
P2P-DIET: A QUERY AND NOTIFICATION SERVICE BASED
ON MOBILE AGENTS FOR RAPID IMPLEMENTATION OF P2P

APPLICATIONS

by

Stratos Idreos

A thesis submitted in fulfillment of the
requirements for the degree of

Electronic and Computer Engineering

Technical University of Crete
Department of Electronic and Computer Engineering

Intelligent Systems Laboratory

1

Abstract

The paradigm of data sharing peer-to-peer systems has recently become a
hot area of research due to the popularity of file sharing applications such as
Napster, Gnutella and KazaA that adopt the “information pull” model. Peer-
to-peer systems exhibit many interesting features like adaptivity, load balancing,
self-organization, fault-tolerance and the ability to pool together large amounts
of resources and put them at the disposal of a large community of users. In
the last few years, the publish-subscribe paradigm has also emerged as a very
promising one for the development of Internet applications concentrating on the
“information push” model.

This dissertation presents the design and development of P2P-DIET, a peer-
to-peer service that unifies the above two paradigms. The service has been im-
plemented using the mobile agent system DIET Core developed in project DIET.
Our service supports queries, subscriptions and notifications in a single unifying
framework, and can be used for building various peer-to-peer applications like
file sharing, e-commerce, and information dissemination over the Web.

P2P-DIET contains a fault-tolerance mechanism that guarantees connectiv-
ity, when nodes of the network fail or leave silently. The capability of location-
independent addressing is supported, which enables the use of dynamic IP ad-
dresses. Because of this capability, nodes can disconnect and reconnect with a
different address and at different parts of the network.

To demonstrate P2P-DIET, a file sharing application was implemented on
top of it.

Contents

1 Introduction 10
1.1 Overview . 10
1.2 The DIET Platform . 12
1.3 Contributions of the Dissertation 13
1.4 Organization of the Dissertation 14

2 Related Work and Alternative Architectures for P2P Systems 16
2.1 Some Distinctions . 16
2.2 A Taxonomy of Computer Systems 17
2.3 Hierarchical Architecture . 18
2.4 Peer-to-Peer Systems . 18
2.5 Pure Peer-to-Peer Networks . 19
2.6 Centralized Peer-to-Peer Networks 20
2.7 Super-Peer Networks . 21

2.7.1 Acyclic Peer-to-Peer Architecture 22
2.7.2 General Peer-to-Peer Architecture 22

2.8 Summary . 23

3 P2P-DIET Architecture and Agents 25
3.1 P2P-DIET Architecture . 25
3.2 Agents . 28

3.2.1 The Mobile Agent System DIET Core 29
3.3 The Super-Peer Environment . 30

3.3.1 Super-Peer Agent . 30
3.3.2 Are-You-Alive Messenger 30
3.3.3 Clock Agent . 31
3.3.4 Build Spanning Tree Scheduler 32
3.3.5 Messenger . 32

3.4 Client Peer Environment . 32
3.4.1 Client Agent . 32
3.4.2 Interface Agent . 33
3.4.3 Messenger . 34

3.5 The Language for Metadata, Queries and Profiles 34

2

3.5.1 Resource Metadata . 34
3.5.2 Queries and Profiles . 37

3.6 Summary . 41

4 Routing Messages in P2P-DIET 42
4.1 Network Functionality . 42
4.2 Techniques . 43
4.3 Unicasting . 43

4.3.1 Implementing Bellmann-Ford in P2P-DIET 44
4.3.2 Unicasting with Shortest Paths in P2P-DIET 45

4.4 Broadcasting . 46
4.4.1 Flooding . 46
4.4.2 Reverse Path Forwarding 46
4.4.3 Spanning Trees . 47
4.4.4 Minimum Weight Spanning Trees 47
4.4.5 Minimum Weight Spanning Trees in P2P-DIET 47
4.4.6 Initial Algorithm . 48
4.4.7 Distribute Spanning Tree Information 50
4.4.8 Overloading the Network 50
4.4.9 Broadcasting with Minimum Spanning Trees in P2P-DIET 53

4.5 Multicasting . 53
4.6 Updating Spanning Trees and Shortest Paths when Topology of

the Super-Peer Network Changes 54
4.7 Clients . 55

4.7.1 Dynamic Addresses . 56
4.7.2 New Client . 57
4.7.3 Connecting . 57
4.7.4 Disconnecting . 58
4.7.5 Client Migration . 58
4.7.6 Adding a Super-Peer to a Working Network 59

4.8 Fault-tolerance . 59
4.8.1 Super-Peers . 60
4.8.2 Clients . 60

4.9 Overloading Socket Handling . 61
4.9.1 Socket Handling . 61
4.9.2 Constant Connections . 61
4.9.3 Avoiding Useless Are You Alive Messages 63

4.10 Summary . 63

5 Query and Event Notification Service 64
5.1 Routing Strategies . 64

5.1.1 Resources . 64
5.1.2 Propagate Profiles . 65

3

5.1.3 Notifications . 66
5.1.4 Stored Notifications . 66
5.1.5 Rendezvous . 67
5.1.6 Queries . 67

5.2 Profile Hierarchy . 68
5.3 Summary . 71

6 Agent Communication Protocols 72
6.1 Super-Peer - Super-Peer Communication Protocol 73

6.1.1 New Neighbor message . 73
6.1.2 Build Spanning Tree message 73
6.1.3 Reply Spanning Tree message 74
6.1.4 New Client message . 74
6.1.5 Client connected message 74
6.1.6 Client Disconnected message 74
6.1.7 New Profile message . 75
6.1.8 Notification message . 75
6.1.9 Client List message . 76
6.1.10 Arrange Rendezvous message 76
6.1.11 Search message . 76
6.1.12 Answer message . 77
6.1.13 Child Profile message . 78
6.1.14 Remove Profile message 78
6.1.15 Broadcast Neighbors Are You Alive message 78
6.1.16 Check Alive Clients message 79
6.1.17 Check Alive Neighbors message 79
6.1.18 Send Me Time To Broadcast Spanning Tree message . . . 79
6.1.19 Time To Broadcast Spanning Tree message 79
6.1.20 Messenger Send message 80
6.1.21 Destroy Yourself message 80
6.1.22 Add Client message . 80
6.1.23 Remove Client message . 80
6.1.24 Add Super-Peer message 81
6.1.25 I Am Alive message . 81
6.1.26 super-peer Disconnected message 81
6.1.27 Client Disconnected message 81
6.1.28 Are You Alive message . 81

6.2 Client Peer - Super-Peer Communication Protocol 82
6.2.1 New Client message . 82
6.2.2 Connect message . 82
6.2.3 Disconnect message . 83
6.2.4 New Profile message . 83
6.2.5 Query message . 83

4

6.2.6 New Resource message . 83
6.2.7 Remove Resource message 84
6.2.8 Resources message . 84
6.2.9 Request Other Client Address message 84
6.2.10 Request Access Point List message 84
6.2.11 Arrange Rendezvous message 85
6.2.12 Request Rendezvous Condition message 85
6.2.13 Request Rendezvous File message 85
6.2.14 Rendezvous File message 85
6.2.15 Finger Client message . 86
6.2.16 I Am Alive message . 86

6.3 Super-peer - Client Peer Communication Protocol 87
6.3.1 Key message . 87
6.3.2 Notification message . 87
6.3.3 Stored Notification message 87
6.3.4 Notification Number message 87
6.3.5 Requested Address message 88
6.3.6 Requested Address Not Available message 88
6.3.7 Access Point List message 88
6.3.8 Rendezvous Notification message 89
6.3.9 Rendezvous Notification Number message 89
6.3.10 Send File To Server message 89
6.3.11 Finger Client Connected message 90
6.3.12 Finger Client Not Connected message 90
6.3.13 Are You Alive message . 91

6.4 Client Peer - Client Peer Communication Protocol 91
6.4.1 Request Resource message 91
6.4.2 Send Resource message . 91
6.4.3 Resource Does Not Exist message 92
6.4.4 Chat Request message . 92
6.4.5 Chat Request Accepted message 92
6.4.6 Chat Request Denied message 93
6.4.7 Chat Message message . 93
6.4.8 Chat Exit message . 93
6.4.9 Messenger Send message 93
6.4.10 Destroy Yourself message 94
6.4.11 Connect Interface message 94
6.4.12 Disconnect Interface message 95
6.4.13 Exit Interface message . 95
6.4.14 Send Profile Interface message 95
6.4.15 Publish Resource Interface message 95
6.4.16 Remove Resource Interface message 95
6.4.17 Assign Access Point Interface message 96

5

6.4.18 Request Access Point List Interface message 96
6.4.19 Request Rendezvous Condition Interface message 96
6.4.20 Download Rendezvous File Interface message 97
6.4.21 Finger Interface message 97
6.4.22 Download Interface message 97
6.4.23 Start Download Interface message 97
6.4.24 Search Interface message 98
6.4.25 Chat Interface message . 98
6.4.26 Chat Message Interface message 98
6.4.27 Chat Disconnect Interface message 99
6.4.28 Chat Exit Interface message 99
6.4.29 Get File From Chat Client Interface message 100
6.4.30 Interface Notification message 100
6.4.31 Interface Stored Notifications Number message 100
6.4.32 Interface Start Download Question message 100
6.4.33 Interface Start Download Not Possible message 101
6.4.34 Interface Download Complete message 101
6.4.35 Interface File Does Not Exists message 101
6.4.36 Interface Rendezvous Notification Number message 102
6.4.37 Interface Connected Chat message 102
6.4.38 Interface Connected Chat Failed message 102
6.4.39 Interface Chat Disconnected message 102
6.4.40 Interface Chat Message message 103
6.4.41 Interface Finger Client Is Online message 103
6.4.42 Interface Finger Client Is Not Online message 104

6.5 Summary . 104

7 Concluding Remarks 105
References . 106

A Scenarios 113

6

List of Figures

2.1 A Taxonomy of Computer Systems 17
2.2 The hierarchical architecture . 18
2.3 Pure peer-to-peer architecture . 20
2.4 Napster unchained architecture 21
2.5 Acyclic peer-to-peer architecture 22
2.6 General peer-to-peer architecture 23

3.1 P2P-DIET architecture . 26
3.2 Layered View of P2P-DIET . 27
3.3 A software agent interacts with an environment through sensors

and effectors . 28
3.4 A Super Peer Environment . 31
3.5 The Client Peer Environment . 33
3.6 A resource metadata example . 36
3.7 A profile encoded in XML . 39

4.1 An example of a shortest path . 45
4.2 Examples of spanning trees . 48
4.3 A distributed for building spanning trees algorithm. 52
4.4 Fault-tolerance mechanism in P2P-DIET 62

5.1 Hierarchy Examples . 68
5.2 Hierarchy Examples . 69
5.3 An example of profiles in hierarchy 70

A.1 Are You Alive Client scenario . 114
A.2 Are You Alive Neighbor scenario 115
A.3 Publish Resource scenario . 116
A.4 Subscribe Profile scenario . 117
A.5 Query scenario . 118
A.6 Forward Child Profile Scenario . 119
A.7 Forward Profile Scenario . 120
A.8 Forward Query Scenario . 121
A.9 Forward Remove Profile Scenario 122

7

A.10 Forward Notification Scenario . 123
A.11 Connect Scenario . 124
A.12 Disconnect Scenario . 125
A.13 Forward Client Connected Scenario 126
A.14 Forward Client Disconnected Scenario 127
A.15 Ask Resources And Profile Scenario 128
A.16 Send Stored Notifications And Rendezvous Scenario 129
A.17 Upload Rendezvous File Scenario 130
A.18 Produce Notification Scenario . 131
A.19 Finger Scenario . 132
A.20 Send Notification To Clients Scenario 133
A.21 Remove Resource Scenario . 134
A.22 Request Access Point List Scenario 135
A.23 New Client Scenario . 136
A.24 Request Other Client Address Scenario 137
A.25 Arrange Rendezvous Scenario . 138
A.26 Forward Rendezvous Request Scenario 139
A.27 Request Rendezvous Condition Scenario 140
A.28 Request Rendezvous File Scenario 141
A.29 Download Scenario . 142
A.30 Send Resource Scenario . 143
A.31 Build Spanning Tree Scenario . 144
A.32 Forward Build Spanning Tree Scenario 145
A.33 Reply Spanning Tree Scenario . 146
A.34 New Neighbor Scenario . 147
A.35 Connect Chat Scenario . 148
A.36 Chat Message Scenario . 149

8

List of Tables

4.1 Routing Table for shortest paths 44
4.2 Spanning Tree Table . 50
4.3 Client Information Data structure 56

6.1 Super-Peer agent to Super-Peer agent messages 77
6.2 Super-peer agent to Are You alive messenger messages 82
6.3 Client Peer - Super-Peer Communication Protocol messages . . . 86
6.4 Super-Peer - Client Peer Communication Protocol messages . . . 90
6.5 Client Peer-Client Peer Communication Protocol messages (1) . . 94
6.6 Client Peer-Client Peer Communication Protocol messages (2) . . 99
6.7 Client Peer-Client Peer Communication Protocol messages (3) . . 103

9

Chapter 1

Introduction

Peer-to-peer systems have recently become a very active research area and very
popular though file sharing applications such as Napster [49], Gnutella [28] and
KazaA [40]. Much attention has also been focused on the copyright issues raised
by these applications. Peer-to-peer systems exhibit many interesting properties
like adaptivity, load balancing, self-organization, fault-tolerance and the ability
to pool together large amount of resources.

The event notification or publish-subscribe paradigm has also emerged re-
cently as a very promising way of building Internet-based systems. In an event
notification service, users subscribe with their profile to events of interest and
then asynchronously receive notifications on such related events. This disserta-
tion presents the development of a peer-to-peer system that unifies both of the
above paradigms.

1.1 Overview

In this dissertation we design and implement an Internet-scale, agent-based, peer-
to-peer system which supports queries, profiles and notifications. The service
itself can be used for building various peer-to-peer applications like file shar-
ing, e-commerce, network management, stock market analysis and software ad-
ministration. The system contains a fault-tolerance mechanism that guarantees
connectivity, when nodes of the network fail or leave silently. The capability of
location-independent addressing is supported, which enables the use of dynamic
IP addresses. Because of this capability, nodes can disconnect and reconnect with
a different address and at different parts of the network.

