Connecting Entropy to Data Structure Performance
	4.1 Hash Tables
	4.2 Bloom Filters
	4.3 Partitioning & Load Balancing

	5 Runtime Infrastructure
	6 Experimental Evaluation
	6.1 Setup and Methodology
	6.2 Number of Words vs. Entropy
	6.3 Hash Table Probe Time
	6.4 Bloom Filter Lookup Time & FPR
	6.5 Partitioning Time & Variance
	6.6 Large Key Experiments
	6.7 Training Time
	6.8 Additional Experiments

	7 Related Work
	8 Conclusion & Future Work
	9 Acknowledgements
	References