A file sharing application was implemented on top of the service. The users
of the application can:

• publish their files so that other users may see and download them.

• query the system to search for files on the whole network.

10

• subscribe with a profile which will continue to produce notification on future
resources too.

• receive notifications on files of interest owned by other users.

• receive stored notifications, which were produced at a time that the client
was not online to receive them.

• arrange rendezvous with a file if the resource owner is not online.

• use dynamic IP address and different access point nodes of the network.

• download files directly from the resource owner user.

• locate other clients and possibly chat with them.

Peer-to-peer systems are currently a very popular alternative to centralized
client-server systems. In its pure form, a peer-to-peer system has no servers
and no functionality is centralized. All nodes of the network are equal peers.
Adaptation, load-balancing, self-organization, fault-tolerance and the ability to
pool together large amount of resources, are some of the benefits of peer-to-peer
systems. In the last years, peer-to-peer systems have become the most popular
way for users of the Internet to share huge amount of data. There are three
main classes of peer-to-peer applications. In parallelizable systems a large task
is broken into small subtasks and each one of the subtasks can be executed in
parallel in different nodes of the network, for example, Seti@home [69]. More-
over, there are file sharing peer-to-peer systems like Napster [49], Gnutella [28],
Freenet [25] and KazaA [40]. Another class of peer-to-peer applications are the
collaborative systems, where the users collaborate in real time. Games are a type
of collaborative system.

Event notification systems are systems that allow one to subscribe with a
profile of interest or long-standing query so that he is notified when certain events
of interest take place. In the file sharing scenario an event can be the action of
a user to publish a file or subscribe with a profile. A profile is a long-standing
query, that continues to produce results as time goes by and new resources are
added to the system. Examples of event notification systems are intergrated
development environments [45, 62, 65, 7], work-flow and process analysis systems
[50, 35], graphical user interfaces [52], network management systems [46], software
development systems [63] and security monitors [37, 8, 27].

Agent-based computing offers many desired characteristics for implementing
a peer-to-peer system that supports queries, profiles and notifications. Software
agents are dynamic, adaptable, computational entities that function continuously
and autonomously in a particular environment, often inhabited by other agents
or processes. They are able to inhabit and migrate to complicated, unpredictable,
dynamic and heterogeneous environments [54, 70, 66]. Software agents carry out

11

activities in a flexible manner and are sensitive to changes in the environment,
without requiring constant human guidance. From a design point of view, all
these characteristics make the agents the right abstraction to represent peers
in a peer-to-peer context, and their complex interactions can be the basis for
a cooperative multi-agent system. Much research has been focused on agent-
based systems and many agent development toolkits have been constructed in
the last years, for example, JADE [22], OAA [20], RETSINA [38], ZEUS [29] and
DIET Core [14]. The agent platform called DIET Core was used to implement
P2P-DIET and will be briefly discussed in the next section.

1.2 The DIET Platform

DIET stands for Decentralized Information Ecosystem Technologies. DIET is a
5th Framework project funded by the European Commission under the Future
and Emerging Technologies area [21, 16]. One of the goals of the project was the
design of a multi-agent platform that is open, robust, adaptive and scalable based
on an ecosystem-inspired approach. In the first year of DIET such a multi-agent
platform has been developed called DIET Core [55, 14].

A basic concept in DIET Core is the world. There is one world per Java Virtual
Machine (JVM). A world is an environment repository and can contain one or
more environments. Environments in DIET Core provide a location for agents to
inhabit and can host one or more agents. The DIET platform can contain more
than one worlds. This is for instance the case when DIET Core runs on multiple
computers. This can be viewed as a DIET universe that contains multiple planets
(worlds). Each environment can have neighbor links to other environments, which
are not necessarily in the same world. Each environment can be connected with
other environments which are not necessarily in the same world, through neighbor
links. These links allow agents to migrate to different environments and explore
the DIET universe, without having any prior knowledge of the location of the
environments. Those links are specified when the world is set-up but can change
dynamically too, if the DIET universe changes.

The agents in DIET Core are very lightweight. They do not need a lot of
memory to run while DIET ensures that agents give up their thread if they do
not need it. The DIET Core will give a thread to an agent, when it needs it, for
example, when it must handle an incoming message. The lightweight character
of the agents allows several hundred thousands of agents to run in the same JVM
on an ordinary desktop computer.

The support of the DIET Core for communication and agent migration is
minimal. There is no specific protocol contained in the DIET platform, so there
is no overhead and execution can be rapid. One the other hand, if one wants to
use an agent communication protocol such as the ones defined by FIPA [24] then
this protocol must be developed from scratch.

12

The DIET Core will directly expose agents to potential failure, which enhances
the robust character of the platform. The core will satisfy a request, only if it can
easily do so. For example local message delivery fails if the agent, who is supposed
to receive the message can not be assigned a thread or his message buffer is full.
In this way, no extra resources are spent, when the system is already overloaded.
For more details on the DIET platform see [55, 14].

1.3 Contributions of the Dissertation

This dissertation presents the critical decisions, strategies, problems and solu-
tions that occurred while designing and implementing P2P-DIET. There is a gap
currently in the peer-to-peer systems literature since there are systems with only
query capabilities, i.e., Gnutella [28] and systems with only profile/notification
capabilities, i.e., SIENA [1]. We designed P2P-DIET in response to the obvious
need to unify these paradigms. In this way, P2P-DIET unifies both queries and
notifications.

We present the agents that inhabit the environments of P2P-DIET universe.
There are two different types of environments. The client peer environment in
the client nodes and the super-peer environment in the super-peer nodes. Each
environment hosts different types of agents. We define their responsibilities and
their goals. The goal of an agent is sometimes a part of a greater goal and he
works together with other agents to satisfy that goal. Local communication is
achieved by a direct connection between the two agents. Remote communication
is based on mobile agents, the messenger type of agents. Those agents migrate
to different environments to deliver messages and they keep travelling around the
network for ever.

We define the routing strategy. The goal is to establish the appropriate routing
paths in order to use the network efficiently loading it with the least possible
overhead. We show how we build minimum weight spanning trees and shortest
paths in the distributed environment and how we use them to satisfy the demands
of the network in terms of routing messages. We present the fault-tolerance
mechanisms and the reasons that make such mechanisms necessary. We allow the
use of dynamic IP addresses and we assume that a node will not be connected for
ever to the same part of the network. We define the additional issues to handle
in order to support the previous capabilities. Moreover, we present in detail the
process of adding or removing servers or clients from the network, in a way that
guarantees stability and connectivity. We present the socket handling strategy,
that enables the super-peer nodes to use the minimum number of resources.

We present the query and event notification service in detail. We give de-
tails for the basic concepts of our query and event service, which are profiles,
resources, notifications, queries, stored notifications and rendezvous. We describe
the propagating strategy, which concludes a profile hierarchy. We show how we

13

build and use the hierarchy and why it is so useful for the network. We present
the language currently supported by P2P-DIET. This language is used in the
profiles and queries in order for the clients to describe their interests and query
the system.

The software agents must communicate to change information and cooperate.
We present the communication protocols that the agents in P2P-DIET use for
local and remote communication. There are four different protocols:

1. The super-peer - super-peer communication protocol, which is used by
agents in a super-peer environment to communicate with agents in the
local or a remote super-peer environment.

2. The client peer - super-peer communication protocol, which is used by
agents in a client peer environment to communicate with agents in a remote
super-peer environment.

3. The super-peer - client peer communication protocol, which is used by
agents in a super-peer environment to communicate with agents in a re-
mote client peer environment.

4. The client peer - client peer communication protocol, which is used by
agents in a client peer environment to communicate with agents in the
local or a remote client peer environment.

Note that remote communication is achieved by the Messenger agent. This
means, that when an agent wants to communicate with a remote agent, he com-
municates with a local messenger agent and the messenger will implement the
remote communication. Moreover, we present the different scenarios that take
place in P2P-DIET, by showing in detail the conversations between agents, using
UML sequence diagrams.

1.4 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2 we briefly discuss alter-
native peer-to-peer architectures supporting the query/answer paradigm or the
profile/notification paradigm. Chapter 3 presents the architecture of P2P-DIET,
the mobile agents implementing the required functionality and their responsibili-
ties in the P2P-DIET universe. Moreover, in Chapter 3 we discuss the data model
and language that the system currently supports for queries, profiles and notifi-
cations for a file sharing application. Chapter 4 presents the routing strategy in
our system and the way different nodes are connected to or disconnected from
the network. In Chapter 5 we discuss the event notification mechanisms and the
propagating strategy. Chapter 6 describes in detail the different communication
protocols used by the agents. In Chapter 7 we present our conclusions and future

14

work possibilities and finally Appendix A presents the different scenarios that
take place in the network.

15

Chapter 2

Related Work and Alternative
Architectures for P2P Systems

The process of designing a distributed peer-to-peer query and event notification
service requires careful study of the different peer-to-peer architectures and their
tradeoffs. In this chapter we discuss some alternative architectures for peer-to-
peer systems. We briefly present some well-known architectures and informally
discuss their advantages and disadvantages, in terms of fault-tolerance, routing,
scalability and other fundamental network issues. Four basic architectures are
considered: hierarchical, pure peer-to-peer, centralized peer-to-peer and super-
peer based.

2.1 Some Distinctions

In the literature on peer-to-peer architectures one can easily distinguish between
two classes of systems:

• Systems such as Napster [49] and Gnutella [28] where the primary mode of
interaction is a user query (for example, “I am interested in songs by Jethro
Tull”) to which the system returns an answer which is a list of matching
resources. We will call these systems query systems.

• Systems such as SIENA [1, 3] and DIAS [44] where the primary mode of
interaction is a user profile that is input to the system. Later on, events at
any node of the system can give rise to notifications that inform the users
about the availability of resources matching their profiles.

These two classes of systems have been so far treated independently in the
literature. Napster, Gnutella, KazaA and the like have monopolized the buz-
zword “peer-to-peer” while systems like SIENA, clearly based on peer-to-peer
architectures, usually go by the name event notification systems. Examples of

16

Figure 2.1: A Taxonomy of Computer Systems

event notification systems can be found in applications such as integrated de-
velopment environments [45, 62, 65, 7], work-flow and process analysis systems
[50, 35], graphical user interfaces [52], network management systems [46], software
development systems [63] and security monitors [37, 8, 27].

We believe that the different functionalities offered by these two classes of
systems are all very useful when offered as basic services for the development of
peer-to-peer applications. Thus we made them the core services in our system
P2P-DIET. Our presentation in the rest of this section owes a lot to [1, 3].

Now that we have made the above distinction and motivated our work, let
us discuss various architectural alternatives that we could have followed in our
implementation. We blur the distinction between query systems and event noti-
fication systems because all architectures we present can be used in both cases.

2.2 A Taxonomy of Computer Systems

Computer systems can be classified as centralized or distributed. Distributed
systems can be further classified into systems that follow the client-server model
and systems that follow the peer-to-peer model. The client server model may be
flat or hierarchical. In the flat model all clients communicate with a single server
only. In the hierarchical model servers form a hierarchy as discussed in Section
2.3. The peer-to-peer model can be pure or centralized.

In pure peer-to-peer systems there is no centralized functionality, while in
hybrid systems the opposite is true. We adopt the hybrid terminology from
[9, 10]. Moreover, there is an intermediate solution of super-peer systems, where
the super-peer nodes form a pure peer-to-peer network but each super-peer is
connected with clients in a centralized way. Those models will be discussed in
detail later in the chapter. Figure 2.1 shows this taxonomy of computer systems.

17

Figure 2.2: The hierarchical architecture

2.3 Hierarchical Architecture

The hierarchical topology is an extension of the simple client-server architecture.
Any two servers are connected in a client-server way so that all servers form a
tree as shown in Figure 2.2. Each server has one master server and one or more
child servers. The server that has no master server is the root. It is understood
that servers have two roles. They act both as clients and as servers in a network
of servers, and as servers to their clients. This is the topology of the distributed
implementation of the event dispatcher JEDI [26]. In this topology a server does
not distinguish between other servers and clients, except of course his master
server. In the case of an event notification system, this means that a server is
able to receive notifications, subscriptions or resources, but it will be able to send
only notifications to clients and servers. The network of servers forms a directed
graph with the obvious advantage of the unique paths between the nodes. This
is great in terms of routing, because the decision of how to send a message is
trivial. On the other hand, there are problems such as the overloading of servers
and fault-tolerance. Since there is no second path connecting two servers, it is
reasonable to assume in large scale networks that some servers will be overloaded,
because they will be the only way to connect other servers. Moreover, when a
server fails, its child subnetworks are disconnected from the network and the
network is cut into many parts. The higher in the hierarchy the problem occurs,
the more important it is, because a bigger part of the network will be cut off.

2.4 Peer-to-Peer Systems

In peer-to-peer systems the nodes of the network have equal roles in the exchange
of information and services. Various systems have been labelled as peer-to-peer
systems in different application domains. Some well-known systems are those
used for the exchange of music files, for example Napster [49], Gnutella [28],

18

Freenet [25] and KazaA [40]. Another well-known file sharing system is Pointera
[58]. Then there are systems like SETI@Home [69], where users offer computing
cycles or instant messaging systems like ICQ [33] to exchange personal messages.
Finally, there are collaboration systems like Groove [56]. The big advantage
of peer-to-peer systems is that they can create very large pools of information
and computing power by gathering the resources and CPU cycles of their users.
Additionally, the existing peer-to-peer systems are very strong in terms of load-
balancing, self-organization, adaptation and fault-tolerance. The strengths of
grass roots peer-to-peer systems have motivated many research projects to focus
on understanding the problems in such systems and improve their performance,
for example, [23, 34, 6]. Much research has been done in the area of improving the
search efficiency in peer-to-peer environments by creating better search protocols,
for example, Chord [32], Pastry [5], CAN [64] and Tapestry [12] by supporting
point queries, and [11, 4] by supporting more expressive queries. For recent
detailed surveys of peer-to-peer systems the reader is asked to consult [17, 47].

2.5 Pure Peer-to-Peer Networks

In pure peer-to-peer systems all peers have equal roles and responsibilities. This
stands for all aspects such as query, download, publishing etc. No functionality is
centralized in pure peer-to-peer systems. Every node is a servent (both a client
and a server). Each node can equally communicate with any other connected
node (neighbor). Gnutella [28] and Freenet [25] are good examples of pure peer-
to-peer networks.

Gnutella is a file sharing protocol. The applications that are on top of Gnutella
allow users to search and download files from other users. Gnutela users must
know the IP address of a Gnutella node to connect to the network. When a
user wants to search, he sends a query to all his neighbors. The neighbors may
respond and they will forward the query to all their neighbors1. The message
will actually travel only to a limited number of nodes using a time-to-live (TTL)
mechanism. Gnutella does not contain a fault-tolerance mechanism. Various file
sharing applications have been implemented using the Gnutella protocol, for ex-
ample, [42, 72, 13]. The main advantage is that such systems distribute the main
cost of sharing data (bandwidth and storage) across the peers, which means that
the network can scale without the need for powerful servers. Despite their many
strengths pure peer-to-peer networks that work as described tend to be inefficient.
For example, Gnutella network uses flooding to publish query messages and this
results in heavy network traffic. Another very important factor of inefficiency
is the existence of peers with limited capabilities. The fact that all peers have
equal roles causes bottlenecks. For example, Gnutella had low performance in
August 2000 when some peers connected by dialup modems became overloaded

1This process of routing a message is called flooding.

19

Figure 2.3: Pure peer-to-peer architecture

after a while as shown in study [39]. The obvious conclusion is that in order to
build an efficient system one must take advantage of the heterogeneity among the
peers. More capable peers with more resources (disk space, CPU and bandwidth)
should have greater responsibilities than others. An example of a typical pure
peer-to-peer network is shown in Figure 2.3.

Freenet is available in an Open Source reference implementation and it is a
file sharing system based on the designs of [30, 31]. The main goal of Freenet is
the ability of the clients to be anonymous. In this way, a user makes requests but
no one knows his identity. Freenet is completely decentralized and its scalability
has been studied in [31].

2.6 Centralized Peer-to-Peer Networks

Centralized peer-to-peer systems are a combination of pure peer-to-peer and ideas
from centralized systems. In this case search takes place over a centralized di-
rectory but download still works in a pure peer-to-peer way, which means that
peers are equal in download only. A well-known centralized system is Napster
[49], where clients connect to a server that keeps a directory of the resources
of all peers in the network. There are shortcomings in centralized peer-to-peer
systems too. Although centralized search can sometimes be more efficient than
distributed search, the cost of keeping an index for the resources on a single node
is high, because the single node may become a scalability bottleneck and a single
point of failure. Moreover, the fact that some peers are more important than
others makes the system more vulnerable to attacks. Napster servers are orga-
nized in an unchained architecture as shown in Figure 2.4, which means that a
user can see only files of users connected in the same server. Users in Napster
cannot search for files globally, because they are restricted to searching on a sin-
gle server that has indexed only a fraction of the available files in the network.
The only way to achieve global search is for the user to connect to all servers
(one at a time) and search. The advantage of this architecture is the ability of

20

Figure 2.4: Napster unchained architecture

the network to scale, basically because of the more lightweight character of the
servers. Another example of centralized peer-to-peer architecture is Groove [56].
Groove is a collaborative peer-to-peer system. The goal is to enable communica-
tion, content sharing and tools for joint activities [53] without relying on a server
[56]. Moreover, Groove tries to guarantee security, privacy and flexibility.

The full replication approach is a solution to the global search problem of the
unchained architecture of Napster. Each server replicates all information and in
that way, it keeps a centralized index and its clients can search globally using this
index. This approach is used in NTTP [7] and a variation in the Konspire [41]
peer-to-peer system. Possible architectures for centralized peer-to-peer systems
have been studied in detail in [10].

2.7 Super-Peer Networks

Super-peer systems are a cross between pure and centralized systems. A super-
peer is a node of the network, that acts both as a server to a subset of clients,
and as an equal in a network of super-peers. As discussed in [9], because super-
peers act as centralized servers to their clients, the query process is more efficient
than the one in Gnutella, where each individual client should handle queries.
Moreover, the fact that there are many super-peers in the network, guarantees
that no super-peer will need to handle a very large load and possibly become
a single point of failure for the entire system. Clients are connected only to a
single super-peer in a client-server way and are equal to each other in terms of
download only. An example of super-peer system, is KazaA [40]. The super-peer
nodes in the KazaA network are powerful nodes on fast connections that are
generated automatically. Client peers connect to their local super-peer node to
upload information on the files that they want to share and to send a query to
the network. KazaA tries to improve download speed and to make downloading
more reliable. A file will be downloaded from the fastest connection available.
Moreover, it will be downloaded in parallel from different sources to speed up the
download. Finally, a failed transfer will be resumed automatically.

21

Figure 2.5: Acyclic peer-to-peer architecture

The interconnection topology of super-peers is of great importance for the
network, because it affects critical functionalities such as the routing algorithms
for efficient message delivery and fault-tolerance. In the next three subsections
we will shortly present two basic topologies: acyclic peer-to-peer and general
peer-to-peer.

2.7.1 Acyclic Peer-to-Peer Architecture

In the acyclic peer-to-peer architecture all servers are equal (peers). They com-
municate with each other symmetrically as peers, which means that information
flows both ways. The graph composed by the servers, is an acyclic undirected
graph as shown in Figure 2.5. Since there are no cycles, the communication path
between two super-peers is unique. Again the routing problem has a trivial solu-
tion. We can either force super-peers to forward all messages to all their neighbors
except the sender or store information on the paths for each super-peer and for-
ward messages only to the appropriate neighbors each time. The main problem
of the acyclic topology is fault-tolerance, since the failure of a single server can
isolate a big subset of the network. Moreover, the network will not be flexible
enough to handle critical situations, for example, the fact that one super-peer is
overloaded because that super-peer will be in the single path of other super-peer
messages. The USENET news system is an example of this architecture. The
topology of the news servers is very similar to the acyclic peer-to-peer topol-
ogy. The main protocol in USENET news is the NTTP [7]. NTTP provides both
client-server and server-server commands. The selection mechanisms in USENET
news are not very sophisticated, which limits its usability as an event service.

2.7.2 General Peer-to-Peer Architecture

If we remove the constraint of acyclicity from the acyclic peer-to-peer architec-
ture, we obtain the general peer-to-peer architecture. The topology of the servers

22

Figure 2.6: General peer-to-peer architecture

is a general undirected graph as we see in Figure 2.6. In this architecture, cy-
cles are allowed. It is possible that one server can communicate with another
through multiple paths and this is the difference between general peer-to-peer
architecture and the previous ones. The communication of two connected servers
is bidirectional as in the acyclic topology. The advantage is that the network is
more robust. When a server fails its subnetworks can be reached through other
paths, which means that unless that server had only one neighbor2, the rest of
the network can adapt to that situation and keep working properly. Intuitively,
the more connected the servers are, the more robust the network will be. Of
course, we should not expect real networks to be fully connected. The problem
of having appropriate connectivity to achieve robustness is an important one.

A general peer-to-peer topology of servers has to face the problem of routing.
Routing has no trivial solution in a general undirected graph. Each super-peer
needs more information on the topology of the network to successfully deliver
messages. This problem is discussed in detail in Chapter 4.

2.8 Summary

In this chapter we discussed alternative architectures for peer-to-peer systems.
We briefly made the distinctions of typical query systems and event notification
systems. We discussed the hierarchical architecture, the pure peer-to-peer archi-
tecture and continued with the centralized approach and the super-peer approach
for building peer-to-peer networks. We considered the possible interconnection
topologies of servers in a super-peer network: acyclic peer-to-peer and general

2A neighbor is a directly connected server.

23

peer-to-peer. In the rest of this dissertation we will present the architecture of
P2P-DIET, we will analyze in detail the routing solutions (routing strategy) in
P2P-DIET, the notification mechanism and the strategy for propagating notifica-
tions. Moreover, we will give details on the implementation such as the different
agents that were created, the communication protocols that they use and the
different scenarios that can take place in our peer-to-peer query and notification
service.

24

Chapter 3

P2P-DIET Architecture and
Agents

In the previous chapter we presented some alternative peer-to-peer architectures
and some well-known related systems. This chapter presents in detail the ar-
chitecture chosen for P2P-DIET. Additionally, we present the agents that were
implemented, their responsibilities, their goals and how they interact with each
other and with the users of the network. We describe the language that the
clients use for queries and profiles. Note that in this chapter, we give a high level
view of our work and many of the critical points will be explained in detail in the
following chapters.

3.1 P2P-DIET Architecture

Our goal is to build a peer-to-peer system that supports queries, profiles and
notifications. As we argued informally in the previous chapter, the most flexible
architecture is that of a super-peer network, which allows super-peers to com-
municate through multiple paths and form a general undirected graph as shown
in Figure 3.1. There are two kind of nodes in P2P-DIET. The super-peer nodes
and the client nodes. Super-peers are connected in such a way that they form a
general undirected graph. All super-peers are equal and have the same responsi-
bilities, so the internal network consisting only of the super-peer nodes is a pure
peer-to-peer network. Each super-peer serves a fraction of the clients and keeps
indices on the resources of those clients. A client node is a computer of a real
user of the system. Recourses - files that users want to share with others - will
be kept in the computers of the users, although it is possible in special cases
to store resources in a server1. Clients are equal to each other only in terms of
download. When a client wants to actually download a resource, it downloads
it in a pure peer-to-peer way from the resource owner client. A client node is

1This functionality is called rendezvous and will be explained in Chapter 5.

25

Figure 3.1: P2P-DIET architecture

connected to the network through a super-peer node, which is the access point of
the client and as we will see, it is not necessary for the client to be connected to
the same access point continuously. By adopting such topology, we can handle
critical situations, like the failure of a node efficiently and develop a peer-to-peer
service that supports query and notification scenarios.

Clients may publish a resource by sending metadata for the resource to their
access point in order for other clients to see it. A resource is a file of any type,
for example, music files or Microsoft Word documents. Moreover, clients may
subscribe their profile which is a long-standing query. This means that by sub-
scribing the profile, the user will expect to find all files that exist on the network
and all files that will be published in the future. Additionally, clients receive
notifications on a resource through their access point. A notification is a pointer
to the real resource that is stored on the computer of the resource owner client.
The client will use the notification to identify the resource owner and the resource
name in order to be able to download it. Super-peers propagate the profiles of
their clients to all other super-peers. In this way, when a new resource is added
somewhere in the network, all profiles will be checked in case there is a match
with the resource. This process guarantees, that the profiles will continue to pro-
duce notifications (long-standing query) for future resources. We could propagate
resources instead, but we expect our clients to have numerous resources but only
a few profiles. For example, in a file sharing application where users share music
files, a user may have thousands of resources (music files), while he might be
interested in a specific number of artists.

Each super-peer has a profile hierarchy to organize the process of profile for-
warding. A profile is forwarded only if there is not any other more general profile
already forwarded. The profiles that lie to the level one of the hierarchy are those
that are actually forwarded, because there are not any other more general pro-
files. Those forwarded profiles have children in the hierarchy, which are profiles
less general than their father (the forwarded profile), and those children may have

26

Figure 3.2: Layered View of P2P-DIET

other children etc. The depth of the hierarchy is not limited by the system. Using
the hierarchy for the profiles, a super-peer receives less notification messages but
continues to satisfy all the profiles of his clients. One notification message may
satisfy a large number of profiles. Thus, when a notification arrives in a super-
peer environment, the local super-peer agent must check if the notification must
be delivered to more than one client agents. The clients to be checked are those
who own a profile which is a child of the profile that gave rise to the notification.

Additionally the system supports the typical ad-hoc query scenario, where
clients query the system to find matching resources anywhere in the network,
without affecting their original profile, which will continue to produce notifi-
cations as new resources are published. Ad-hoc queries are answered by using
essentially the same notification mechanism that is used for long-standing queries.

To enhance the general form of the network, we assume that clients (users)
use dynamic IP addresses and can connect or disconnect anytime or even leave
from the system silently. This brings new aspects in the notification character of
our system. We need to handle situations where clients may loose notifications,
because they are not connected at the moment that the notification is produced
or cannot download a resource, because the resource owner is not connected.
The answers to the previous problems are stored notifications and rendezvous
files. The network will store notifications for a client, if he is not there to receive
them and will try to upload a file from a client, so the interested client does not
have to wait to be connected at the same time with the resource owner.

Profiles, resources and notifications are XML DOM trees. It is much cheaper
to transmit the DOM trees than the actual XML file. Moreover, the DOM tree
is ready to read or write anytime. On the other hand, an XML file has to be
parsed. Of course, clients and super-peers keep backup XML files of the DOM
trees. This is necessary because a client will not keep his computer on and the
client application of P2P-DIET running. When the application is terminated

27

Figure 3.3: A software agent interacts with an environment through sensors and
effectors

(exit client program) the DOM trees will be lost. Super-peers are servers which
means that they are not going to be terminated, so they keep XML files just
for backup. SAX technology was not an option because of the need to check for
matches very often, so if we used SAX we would have to parse the XML files
every time we wanted to make a check. A high-level view of the network is shown
in Figure 3.1. A layered view of P2P-DIET is shown Figure 3.2. The agent
communication protocols in Figure 3.2 are those that described in Chapter 6.

3.2 Agents

Until now we have not defined the concept of an agent. Software agents as de-
scribed in [36] have certain characteristics. They are dynamic, adaptable, com-
putational entities that function continuously and autonomously in a particular
environment, often inhabited by other agents or processes. Software agents are
able to inhabit complicated, unpredictable, dynamic and heterogeneous environ-
ments [54, 70, 66]. Our desire is a software agent to carry out activities in a
flexible manner and to be sensitive to changes in the environment, without re-
quiring constant human guidance as shown in Figure 3.3. A software agent should
be able to learn from its experience, after a long period of time. Additionally,
we expect agents that inhabit an environment with other agents or processes, to
be able to communicate and work together with other agents to solve a problem
or a set of problems. Moreover, software agents should be able to move-migrate
to different environments. The goal of an agent can be very simple or very com-
plicated. Moreover, the goal of a software agent can be an intermediate goal to
achieve a final goal. In this way, more than one agents work independently to
satisfy the final goal. An agent has to use reasoning to achieve his goals. In

28

general, agents have to perform three tasks:

1. perception of the conditions that dynamically change in the environment.

2. reasoning in order to understand the data being perceived and decide how
to react.

3. action to change the conditions to the environment.

In analog to humans, agents have sensors to perceive changes in the environment
and effectors to act.

3.2.1 The Mobile Agent System DIET Core

As we have already said in Section 1.2 a basic concept in DIET Core is the world.
There is one world per Java Virtual Machine (JVM). A world is an environment
repository and can contain one or more environments. Environments in DIET
Core provide a location for agents to inhabit and can host one or more agents.
The DIET platform can contain more than one worlds. This is for instance the
case when DIET Core runs on multiple computers. This can be viewed as a
DIET universe that contains multiple planets (worlds). Each environment can
have neighbor links to other environments, which are not necessarily in the same
world. Each environment can be connected with other environments which are
not necessarily in the same world, through neighbor links. These links allow agents
to migrate to different environments and explore the DIET universe, without
having any prior knowledge of the location of the environments. Those links
are specified when the world is set-up but can change dynamically, if the DIET
universe changes.

In P2P-DIET there are many worlds. Each super-peer and each client has a
different world, which means that each different computer represents a different
world. All the worlds together are the P2P-DIET universe. Each world has one
environment. A world in a super-peer node has a super-peer environment, where
5 different types of agents live. The world in the client peer nodes has a client
peer environment, where 3 different types of agents live. Each type of agent is
explained in the following sections.

Each agent is assigned a unique name tag. This tag is randomly gener-
ated within its originating environment. It is used to distinguish a single agent
throughout its lifetime and it is retained even when the agent migrates to a dif-
ferent environments. Additionally, each agent is assigned a family tag. This tag
reflects the services that the agent offers and its responsibilities. Duplication of
family tags is expected since more than one agents may offer the same services.

29

3.3 The Super-Peer Environment

In a super-peer environment there are five types of agents: a super-peer agent,
an Are-You-Alive messenger, a clock agent, a build spanning tree scheduler and
zero or more messenger agents. These agents are described below.

3.3.1 Super-Peer Agent

The super-peer agent is the most important agent that inhabits the super-peer
environment. Each super-peer environment has one super-peer agent. This agent
has the greatest number of responsibilities of any other type of agent in the P2P-
DIET universe. It must work continuously and autonomously to serve the clients
of this super-peer. It accepts profiles and resources and tries to find similarities
between them. It arranges rendezvous, it stores notifications and rendezvous
files. It assigns unique keys to the new clients. Moreover, it is responsible for
the correct flow of messages in the network. It is responsible for forwarding each
message to the correct super-peer agent, which depends on the root of the message
if the message is broadcasted or the receiver in the case that the message is sent
to a specific super-peer agent. The super-peer agents need a way to communicate
with remote agents, for example, the client agent in the computer of a user or
the super-peer agents of the neighbor super-peers. The way to achieve remote
communication is to assign the message to a messenger agent as we will see in
Section 3.3.5. The agents that inhabit in the super-peer environment and the
way they interact with each other and with the P2P-DIET universe is shown in
Figure 3.4.

3.3.2 Are-You-Alive Messenger

The Are-You-Alive messenger is an agent that works continuously in all super-
peer environments. Each super-peer environment has one Are-You-Alive mes-
senger. This agent is responsible for periodically checking the clients agents,
that are supposed to be alive and are served by this super-peer. The super-peer
agents of the neighbor super-peers are checked too, to guarantee connectivity.
Both client agents and neighbor super-peer agents are in remote environments.
The remote communication is achieved by the messenger agent, which means
that the Are-You-Alive messenger is able to communicate with the messenger
agent. Moreover, the Are-You-Alive messenger has to know which client agents
and which super-peer agents it must check. This information is taken from the
super-peer agent, who communicates with the are Are-You-Alive messenger when
a client is connected or disconnected or when a new super-peer is added to the
network. This means that the Are-You-Alive messenger is able to handle mes-
sages from the super-peer agent. Moreover, it is able to send messages to the

30

Figure 3.4: A Super Peer Environment

super-peer agent to inform him when a remote client agent or a super-peer agent
has not replied to the are you alive messages.

3.3.3 Clock Agent

The clock agent is a scheduler for the Are-You-Alive messenger. It knows when
it is the right time to send messages or to check for the replies. The clock agent
sends four different types of messages to the Are-You-Alive messenger: broadcast
clients are you alive message, check alive clients, broadcast neighbors

are you alive message and check alive neighbors.

31

3.3.4 Build Spanning Tree Scheduler

The build spanning tree scheduler is a very lightweight agent. It is dormant until
the super-peer agent sends him a send me time to broadcast build spanning

tree message. Then it sleeps for the appropriate time, wakes up, sends the time
to broadcast build spanning tree message to the super-peer agent and sleeps
again until the super-peer agent sends a message. More details about spanning
tree construction are given in Chapter 4.

3.3.5 Messenger

A messenger is the agent that implements remote communication between agents
in different worlds. When an agent wants to send a message to an agent that
inhabits a remote environment, instead of migrating, it assigns the job to a mes-
senger. The messenger will migrate to the remote environment and deliver the
message to the target agent. The agents that need remote communication are
able to create messenger agents. The messenger does not need any information
on the goal of the message, all it needs to know is the address of the remote envi-
ronment, the family tag of the target agent and the message. Each environment
has a messenger pool. When a messenger arrives at an environment, it delivers
the message and stays in the pool, waiting for a local agent to assign him a job, a
message to deliver. In this way, when an agent wants to send a remote message,
it does not have to create a new messenger agent. It assigns the message to a
messenger from the pool unless the pool is empty, in which case a new messenger
will be created. Of course, there is an upper bound to the number of messengers
in the pool, so if a messenger arrives to an environment, it delivers the message
and the pool is full, it dies. This process is extra protection to prevent super-peer
environments of running out of resources since each messenger needs a thread.
From the time that a messenger agent is created, it migrates to different en-
vironments to deliver messages, so messengers travel all around the P2P-DIET
universe until they arrive at an environment with a full messenger pool. This
means that a messenger may live forever or may die after a few migrations.

3.4 Client Peer Environment

In a client peer environment there are three types of agents: a client agent, an
interface agent and zero or more messenger agents. These agents are described
below.

3.4.1 Client Agent

The client agent is the agent that connects the client peer environment with the
rest of the P2P-DIET universe. It communicates, through messengers, with the

32

Figure 3.5: The Client Peer Environment

super-peer agent that is the access point or any other remote client agents for
downloading or just for chatting. The client agent sends to the remote super-peer
agent of the access point the profile of the client, the metadata of the resources,
the queries, the requests for rendezvous, the finger requests etc. In Figure 3.5,
we see all the agents in the client peer environment.

3.4.2 Interface Agent

The interface agent is responsible for forwarding the demands of the real user
(person) to the client agent and of course messages from the client agent to
the user. The interface agent is a listener to the GUI. For example, when the
user chooses to publish a resource, or subscribe a profile the interface agent

33

must forward the message to the client agent, who is responsible to handle such
events. Additionally, when there is some message from the network, for example,
a notification, the interface agent must be informed by the client agent and fire
the appropriate changes to the GUI, so that the user will understand that a new
notification has arrived. In same cases, the interface agent does more than just
forward commands. For example, in the case that a user chooses to download a
file from a stored notification, the interface agent will listen to the GUI, it will
understand which the desired resource is and it will parse the appropriate XML
file to find out the file name of the desired resource and the key of the resource
owner client. Then it will send the appropriate message to the client agent and
the client agent will handle the rest of the downloading process.

3.4.3 Messenger

The messenger is exactly the same as the agent described in the subsection of
the super-peer environment. Again there is a messenger pool in the client peer
environment but the difference is that the size of the pool is limited, because of the
limited requirement for messengers compared with the super-peer environment.

3.5 The Language for Metadata, Queries and

Profiles

In this section we will describe the language that P2P-DIET currently offers to
support a file sharing application. Note that the language is totally modular to
the system. This means that a new language can be easily supported possibly to
implement a different application scenario or to extend the current language.

3.5.1 Resource Metadata

Users of P2P-DIET can share their files (resources) with other users. A user may
publish a resource in order to make it available. As we have already explained,
the resource is not uploaded to a super-peer node. Instead, the resources are kept
in the client nodes and users only send metadata for each resource. The metadata
will be used for the matching between the resource and profiles of other clients. In
this way, the metadata must contain enough information to describe the resource
and we expect the user to fill in a form with the metadata. Those metadata are
the same for all users and for all resources. Part of the metadata is initialized
by the system, so if the user chooses not to fill the form there will still be some
useful information on the resource. The metadata language currently used by
P2P-DIET is a conjunction of Atribute=Value expressions where Attribute

can be any of the following:

34

• Name. The name field gives information on the name of the resource. This
field is initialized by the system and the user cannot change its value. Actu-
ally the value is the file name of the resource (without the type extension).
For example, for the file thesis.pdf the name field would be initialized
with the value thesis.

• Type. The type field gives information on the type of the resource. This
field is initialized by the system and the user cannot change its value. The
type value is the type extension of the full file name of the resource. For
example, for the file thesis.pdf the type field would be initialized with
the value pdf.

• Size. The size field gives information on the size of the resource. This field
is initialized by the system and the user cannot change its value. The size
value is the file size of the resource in bytes.

• Path. The size field gives information on the path location of the resource.
This field is initialized by the system and the user cannot change its value.
The path value is the full path location of the resource in the computer of
the user and it will be used in the download process to locate the desired
file.

• Key. The key field gives information on the key of the specific client. This
key is initialized by the system and the user cannot change its value. The
key value is taken from the XML log file of the client and it is the key
that has been sent to the client by the super-peer agent of the access point,
when the client connects for the very first time to the network. The key
value will be used by super-peer agents and client agents to determine who
is the owner of this resource. For example, when a user wants to download
a resource, the first thing that he has to know is to identify the owner and
locate his IP address. Details of how keys are formed and what role they
play in various protocols are given in Chapter 4.

• Title. The title value gives information on the title of the resource. This
field is initialized by the user. The title field may be null if the user chooses
not to fill this field. The goal of this metadata field, is to give a better
description of the resource than the name field. For example, for a file
thesis.pdf the title field can be the title on the title page P2P-DIET: A

Query and Notification Service Based on Mobile Agents for Rapid

Implementation of P2P Applications.

• Author. The author field gives information on the author of the resource.
This field is initialized by the client. The author field may be null if the user
chooses not to fill this field. The goal of this field is obvious for document
files but it can be used to describe the artist of an MP3 or an MPEG

35

Figure 3.6: A resource metadata example

resource file as well. For example, for a file thesis.pdf the author field
can be Stratos Idreos. Note that there is no limitation to the number of
the words and the title field can contain two or more authors.

An example of a possible resource metadata is shown in Table 3.6. The
example is shown as an XML file.

The metadata fields that described are only there in the experimental version
of the file sharing application of P2P-DIET so that we can experiment with
textual and numeric values in matching queries with metadata as in SIENA [2].
In the next version of P2P-DIET to be targeted at a Digital Library application
our metadata will be based on appropriate standard protocols such as Dublin
Core [67, 68].

The interface agent in the client peer environment creates an XML DOM tree
when the user fills the form with the metadata. The DOM tree is propagated to
the client agent and from there to the super-peer agent of the access point that
serves the client. Moreover, the interface agent uses the DOM tree to create an
XML file and saves it to the XML Metadata directory in the client environment.
The XML file will be used only when the client migrates to a different access
point, in which case the super-peer agent will ask for the metadata of all the
resources of the client. The DOM tree exists only in main the memory and it is
logical to assume, that the user will turn off his computer at some point or he
will terminate the client application, so the DOM tree will be lost.

36

3.5.2 Queries and Profiles

Users of P2P-DIET can use the query or notification capabilities of the system
by posing a query or subscribing with a profile. Queries and profiles are written
using the same syntax because profiles are long-standing queries. This syntax is
essentially a subset of the query language of DIAS [44].

A query (or profile) is conjunction of atomic formulas Attribute Predicate

Expression. The attribute used determines the predicate and expression allowed.
The following attributes are supported in the current file sharing application

for writing a query or profile:

• Type. Attribute Type can participate in atomic formulas of the form:

Type = V1 OR V2 OR ... OR Vn

where V1,V2,...,Vn are words.

An example of such an expression is Type = pdf OR doc, which means that
the user is interested in files of type pdf or doc. The type field gives infor-
mation on the type of files for which the user wants to receive notifications.
This is the type extension of the file name of a resource. The type field of
the profile will be matched against the type field of the resource metadata.

• Name. Attribute Name can participate in atomic formulas of the form:

Name w V1 OP V2 OP ... OP Vn

where V1,V2,...,Vn are words

and OP is either the OR or the AND operator.

An example of such an expression is Name w peer AND scale AND event

will produce notifications on resources that have on the name field all the
words of the name field of the profile. Another example is Name w peer OR

event will produce notifications on resources that have a name field either
with the value peer or with the value event, for example, peer-to-peer
networks or event based systems. The name profile gives information
on the name of the resource that the user is interested on. The name field
will be matched against the name field of the resource metadata.

• Title. Attribute Title can participate in atomic formulas of the form:

Title w V1 OP V2 OP ... OP Vn

where V1,V2,...,Vn are words

and OP is either the OR or the AND operator.

An example of such an expression is Title w load AND network will pro-
duce notifications on resources that have on the title field all the words of
the title field of the profile. Another example is Title w load OR event

37

will produce notifications on resources that have a title field either with
the value load or with the value event, for example, load balance in

peer-to-peer networks or event based systems. The title field gives
information on the title of the resource that the user is interested on. The
title field will be matched against the title field of the resource metadata.

• Author. Attribute Author can participate in atomic formulas of the form:

Author w V1 OP V2 OP ... OP Vn

where V1,V2,...,Vn are words

and OP is either the OR or the AND operator.

An example of such an expression is Author w stratos AND manolis will
produce notifications on resources that have on the author field all the words
of the title field of the profile, for example, Stratos Idreos, Manolis

Koubarakis. Another example is Author w stratos OR manolis will
produce notifications on resources that have a author field either with the
value stratos or with the value manolis, for example, Stratos Idreos,

Manolis Koubarakis or Manolis Koubarakis. The author field gives in-
formation on the author of the resource that the user is interested in. The
author field will be matched against the author field of the resource meta-
data.

• Desired Client. Attribute Desired Client can participate in atomic formulas
of the form:

Desired Client = V1 ; V2 ; ... ; Vn ;

where V1,V2,...,Vn are keys of other clients.

An example of such an expression is Desired client = 234; 123; 546;

The Desired client field gives information on the clients that the user is
interested in. The goal of this metadata field is that a user A may have
noticed that resources from a specific user B are always interesting, so he
wants to receive notification on every resource that user B publishes. The
desired client field, will be matched against the key field of the resource
metadata file.

• Size. Attribute Size can participate in atomic formulas of any of the fol-
lowing forms:

1. Size symbol number

where symbol can be one of the following =, < or >

2. number symbol Size symbol number

where symbol can be one of the following < or >

38

Figure 3.7: A profile encoded in XML

An example of such an expression is Size = 200 < size < 800. The size
field gives information on the size of the resources that the user is interested
in. The goal of this metadata field is to find resources that their size satisfies
the size field in respond to the fact that internet users have different types
of internet access in terms of speed. The size field will be matched against
the size field of the resource metadata.

• Key. The key field gives information on the key of the client. It is initialized
by the system. The key value is taken from the XML log file of the client
and it is the key, that has been sent to the client by the super-peer agent
of the access point, when the client connected for the very first time to the
network. This field will be used by super-peer agents to identify the client,
who owns the profile. In this way, the key field is not a part of the query
itself.

An example of a profile metadata file is shown in Table 3.7. The profile
metadata values are transformed into an XML DOM tree by the interface agent.
If the user chooses to send an empty query or profile, he will receive notifications
on all existing and future resources. The DOM tree is forwarded to the client

39

agent and from there to the super-peer agent of the access point. The super-
peer agent is responsible for placing the profile on the correct level of the profile
hierarchy and if it is necessary to broadcast the profile to all super-peer agents of
the network. The interface agent will save the DOM tree as an XML file to the
Profile directory of the client in the client peer environment. Thus, the profile
will be available for later use, even if the client application restarts.

A user may use the query capabilities of the system as well, by posing a
query. A query supports the same language as the normal profile. This time, the
super-peer agent of the access point will try to satisfy the query, and then it will
broadcast it to the rest of the network, without saving it and without affecting
the normal profile.

In the case that a match is found between a resource and a profile, the network
must somehow inform the profile owner. The way to do this is to send a noti-
fication to the interested client. Additionally, in the case that a match is found
between a resource and a query, the network must inform the user who sent the
query. The way to do this is to send an answer to the interested client. Notifi-
cations and answers must contain all appropriate information on the resource in
order for the client to be able to download it. This means that the notifications
and answers hold information on the:

1. Key of the resource owner. The key will be used from the super-peer agent,
which is the access point of the interested client, if the notification must be
stored because the client is not online. The notification will be stored to
the notifications directory of the client under a directory named from the
key of the resource owner. In this way, notifications with same name from
different resource owner will not be lost. Moreover, the key is necessary in
the notification metadata, because a client will have to locate the resource
when he wants to download it.

2. Path of the resource file. This field is necessary for the downloading process
to locate the file in the client peer environment.

3. Name of the resource.

4. Size of the resource.

5. Title of the resource. This information is given by the user so it is possible
that there will be no title information.

6. Author of the resource. This information is given by the user so it is possible
that there will be no author information.

40

3.6 Summary

In this chapter we presented the language for queries and profiles in P2P-DIET,
its architecture and the basic functionalities that the system offers. The details
will be described in the following chapters. Moreover, we presented the way that
the P2P-DIET universe is organized, the environments, the different agents and
their goals. In the next chapter we present the routing strategy in P2P-DIET to
achieve efficient message delivery.

41

Chapter 4

Routing Messages in P2P-DIET

In the previous chapter we presented the architecture of P2P-DIET. We described
the different agents that were implemented and their responsibilities. Since our
system is a super-peer network and the topology of the servers forms a gen-
eral undirected graph, we have to deal with the routing problem, because as we
discussed in Chapter 2, routing has no trivial solution in a general graph. We
present the network functionality. Our chosen solution is to use shortest paths for
unicasting and minimum spanning trees for multicasting and broadcasting in our
network. Moreover, we present the way that our system handles the problem of
dynamic IP addresses and the problem that a client might get disconnected while
the system is in operation. Then, we continue by discussing the fault-tolerance
problem and its solutions. We close this chapter with a section about socket
handling, where we describe why we try to keep the socket connections open in
many cases and how we do that.

4.1 Network Functionality

Let us now describe the functionality expected from our network. Our goal is to
support the general character of the system and give the maximum flexibility to
each node, so that it can communicate with the rest of the nodes in various ways.
Thus, each super-peer must have the ability to perform the following operations:

• Unicast, i.e., send a message only to one super-peer (neighbor or not).

• Multicast, i.e., send a message to a subset of super-peers (neighbors or not).

• Broadcast, i.e., send messages which will be received by all other super-
peers.

42

4.2 Techniques

The goal of a routing protocol is to establish appropriate routing paths and to
use network resources as efficiently as possible loading the network with the less
possible overhead. Routing in a network typically involves a rather complex
collection of algorithms, that work more or less independently and yet support
each other by exchanging information. The complexity of the problem is due to
a number of reasons:

1. Routing requires coordination between all nodes of the network.

2. Routing must be able to cope with link or node failures.

3. To achieve high performance, routing algorithms may need to modify the
adopted routes, when parts of the network become congested.

It is clear that routing depends on the underlying topology of the super-
peers. In the case of the acyclic topology discussed in Section 2.7.1 the solution
is trivial, because there are no paths to choose from. Each node is connected
to all others through unique paths. On the other hand, the general peer-to-peer
interconnection topology of the super-peers requires additional data structures,
and rather complicated protocols to achieve routing. In the next sections we will
present the techniques that we use for routing in the general graph topology that
the super-peers form in the P2P-DIET network. The ideas we present have been
known for a while in the area of routing for data networks [15]. In our case we
apply these ideas to routing in the overlay network formed by the P2P-DIET
super-peers.

4.3 Unicasting

The most basic need of the network is the ability for communication between two
super-peers. If the super-peers are neighbors then the solution is simple, they
just communicate through the arc that connects them. If the super-peers are
not neighbors, then they have to communicate through other super-peers. To
do that, we use the Bellmann-Ford shortest path algorithm [60, 43]. According
to this algorithm, a shortest path from all the nodes of the network to a given
destination node is made by finding first the one-arc shortest path from all nodes
to the destination node, then by finding the two-arc shortest path and so on. For
each node, the path with the smaller cost is considered to be the shortest path
to the destination node. For a network with N nodes there will be N-1 checks
for each of the other nodes. In the worst case, the amount of computation is N3

so the complexity of the algorithm is O(N3).
From here on, we consider the network formed by super-peers as a weighted

graph. Each arc has a weight and this weight represents the communication cost

43

Table 4.1: Routing Table for shortest paths

to send a message through this arc. In our case, the communication cost is a
unity for each arc. In this way, the cost to send a message through a path is the
number of hops.

4.3.1 Implementing Bellmann-Ford in P2P-DIET

Let us now describe how the Bellmann-Ford algorithm is implemented in the P2P-
DIET network. The super-peer that wants all the other nodes to build shortest
paths with it as a destination, sends a build shortest path message to all its
neighbors using flooding along with the information, that it is the root of the
message and that the weight is unity. From there on, the rest of the network
should take the appropriate actions to correctly build shortest paths from all
nodes to the destination node and this happens in the following way. The super-
peer D who will be the destination node for the shortest paths sends a build

shortest path message. When a super-peer SP receives such a message from a
node S :

1. Adds 1 to the weight W1.

2. Forwards the message to all its neighbors except the sender S.

3. Stores the sender S as receive node in the shortest path to the destination
node D.

4. When another build shortest path messages arrives from another sender
X but for the same destination D and the weight W2 of the new message
is smaller than the old weight W1, then the super-peer SP :

• Stores the new sender X as node of type receive node in the shortest
path to the destination node D.

• Updates the total weight (of the shortest path to D) to the new one
W2.

• Adds 1 to the weight W2.

• Forwards the message to all its neighbors except the sender X.

Each super-peer has a routing table to hold information on the shortest paths
from it to the rest of the nodes of the network. For each node D a super-peer S

44

Figure 4.1: An example of a shortest path

has to know the receive node in the shortest path from S to D as shown in table
4.1. Moreover, the build shortest path messages are piggy-backed on build

spanning tree messages when building minimum weight spanning trees as will
be explained in Section 4.4.6.

4.3.2 Unicasting with Shortest Paths in P2P-DIET

Let us now describe how we implement this algorithm in the peer-to-peer envi-
ronment of P2P-DIET. In the following protocol sender and receiver have the
obvious meaning. The protocol for unicasting is the following:

• The sender S sends the message to the super-peer, who is its neighbor and
is of type receive node in the shortest path to the receiver R along with
the information, of who is the receiver R and that S is the sender of the
message.

• Each super-peer forwards the message only to the super-peer, which is its
neighbor and is node of type receive node in the shortest path to the receiver
R.

• If the receiver address is equal to the super-peer address, the message has
reached its destination.

It is obvious that if the super-peers are neighbors, then the sender, will have
the receiver as a receive node (in the shortest path from the sender to the receiver)
and the message will be delivered in only one step. Let us give a small example
of the above procedure. Consider the case that node 6 in Figure 4.1 wants to

45

send a message to node 2. It is going to use the shortest path to node 2, so at
first it sends the message to node 4. Node 4 understands that this is a message
for node 2 and forwards it through the shortest path from node 4 to node 2, so
the next node that receives the message is node 1. Node 1 understands that this
is a message for node 2 and forwards it through the shortest path from node 1 to
node 2, so nodes 2 receives the message. The message is delivered through the
shortest path from the sender to the receiver with minimum number of hops.

4.4 Broadcasting

When broadcasting a message must be delivered to all the nodes of the net-
work except the sender. We consider four basic solutions: flooding, reverse path
forwarding, spanning trees and minimum weight spanning trees and justify our
choice which is minimum weight spanning trees. Then, we present the way that
we build and use minimum weight spanning trees in the peer-to-peer context of
P2P-DIET.

4.4.1 Flooding

One common solution to the broadcasting problem in a general undirected graph
is flooding [15]. When a node needs to send a message, it sends it to all its
neighbors along with a unique key for the message. When flooding, each node
transmits the message that received to all its neighbors except the sender, and
stores the unique key of the message. If a node receives a message with the same
key from another sender, it ignores it. Flooding is a simple protocol that works
well. It is guaranteed that by using flooding all messages are received and one
additional advantage is that there is no need for the nodes (super-peers) to store
additional information on the network topology, in order to send messages. The
obvious drawback is that we are not using network resources efficiently, because
we actually transmit the message too many times and in that way we overload
the network.

4.4.2 Reverse Path Forwarding

A well-known and widely used solution is reverse path forwarding [73]. It is a
very simple technique with minimum storage requirements to the nodes of the
network. According to reverse path forwarding, a node that receives a message
will accept it only if the sender is part of the shortest path that connects this node
with the node that generated and broadcasted the original message (the root of
the message). Then, it will forward the message to all its neighbors except the
sender. Thus, this method loads with less overhead the network than flooding
does. In this way, the only information that a node X needs in order to forward

46

a message that was broadcasted by a node S is the shortest path from X to
S. Thus each node needs a routing table as the one in Table 4.1. For example,
SIENA uses reverse path forwarding to broadcast messages.

4.4.3 Spanning Trees

Another approach is to build a spanning tree [15] for each of the nodes of the
network. The exact definition of a spanning tree is: A tree is a connected graph
that contains no cycles. A spanning tree of a graph G is a subgraph of G that is
a tree and that includes all nodes of G. This definition and more information on
spanning trees can be found in [15]. A spanning tree is actually an acyclic picture
of the general graph. It contains unique paths from the root node to all others.
Thus, when a node wants to broadcast a message, it can use the edges of its
spanning tree. It is understood that we must build a different spanning tree for
each of the nodes of the network and that all super-peers must have knowledge
of the spanning trees of the other nodes.

4.4.4 Minimum Weight Spanning Trees

A better approach is not to ignore the arc (links) weights and build minimum
weight spanning trees [15]. A minimum weight spanning tree is a spanning tree
with minimum sum of arc weights. The weights represent the communication
cost to transmit a message from one node to another. In this way, the sum of the
weights of all the arcs of the spanning tree is the actual cost of the broadcasting
procedure when the root of the tree broadcasts a message to all the nodes of the
network. We explain in detail how we build and use spanning trees in the next
section. An example network and the spanning tree for 3 of its nodes is shown
in Figure 4.2.

4.4.5 Minimum Weight Spanning Trees in P2P-DIET

The use of minimum weight spanning trees is a good solution given the static
character of the pure peer-to-peer network consisted by the super-peers. Thus,
we use weight minimum spanning trees to broadcast messages between the super-
peers while the clients communicate only with their access point. In an unstable
pure peer-to-peer network the spanning tree solution for broadcasting is not sat-
isfactory, because each time a peer fails or is disconnected from the network all
spanning trees must change. For the arc weights we adopt the most simple ap-
proach where all the weights are unity. In this way, the communication cost is
the number of hops.

Some well-known systems such as SIENA [3] and Hermes [59] build shortest
paths with Bellmann-Ford and use reverse path forwarding to broadcast mes-
sages as described in Section 4.4.2. We could adopt this policy and do not build

47

Figure 4.2: Examples of spanning trees

spanning trees. The tradeoffs are that in order to build minimum spanning trees
the nodes of the network transmit more messages than the messages that are
necessary for building the shortest paths. Moreover, the nodes must store more
information (for the spanning tree). On the other hand, once the minimum weight
spanning trees are ready the broadcasting procedure takes place with an optimal
way by delivering the message only once to each node, while with reverse path
forwarding this is not true. Given the static character of the pure peer-to-peer
network that the super-peers form, we choose the solution of minimum weight
spanning trees for broadcasting in P2P-DIET. In this way, we spent more mes-
sages to build minimum weight spanning trees, when a new super-peer is added or
when a super-peer fails, and save messages when the network is properly working.

In the next subsection we describe the distributed algorithm, that we use
to build minimum spanning trees. We are going to do this in steps, because
various problems come up when we present the details of the solution. We are
going to show in detail how we use spanning trees to broadcast messages, what
information each node needs to efficiently use spanning trees, and when we need
to build them.

4.4.6 Initial Algorithm

In order to build the minimum spanning tree for each super-peer we implement
the algorithm proposed in [61]. First, we use flooding, because prior to building

48

the spanning tree, a super-peer has no knowledge for the network but its neigh-
bors. The super-peer R that wants to build its spanning tree, sends a build

spanning tree message to all its neighbors using flooding along with the in-
formation, that it is the root of the message and that the weight W1 is unity.
From there on, the rest of the network should take the appropriate actions to
correctly build the spanning tree and this happens in the following way. When a
super-peer X receives a build spanning tree message:

1. Adds 1 to the weight W1.

2. Forwards the message to all its neighbors except the sender S.

3. Sends confirmation to the sender S, that the super-peer X is a node of type
send node in the spanning tree of the root R of the message.

4. When another build spanning tree messages arrives from another sender
NS but for the same root R and the weight W2 of the new message is smaller
than the old weight W1, the super peer X will:

• Send confirmation to the sender NS, that the super-peer X is a node
of type send node in the spanning tree of the root R of the message.

• Update the weight, from node R to node X, to the new weight W2.

• Cancel the previous confirmation by sending a cancel message to the
previous sender S.

• Adds 1 to the weight W2.

• Forwards the message to all its neighbors except the sender NS.

5. Waits for confirmation from one of the others and notes the sender or
senders as nodes of type send node in the spanning tree of the root R.

A super-peer A knows one type of nodes for the spanning tree of another
super-peer B, which is one or more send nodes. Those nodes are neighbors of
the super-peer A. The send nodes will be used by super-peer A to forward any
messages that were broadcasted by super-peer B. For example, in Figure 4.2 in
the spanning tree of node 2, node 1 knows that nodes 4 and 5 are the send nodes.
One could say that one spanning tree would be enough to satisfy the demands
of our network, since all the nodes are connected with unique paths. This is
not true. If we used only one spanning tree, then all the links1, that are not
included in the spanning tree would be wasted, while other links in the spanning
tree would be overloaded, because of the non stop use. On the other hand, the
use of a different spanning tree for each node, will force all links of the network
to be used in the message delivery process and the load of the network traffic will

1A link is a direct connection between two super-peers.

49

Table 4.2: Spanning Tree Table

not be incurred by only a subset of the links. Our decision to build one spanning
tree for each node automatically means that each super-peer needs information
on the spanning tree of all other nodes. But as we discuss in Section 4.4.7, each
super-peer has to know only certain bits of information about the spanning trees
of the others.

4.4.7 Distribute Spanning Tree Information

It is clear from what we discussed in the previous sections, that a super-peer needs
information concerning all the spanning trees in the network, in order to send
messages to each super-peer and to forward messages that started from other
super-peers. By looking carefully at the algorithm and the process of sending
and broadcasting a message, we understand that the information on a spanning
tree is distributed and that no super-peer has full knowledge of a spanning tree
of another node. Actually, no super-peer has full knowledge of its own spanning
tree. All it knows is the send nodes and that there is no receive node. In this
way, we achieved to build a different spanning tree for each node and moreover
the information on the spanning tree of each of the nodes, is distributed in the
network saving storage resources in the nodes of the network. This means, that
the only extra information that a super-peer must store for a spanning tree is the
send nodes. The spanning tree data structure is shown in Table 4.2. Each super-
peer knows the key of other super-peers, their address, whether a super-peer is
its neighbor or not and of course the send nodes for the spanning tree. In the
spanning tree data structure there is one entry for each super-peer.

4.4.8 Overloading the Network

We have described the algorithm to build a spanning tree in Section 4.4.6. In
this subsection we discuss why we had to slightly change this algorithm in our
implementation and how we did that. When implementing the algorithm of Sec-
tion 4.4.6, the obvious conclusion was that it is very heavy work for the network
to build all the spanning trees at the same time, and actually what happened is
that sometimes computers were running out of resources, for example, they were
not able to handle any more sockets. The problem becomes bigger as the number
of super-peers in the network grows. It is very critical that we do not lose any
build spanning tree or reply spanning tree messages, because this would

50

mean that some of the spanning trees will not be correct, and that there will be
problems in the communication of super-peers. To handle such situations and
to guarantee the correct build of spanning trees, we cut the build spanning tree
progress into pieces. The basic idea, is that spanning trees will be made one by
one. When the first spanning tree is ready, then the network will start building
the second one and so on. The trick is to make each super-peer understand, that
this is a situation of network topology change, so it has to broadcast a build

spanning tree message as a root, but not immediately. More precisely, it has to
delay the message for a specific amount of time and that amount should be differ-
ent for all super-peers otherwise they will delay for the same time and then they
will start building the spanning trees all together, which of course is not what we
want. Moreover, the delay time must be enough for the previous spanning tree
to be ready.

When the administrator of the network starts up a new super-peer, he assigns
a unique key for it starting with key 1 for the first node of the network, 2 for the
second and so on. That key will be used to specify the delay time, the time to
wait before broadcasting the build spanning tree message. The key multiplied by
the delay interval for spanning tree, gives the delay time. The delay interval for
spanning tree, is the same for all super-peers and it depends on the geographical
topology of the super-peers. For the topology of the computers used in our lab,
we found that a delay interval for spanning tree of 5 seconds is more than enough.
Of course, when the super-peers are nodes in different cities, that interval must
be a lot bigger. Thus, the very first super-peer, the super-peer that was added
first in the network with key 1, will wait for 5 seconds before broadcasting his
build spanning tree message and in the meantime the spanning tree of the super-
peer that triggered the change in the topology will have finished. The second
super-peer, with key 2 will wait for 10 seconds, when the spanning tree of the
first will be ready and so on. The exact algorithm is shown a flow-chart in Figure
4.3. The algorithm is fired when a new neighbor comes in the network, when
a super-peer fails or when the message was received from another super-peer
(forward build spanning tree message of other root). When the administrator
wants to add a new super-peer, he assigns a unique key for the super-peer. The
next thing that he has to do, is to assign the super-peer neighbors, which are the
remote super-peers with direct link to the new one. Then the super-peer takes
action and broadcasts a new neighbor message to its neighbors to inform them
that it is in the neighborhood and that he wants to build a spanning tree.

Another detail in terms of overloading the network is that the messages for
building minimum weight spanning trees and shortest paths are piggy-backed on
normal P2P-DIET requests, which are forwarded using flooding when the network
is in an unstable condition because of the arrival or fall of a super-peer.

The next logical step is to determine how the spanning trees are used to
satisfy the functionality of our network, as we presented them in Section 4.1. In
the next two subsections we are going to explain how a super-peer uses minimum

51

Figure 4.3: A distributed for building spanning trees algorithm.

52

spanning trees to multicast and broadcast messages. We will also give short
examples based on Figure 4.2.

4.4.9 Broadcasting with Minimum Spanning Trees in P2P-
DIET

In many cases a super-peer will need to send a message, that it will be received
by all the super-peers of the network, for example, to broadcast a profile of a
client. To do so, the super-peer will use its minimum spanning tree and somehow
all the super-peers, that receive this message, will understand that they must
forward the message through the spanning tree of the original sender, the root of
the message. The steps for broadcasting are:

• The root sends the message to the nodes, which are its neighbors and are
nodes of type send node to its spanning tree.

• Each super-peer forwards the message only to those super-peers, which are
its neighbors and are nodes of type send node to the spanning tree of the
root.

• When there are no send nodes (deepest level of spanning tree), do nothing.

Consider the case that node 2 in Figure 4.2 wants to broadcast a message.
At first node 2 sends the message to nodes 3 and 1. Node 3 has no children so
it takes no action. Node 1 sends the message to nodes 4 and 5. Node 4 has no
children, so it takes no action while node 5 sends the message to node 6 and node
6 takes no action. The message has been delivered to all nodes of the network
only one time. Actually, the message is forwarded downstream the spanning tree
of the root with minimum number of hops.

4.5 Multicasting

In many cases, a super-peer will need to send a message, that it will be received
by a subset of super-peers. In that case, we adopt a simple approach by using
the minimum weight spanning tree of the super-peer that wants to multicast a
message. The message is sent along with the information of the addresses of the
super-peers that belong to the multicast group. When a super-peer receives a
multicast message it forwards the message to the send nodes in the minimum
weight spanning tree of the root and if its address is concluded in the multicast
group it accepts the message. Note that the current P2P-DIET file sharing
application does not use the multicast capabilities of the basic layer but the
feature is there to support future applications.

53

4.6 Updating Spanning Trees and Shortest Paths

when Topology of the Super-Peer Network

Changes

Spanning trees and shortest paths are sensitive to the topology of the network.
When the topology changes, some of the links in a spanning tree and in a shortest
path will be inaccessible and possibly there will be other links to use. The
existence of inaccessible links, means that there will be inaccessible super-peers
since all the paths in a spanning tree and in a shortest path are unique. There
are three situations that change the topology of the network:

• A new super-peer is added in the network.

• A super-peer fails.

• A super-peer was frozen for a long time and recovers.

We will describe the ideas by using the spanning tree case but the some
observations stand for shortest paths too.

Every time a new super-peer is added to the network, it must broadcast a
build spanning tree message to build its own spanning tree. Of course, all
other super-peers must include the new one to their spanning trees. If they
do not, they will not be able to broadcast messages, which will be received by
the new super-peer. Every time a super-peer fails or freezes for a long time,
the network must recover and build spanning trees again, because all the links
involving the super-peer that failed will be inaccessible. The first node that
realizes the situation, broadcasts a build spanning tree message. All other
super-peers must understand that they cannot ignore that message. When a
super-peer receives a build spanning tree message, it must decide if it is a
message to ignore, because it has already received such a message from the same
root or if the network builds spanning trees again. This is mostly a timing
problem.

The way to solve this problem, is to put time stamps when the network is
stable, which is when all spanning trees are ready. When a super-peer receives
a new build spanning tree message, if the network is stable, it must accept it
no matter what, erase all spanning trees and all accepted messages for building a
spanning tree and finally broadcast a build spanning tree message for its own
spanning tree. In the case that the network is not stable, the super-peer must
check if it has received a build spanning tree message from the same root.
The real way to put those time stamps, is to know when the process of building
spanning trees will have finished. For the experiments in our lab, where maximum
12 super-peers were used, that time was max 30 seconds. The additional check
in the algorithm is:

54

Every time a super-peer receives a build spanning tree message, he checks
if 30 seconds have passed since the last build spanning tree message that
received. If those seconds have passed, the super-peer must broadcast a build

spanning tree message and erase all previous spanning tree information. In
both cases, the super-peer marks the time, that a build spanning tree message
was received to use it for the next check.

Using the above simple checks, a super-peer always knows if the network is
stable or not. Again the time of 30 seconds depends on the geographical topology
of the super-peers and in fact it is the same as the delay interval (time to wait
before broadcasting a build spanning tree message), because it is the time for
one spanning tree to be ready. Those time intervals can be easily defined in the
source code of P2P-DIET by the administrator.

4.7 Clients

Super-peers are the basic nodes of our network, but clients are the nodes who
actually use the network. A client node is not equal to a super-peer node. Clients
and super-peers communicate in a hierarchical (client-server model) way. Each
client is connected to only one super-peer, which is the access point of the client
to the network. Clients are equal to each other and can directly communicate for
downloading or just for chatting. A client uses the network to:

• Pose a query to the network.

• Subscribe with a profile to its access point.

• Publish a resource to its access point.

• Receive a notification from its access point.

• Receive a stored notification from its access point or from its previous access
point.

• Download a file from another client.

• Download a rendezvous file from his access point.

All these functionalities will be analyzed in detail in the next chapter. We
are going to give some details from the network point of view, so the reader can
understand the next subsections. Profiles are forwarded using a sophisticated
profile hierarchy mechanism. Each super-peer stores the profiles of his clients and
the profiles that have been forwarded by other super-peers. Resource metadata
are not forwarded, so each super-peer stores the resource metadata of his clients.
A super-peer sends notifications to its clients to inform them, that there is a

55

Table 4.3: Client Information Data structure

match between their profile and a resource of another client. If the client is
not connected the super-peer stores the notification and sends it the next time
that the client connects as a stored notification. If a client wants to download a
resource but the resource owner is not online, it can arrange a rendezvous. The
access point of the resource owner, has the responsibility to inform its client, that
it must send the specific resource, to the access point of the client who asked for
the rendezvous.

4.7.1 Dynamic Addresses

Users are real Internet users. This means that most of them have dynamic IP
addresses, and in that way, when a user disconnects and reconnects, he will have
a different IP address. His resources will be inaccessible to other users, who have
already received notifications for a resource of a disconnected user, because even
if the user connects again, he will have a different IP address. It is obvious that
we need a way to identify the clients and we cannot use their address to do that.
The way to do so, is to assign each user a unique key and identify the user from
the key every time he connects to the network. The key is assigned by the super-
peer, that the user connects to for the first time. The network guarantees that
each user has a unique key in the following way: Each super-peer has a unique
key (assigned by the administrator when he sets-up the super-peer) and it uses it
to create and assign client keys. Consider the case of a super-peer with key “4”.
The first new client will be assigned the key “41”, the second “42” and so on.
Since all super-peers have different keys, all clients will have different keys too.

When a client wants to download a resource using a notification, it must first
find the address of the resource owner. To do so, it sends to its access point
a request other client address message. It is understood, that each super-
peer must know at all times, if a client is connected to the network and his IP
address, so that he can produce the correct pointers to the resources of each
client. The client information data structure is shown in Table 4.3. There will
be one entry for each client.

56

4.7.2 New Client

When a client connects for the first time, the whole network must understand
that a new client is connected and give him a unique key. The client-user chooses
one of the available super-peers and sends a new client message. The super-
peer immediately assigns a new key to the client and sends it back. The client
uses this super-peer as access point to the network from there on. The steps to
add a new client are:

• The super-peer assigns a new key for the client and sends it to the client.

• The super-peer adds the client to the client list and stores its address, its
access point, the fact that it is connected and that it is its client. Then
broadcasts through its spanning tree a new client message to all other
super-peers.

• Each super-peer that receives that message, will add the client to the client
list and store its address, its access point, the fact that it is connected and
that it is not its client. Then it forwards the message to all the send nodes
of the spanning tree of the root of the message.

4.7.3 Connecting

Every time a client wants to connect to the network, it must use its key. All
super-peers must be aware of the fact, that the client has connected and know
the new address of the client. This happens in the following way:

• The client sends a connect message along with its key.

• The super-peer updates the client entry with that key in the client list:
stores its address, its access point, the fact that it is connected and that it is
its client. Then, broadcasts through its spanning tree a client connected

message to all other super-peers. Finally, sends to the client any stored
notifications and rendezvous requests.

• Each super-peer that receives that message checks if the client was its client
the previous time it was connected. If this is the case, it sends to the client
any stored notifications and rendezvous requests. Then, it updates the
client entry with that key in the client list: stores its address, its access
point, the fact that it is connected and that it is not its client. Then, it
forwards the message to all the send nodes of the spanning tree of the root
of the message.

57

4.7.4 Disconnecting

When a user disconnects or equivalently terminates the client application pro-
gram, the network must adapt and all super-peers need that information to inform
other clients that they cannot download any resources from this one.

• The client sends a disconnect message along with its key to its access
point.

• The super-peer updates the client entry with that key in the client list:
stores its address as null, its access point remains the same, the fact that
it is disconnected and that it is its client. Then broadcasts through its
spanning tree a client disconnected message to all other super-peers.

• Each super-peer that receives that message, updates the client entry with
that key in the client list: stores its address as null, its access point remains
the same, the fact that it is disconnected and that it is not its client. Then
it forwards the message to all the send nodes of the spanning tree of the
root of the message.

4.7.5 Client Migration

Until now, we have assumed that a client always connects to the same access
point. This is not true. P2P-DIET fully supports client migration to different
super-peers. A user may want to change access point for his own reasons. For
example, he may not be satisfied by the performance of the super-peer or it is
possible that the super-peer does not respond for a long time to the messages of
the client. Moreover, in a future version of P2P-DIET, where a load balancing
mechanism will be included, the client migration process will be very useful to
move clients from one super-peer with more clients (more resources to handle) to
another with less clients.

When a client migrates, we must be very careful not to lose any useful infor-
mation regarding the client. Consider the case that a client chooses to connect to
an access point which is different than the previous access point, the super-peer
that was its access point last time he was connected to the network. The previous
access point will hold all possible information on stored notifications, rendezvous
arranged, rendezvous files uploaded and of course the metadata of the resources
of the specific client. The obvious solution is that the previous access point of
the client must send all this information to the client. The new access point will
need the profile and the metadata of the resources, while the old one does not
need them any more. The additional steps in the connect procedure to support
client migration are:

• The client sends a connect message along with its key.

58

• The super-peer checks if the client was its client the previous time it was
connected. If not, the super-peer requests all the metadata of the resources
from the client and stores them. It is possible that the super-peer does not
have the profile of the client, either because it was not forwarded (because
of the hierarchy) or because the client has not subscribed a profile. In this
case, the super-peer requests from the client to send its profile, if it has one.
Then, it updates the client entry with the key of the client in the client list:
stores its address, its access point, the fact that it is connected and that it is
its client. Then, broadcasts through its spanning tree a client connected

message to all other super-peers.

• Each super-peer that receives that message checks, if the client was its
client the previous time it was connected. If it was, the super-peer sends
any stored notification, rendezvous notifications and rendezvous obligations
directly to the client. Then, updates the client entry with that key in the
client list: stores its address, its access point, the fact that it is connected
and that it is not its client. Then, it forwards the message to all the send
nodes of the spanning tree of the root of the message.

4.7.6 Adding a Super-Peer to a Working Network

An important need in an Internet scale peer-to-peer network, is to add super-peers
because the number of clients is growing all the time. You need more super-peers
to support more clients or equivalently to support clients in a different city or
country. We have already described the process of adding a new super-peer in a
network free of clients. The only difference is that, if there are already clients in
the network the new super-peer needs information on the clients. It needs to know
the address of each client, its access point, its key and the profiles but only those
profiles that have been forwarded. Without all these information the new super-
peer will not be able to serve its clients and to find a match between the resources
of its clients and the profiles of other super-peer clients. All this information is
stored in the client data structure of each super-peer. When the new super-peer
connects, all its new neighbors will send their client data structure with a clients
message. The new super-peer accepts only the first clients message. It changes
all MyClient fields to false and it erases the profiles of the clients that are not
forwarded, which are a subset of the profiles of the clients of the super-peer, that
sent the clients message. Now it has all the information on the clients of the
network and forwarded profiles from all super-peers.

4.8 Fault-tolerance

In the next two subsections we are going to discuss the fault-tolerance mechanism
and why it is important to have such a mechanism. Naturally we cannot be sure

59

that a client or a super-peer will always be online working properly.

4.8.1 Super-Peers

Super-peers may fail in any way. For example, a crash on the system or even
running out of resources (overloaded - cannot handle any more sockets), are two
basic reasons for a super-peer to fail or freeze temporally. Each super-peer may
be a receive node or a send node to one or more spanning trees or shortest paths
of other super-peers, so the fact that a super-peer fails is very critical. If the
super-peer that failed is a receive node in a shortest path, then the destination
node of this shortest path will not be able to receive any more messages. If the
super-peer that failed is a send node, the root of this spanning tree will not be able
to correctly broadcast. Moreover, one simple super-peer is usually participating
in more than one spanning trees or shortest paths with different roles, so the
super-peer that failed, will cause serious problems to all others.

The proper way to solve that problem, is to make every super-peer periodically
check whether its neighbor super-peers are alive and are working properly. This
is done in the following way:

• Periodically send to all neighbors an are you alive message and wait for
a specific amount of time for their answers.

• When the time has passed, check if all super-peers have answered with an
I am alive message.

• If at least one super-peer has not answered, broadcast a build spanning

tree message to rebuild all spanning trees and shortest paths in the net-
work.

4.8.2 Clients

Clients may face system failures too. Additionally, clients may leave from the
network silently. A user will not always use the disconnect option in the GUI,
so he may turn off his computer or disconnect from the Web. In both cases
his is not connected to the network and all super-peers, must be aware of that,
so they do not think that his resources are on line or that he is able to receive
notifications on other client resources. Again the super-peer periodically checks,
if all the clients that it serves are alive.

• Periodically send to all clients that you serve an are you alive message
and wait for a specific amount of time for their answers.

• When the time has passed, check if all clients have answered with an I am

alive message.

60

• For each client that has not answered handle the situation as if you have
received a disconnect message from the specific client.

4.9 Overloading Socket Handling

One must be very careful when handling too many sockets (connections) at a
time. There is the possibility, that the computer will run out of resources and
cannot handle any more open connections, which means that some messages will
be lost and some messages will not be sent. In situations like this, a computer
might freeze and may recover on its own after some time. We cannot rely on the
possibility of recovery. Even then, many nodes of the network will be unreachable,
in the sense that they will not receive messages from some super-peers, for all
the time that the super-peer is down. It is clear that we need a careful control of
the connections that a super-peer opens to prevent problem situations. The next
three subsections present the techniques that are used to handle connections and
resources.

4.9.1 Socket Handling

The basic thing that we have to be careful about is the idle time of the sockets.
Idle time is the time to wait before terminating a connection, so if a connection is
setup, the message is sent and no other message is sent to the same destination or
received from there, the socket is closed. DIET Core ensures that when a message
is sent to a node of the network, a socket will be opened. If the same node wants
to send one more message to the same destination before the idle time has passed,
the same socket will be used. The same thing will happen, when the destination
node wants to reply or send another message to the previous node. Only when
both nodes want to send each other messages at the same time, two sockets will
be opened. This socket handling mechanism guarantees that a minimum number
of sockets will be opened, which means that minimum resources are used and
more clients or super-peers can be connected at a time.

4.9.2 Constant Connections

We are interested in avoiding the useless process of opening and closing sockets for
the same destination nodes. We try to keep the sockets (connections) open, which
are sure to be used for a little time. The way to keep a socket open is simple.
Either start it with a rather big idle timeout or send a message before the timeout
has passed using the same socket. The first solution is very unwise, because all
sockets will remain open for a long time. We need only the connections, that
we are going to use again for sure. The second way can be easily implemented.
All we have to do is send a message to the sockets that we want to keep open,

61

Figure 4.4: Fault-tolerance mechanism in P2P-DIET

62

before the timeout exceeds. We already have the mechanism that periodically
sends are you alive messages to super-peers and clients. Thus, the only thing
to do, is carefully set the idle timeout, so the super-peer will have sent for sure an
are you alive message before the end of timeout to all neighbors and clients.
In our network, super-peers send are you alive messages to super-peers every
3 minutes, so we set the socket idle timeout to be 3.5 minutes. In this way, a
super-peer has constant connections with all its neighbors, so it does not have
to setup a new connection each time it wants to send a message to a super-peer
node. We do not keep open connections with clients, because clients are too
many and a super-peer cannot afford to have all these connections open all the
time. It is useless to do so, because clients do not communicate all the time. We
check clients periodically, but with period three times the period we use to check
super-peers, which is a logical number.

4.9.3 Avoiding Useless Are You Alive Messages

Another useful tactic, is not to send an are you alive message if the node has
sent a message in the past few minutes. There is no need to ensure that a node
is alive. It definitely is alive, otherwise it would not have sent a message. In
this way, we achieved to avoid a great number of messages, because in a scaled
network a super-peer may serve 1000 or more clients. If we can avoid, for example,
800 are you alive messages and 800 I am alive messages in reply every 10
minutes, this is a great relief for the network. The complete algorithm of keeping
the sockets open and being sensitive in node failures (clients and super-peers) is
shown in Figure 4.4.

4.10 Summary

In this chapter we discussed routing in P2P-DIET. We showed how we build
spanning trees being careful enough not to lose any messages during this process.
We explained how minimum weight spanning trees are used by a super-peer to
broadcast or multicast a message and how shortest paths are used by super-peers
to unicast messages. We discussed the problem of dynamic IP addresses and the
solution of the unique keys. We continued by describing the way that clients
connect to or disconnect from the network and how the network reacts to those
events. We showed how a client may migrate to a different access point and how
a super-peer may be added to the network, even after many clients have used it.
In the last sections we described the fault-tolerance mechanism and our socket
handling strategy to avoid overload situations. In the next chapter we present our
query and event notification mechanism by describing the propagating strategy
and the profile hierarchy.

63

Chapter 5

Query and Event Notification
Service

In the previous chapter we presented the routing strategies of P2P-DIET. Our
strategy is based on building spanning trees for the general graph and uses those
spanning trees to deliver messages efficiently among super-peers. We showed
how clients come and go, and we presented a fault-tolerance mechanism. From
here on, when we say that a super-peer broadcasts a message, we mean that this
happens through its minimum spanning tree as shown in Section 4.4.9 and when
we say that a super-peer sends a message to another, we mean that this happens
through the shortest path from the sender to the receiver as shown in Section
4.3.2.

This chapter presents the query and event notification service in detail. We
give details for the basic concepts of our event service such as profiles, resources,
notifications etc. We describe the strategy for propagating the profiles, which
includes a profile hierarchy and we show how we build and use the hierarchy and
why it is so useful for the network.

5.1 Routing Strategies

In the next subsections we describe the way that the network handles the profiles,
resources, notifications, stored notifications, rendezvous and hierarchies.

5.1.1 Resources

A resource is a file, that a user wants to publish on the network, so other users
may see it and download it. The super-peers are busy enough trying to find
matches and keep the network in a stable situation. If the files were uploaded to
super-peers, then the super-peers would have to serve download requests for all
the files that their clients own. This would be a drawback in the scale character

64

of the network. Clients do not upload their resources. Instead, they keep them
in their computers and if another client wants to download a file, they serve him.
This means that clients can directly communicate regardless of whether they
are connected to the same or different super-peers. Moreover, super-peers have
to know at all times the address of a connected client and if it is connected or
disconnected as described in Section 4.7, because when a client wants to download
a resource, it needs the address of the target client, who owns the resource and
the way to find that address is to ask its access point.

We have already explained why it is a good choice to give the responsibility
of downloading to clients, but super-peers have to find matches. This means that
they need a way to see the files of the users that they serve and we have already
said that files are not uploaded. This problem is solved, by making clients send
metadata for their resources to their access points. The super-peers use those
metadata to find a match between the metadata and incoming profiles. The
metadata describe a resource and part of them is initialized by the system, for
example, the size or the name of the file, while the rest of them by the user. We
believe that if a user wants to publish a file, he will spend a few seconds to give
a value to the metadata fields. The exact metadata that currently the system
supports are the fields of the language presented in Chapter 3. For now all we
need to know is that a metadata file concludes the key of the resource owner and
the file name.

5.1.2 Propagate Profiles

The fundamental characteristic of an event notification service is the profile (long-
standing query), which will produce notifications, even if files are published to
the network after the profile was subscribed. A user subscribes with his profile
to his access point. The access point saves the profile of the client and changes
it only if the client sends a new profile. Each super-peer knows the resources
of the clients that it serves and can find matches between the resources of its
clients and incoming profiles. This means that a client can see files of all other
clients only if its profile is broadcasted to all super-peers or if the resources of all
clients are sent to its access point. The critical decision, is that of propagating
profiles or resources. We expect our network to scale and support many clients.
Each client will have a few profiles, but may have a large number of resources.
If, for example, users share mp3s, it will be logical to assume that each user
might share a thousand or more files in which case the user will have published
a thousand resources. It is obvious that the process of propagating profiles is
much cheaper for the network. The solution of propagating profiles guarantees
the long-standing query ability of the profile, because when the profile arrives for
the first time to a super-peer it is saved in the client information data structure
as shown in Figure 4.3, and the super-peer will try to find matches between the
profile and the metadata files of its clients. If one of its clients adds a resource,

65

this resource will be tested with all the profiles stored in the super-peer, which
are all the profiles of its clients and all the profiles that are broadcasted by other
super-peers. It is possible to avoid a lot of messages using a hierarchy to handle
the forwarding of the profiles. The hierarchy will be explained in detail in Section
5.2.

5.1.3 Notifications

Clients subscribe profiles, pose queries, publish resources and wait for notifica-
tions. A notification is actually a pointer to a resource of another client. In fact,
it is the resource metadata file, which is sent all the way to the client, who has
the profile that caused the match. Thus, the client knows all the metadata of
the file and the resource owner key, so if it wants to download the file all it has
to do, is to find the address of the resource owner with the key concluded in the
notification and contact it to ask the file. But how the notification arrives to the
interested client? The notification is produced by the access point that serves
the resource owner client, either when the forwarded profile of the client came
or when the resource was added and the profile preexisted. In both cases, the
notification message, not the notification itself, concludes the key of the client,
who owns the matching profile. It would be possible to force that super-peer
to contact the interested client and deliver the notification, but this would have
brought an anarchy to the system, because all super-peers would communicate
with all clients. Moreover, as we will see in the next subsection, having commu-
nication only with the access point gives solutions to problem situations and it is
necessary for the profiles hierarchy to work. In this way, when a super-peer finds
a match between one of its resources and a profile, which belongs to a client of
another super-peer, it sends the notification to that super-peer (using as we de-
scribed in the previous chapter the spanning tree of the receiver). The super-peer
that receives the notification forwards it to its client.

5.1.4 Stored Notifications

We have already discussed that clients are real users that connect to or disconnect
from the network at any time. This means that clients are not online all the time.
When they subscribe a profile they receive notifications on preexisting resources in
just a few seconds. No one can guarantee that the client will be always online, the
time that a matching resource is added to the network to receive any notifications.
We cannot ignore this situation and lose the notification. Actually, we do not
expect clients to wait online for other clients to put resources that match their
profiles. The notifications are stored in the Stored Notifications directory in the
super-peer environment of the access point of the client, and delivered to the
client the next time that it connects to the network. This means that when a
super-peer realizes that it must send a notification to a client, it has to check

66

if the client is connected or not. If the client is connected the notification is
delivered otherwise it is stored. As we said in the previous chapter the access
point sends the stored notification even if the client connects to a different super-
peer in order to avoid losing any notifications that are produced during the time
that the client was disconnected.

5.1.5 Rendezvous

Again we will deal with the problem that a client is not connected all the time to
the network. In the previous sub section we showed how we store the notifications
if a client is not online to receive them. There is one more similar situation: a
client wants to download a file for which it has already received a notification,
but the resource owner client is not online so the resource is unreachable. If we
do nothing about that, the client will have to wait or to be lucky, to be online
at the same time with the resource owner. We can solve this by uploading the
file and give it to the client who wants it. The network will always be online so
it is easy enough to upload the file from the resource owner the next time that
it connects and give it to the interested client, when it asks for it. Let us now
describe all the process of a rendezvous request. First of all the rendezvous is
arranged when a client cannot download a resource, because the other client is
not online and sends to his access point an arrange rendezvous message along
with its key, the resource owner key and the file name. The access point will send
the message to the access point of the resource owner, where the rendezvous data
(XML DOM tree) will be updated. When the resource owner client reconnects,
the super-peer will check the rendezvous tree and send a send file to server

message to the client. This means that the client has to send the specific file to
the access point of the client, who asked for the resource. In this way, the file is
uploaded to the access point of the interested client and stored to the Rendezvous
directory in the super-peer environment of the access point of he client who made
the rendezvous request.

5.1.6 Queries

P2P-DIET works as an event notification service and as a typical search system
too, giving maximum flexibility to users to find files that are interested on. To
achieve the search ability we use queries. A query is in fact the same as the
typical profile. Thus, it supports the same attributes and the same language.
The only difference is that the system handles it in a different way. A query is
not stored and it is disappeared after all super-peers have seen it and tried to
find a match. When a client sends a query, it is broadcasted by the access point
to all super-peers. The answers that are produced by queries are the same with
the ones that produced by the typical profiles. A client will use a query to find
anything that was added to the network up to this moment, without affecting its

67

Figure 5.1: Hierarchy Examples

original profile, which will continue to produce notifications as new resources are
published. A user may use a query without any limitations.

5.2 Profile Hierarchy

Each client may subscribe a profile. We expect our network to scale so each
super-peer will serve a large number of clients. It is more than possible that
some of the clients will be interested in the same type of files, which means that
they will subscribe with overlapping profiles. We will try to take advantage of
that, to load the network with fewer messages. This section explains in detail
why the profile hierarchy is important in an event based peer-to-peer service.
We will show how we build and use the hierarchy. Moreover, we will discuss all
critical situations and we will give examples for each one.

We have already explained that we choose to forward profiles. The hierarchy
tries to take advantage of the similarities between different profiles in order to
forward a profile only if we really need to do so. First of all, we need a way to
compare two profiles and realize if the first one is more general than the second.
The definition more general means that the more general profile will find matches
(resources), that satisfy the less general profile too. The next reasonable step is

68

Figure 5.2: Hierarchy Examples

to decide not to forward the less general profile since the more general will bring
all the notifications that the less general would bring and even more. One could
say that we do not need a hierarchy but as we will explain all the details in these
section, it will be clear that we need the hierarchy structure otherwise we would
have to repeat the same checks many times.

We forward only the more general profiles and we put all the profiles in a tree
as shown in Figure 5.1. The profiles that lie to the level one of the tree are the
profiles that actually forwarded, because there is no more general profile than
them. Those forwarded profiles have children in the tree, which are profiles less
general than their father (the forwarded profile), and those children may have
other children etc. The depth of the hierarchy is not limited by the system. An
example of a profile with two less general profiles is shown in Figure 5.3.

Let us now give an example based on the Figure 5.1. The numbers in the
nodes of the tree indicate the key of the client, who owns the profile and the time
sequence that the profile was subscribed. The clients are connected to the same
access point, that has the hierarchy. At first client 1 sends its profile. There
are no other profiles, so the profile is forwarded and goes to the first level of the
hierarchy. Then client 2 sends its profile but there is no more general profile, so it
is forwarded and the profile goes to the first level. The same things happen with
profile 3. Until now profiles 1, 2 and 3 are forwarded. Then client 4 subscribes

69

Figure 5.3: An example of profiles in hierarchy

its profile, which is less general than the profile 1, so it is not forwarded and goes
to the second level of the hierarchy as a child of the profile1. The same things
happen with profile 5. When client 6 sends its profile the system realizes, that it
is less general then the profile 1 but the check is repeated in the second level as
well. The profile 6 is compared with both profile 4 and 5. It is less general than
the profile 5, so we put it in the third level of the hierarchy as a child of profile
5. We continue in the same way for each profile that comes.

Until now we showed how we decide if a new profile must be forwarded or not,
based on the profiles that are already forwarded. There is the possibility that the
new profile is more general than a profile that is forwarded. We could forward
the new profile too, but in that way we would receive almost double the number
of notifications since we will have forwarded two similar profiles. We adapt to
this situation by always making double checks. When a new profile comes and
we compare it with another we do the check in the following way: consider a case
that the new profile is profile A and we want to compare it to profile B. At first
we check if profile B is more general than the profile A and if it is not, we check
if the profile A is more general then profile B. The first case is the one that we
have already described in the previous example. To understand the second one
we could look the example of the Figure 5.2. The first tree shows the hierarchy.
When client 11 sends its profile, the system compares it to the profile 1 and finds
that profile 1 is not more general than 11. Then, the check is reversed and it is
found that profile 11 is more general than profile 1, so the hierarchy changes as
shown in the figure. Of course, the previous checks do not happen only in the
first level of the hierarchy. In fact, by always making double checks between two
profiles, we do not care for the sequence that the profiles come to the super-peer.
For example, in Figure 5.2 in the first tree if profiles 6 and 7 come earlier than the
profile 5, then they would be in the second level as children of profile 1. Later,
when profile 5 comes, we see that it is less general than profile 1 and in the next
step we see that it is more general than profiles 5 and 6 so the hierarchy looks
like the first tree in Figure 5.2.

Based on the previous discussion on double checks, we can see the need for
extra messages that cancel a previous broadcast of a profile. When we move a
profile from the first level of the hierarchy to the second, because a more general

70

profile came, we forward the more general one but we also have to cancel the
profile that was already forwarded. If we do not do that we will receive many
notifications more than one time. The super-peer broadcasts a remove profile

message through its spanning tree to inform all other super-peers that it does not
want to receive any more notifications for that profile. The rest of the super-peers
just erase the profile from their client information data structure.

Another thing that we have to be careful about, is no to lose any information
because of the hierarchy. When a new profile is subscribed but not forwarded
because of a more general profile, the client will receive only notifications on
future resources and will lose notifications on preexisting resources. This is an
easy problem to bypass by firing the search scenario for the new profile. In this
way, the client will receive all notifications on resources that preexisted the profile
and the profile will not be forwarded saving from the network the notifications
on future resources.

The previous observation eliminates the thoughts that the hierarchy removes
from the network the load of forwarding profiles. The profiles are not forwarded
but search messages are broadcasted so it is exactly the same thing. The load
is saved by the limited notification messages. One notification will satisfy more
than one profile. The notification is transmitted along with the information of
the profile that caused the match. Of course, the notification is not delivered
only to the client, who owns the forwarded profile, but to all clients that their
profiles are children of the forwarded profile in the hierarchy or children of its
children and so on. For example, if a notification arrives for the client 1 in Figure
5.2 then the notification is sent to client 1,4,5,6,7. Now it is better understood
why use the hierarchy instead of just knowing the profiles that we forward. For
example, when a notification would arrive we would have to check all the profiles
for match and then deliver notifications.

5.3 Summary

In this chapter we discussed the query and event notification mechanism in P2P-
DIET. We explained the basic concepts of the service such as profiles, queries,
notifications, resources and we gave details for the propagating strategy. We
presented the hierarchy mechanism used to minimize network traffic, by reducing
the number of notifications that are produced. In the following chapter we will
describe the communication protocols, that the agents use to contact other agents,
exchange information and cooperate to achieve a final goal.

71

Chapter 6

Agent Communication Protocols

In the previous chapter we presented the event notification mechanisms of P2P-
DIET. We described the strategy used to achieve both the notification ability
and the typical query scenario. In this chapter describe in detail the protocols
that agents use in P2P-DIET universe to communicate. There are four different
protocols:

1. The super-peer - super-peer communication protocol, which is used by
agents in a super-peer environment to communicate with agents in the
local or a remote super-peer environment.

2. The client peer - super-peer communication protocol, which is used by
agents in a client peer environment to communicate with agents in a remote
super-peer environment.

3. The super-peer - client peer communication protocol, which is used by
agents in a super-peer environment to communicate with agents in a re-
mote client peer environment.

4. The client peer - client peer communication protocol, which is used by
agents in a client peer environment to communicate with agents in the
local or a remote client peer environment.

Note that remote communication is achieved by the Messenger agent. This
means that when an agent wants to communicate with a remote agent, he com-
municates with a local messenger agent and the messenger will implement the
remote communication. When we describe the messages in the next sections we
will refer to remote communication directly between the sender and the receiver
agent to avoid repeating the following three steps:

1. The sender connects to a local messenger and gives him the message, the
environment address and the target agent.

2. The messenger migrates to the remote environment.

72

3. The messenger connects to the receiver agent and deliver the message.

6.1 Super-Peer - Super-Peer Communication Pro-

tocol

6.1.1 New Neighbor message

When a super-peer is about to set up, the administrator gives as input the neigh-
bors of the super-peer. Those neighbors must be informed that a new super-peer
is added in their neighborhood. The new neighbor message is sent by a super-
peer agent to another super-peer agent to inform him, that he is a new neighbor.
The new super-peer agent sends his environment address along with the message,
so all his neighbors know his address and can communicate with any agent in
his environment. The existence of the new super-peer changes the topology of
the network, which means that all super-peers must rebuild their spanning trees.
The new neighbor message is handled both as a new neighbor message and as a
build spanning tree message and it practically fires the process of rebuilding
all spanning trees. When a super-peer agent broadcasts a new neighbor mes-
sage to all his neighbors, he expects to receive after a while reply messages for
his spanning tree and build spanning tree messages from other super-peers.
When a super-peer agent receives such a message, he adds the address of the new
super-peer to the neighbors list and sends an add super-peer message to the
Are-You-Alive messenger to check the new super-peer too.

6.1.2 Build Spanning Tree message

The build spanning tree message is a request from a super-peer to build his
spanning tree. The message is sent from a super-peer agent to another super-peer
agent. A super-peer agent broadcasts this message to all his neighbors, when he
wants to build his spanning tree or when he wants to forward a same message
from another root. In the second case the message is sent to all the neighbors of
the super-peer, except the sender and the only information changed in the packet
is the sender address. When a super-peer agent receives such a message, he has
to decide if he will accept it or not. The decision is based on the accepted build
spanning tree messages list and on the stability of the network. If the network
is stable the message is accepted anyway and the super-peer has to rebuild his
spanning tree, because the topology has changed, so his sends a send me time

to broadcast build spanning tree message to the spanning tree scheduler.
If the message is not stable the message is accepted only if the address of the
root of the message is not in the accepted build spanning tree messages list.
If the message is accepted the time is marked as the time that the last build
spanning tree message accepted and the sender of the message is marked as a

73

receive node in the spanning tree of the root of the message. The address of
the root of the message is put in the accepted build spanning tree messages list.
Moreover, the super-peer agent must reply to the sender super-peer agent with a
reply spanning tree message.

6.1.3 Reply Spanning Tree message

The reply spanning tree message is sent by a super-peer as a reply to a
build spanning tree message. The message must contain the root of the build
spanning tree message and the sender of the reply spanning tree message.
The receiver will mark the sender as a send node in the spanning tree of the root.

6.1.4 New Client message

The new client message is sent by a super-peer to a remote super-peer to inform
him that a new client is connected to the network. The message is broadcasted
by a super-peer agent, when he receives a new client message from a client. It
will contain the address of the root, the sender and information on the client: the
client key, his address and his access point. When a super-peer agent receives
a new client message from another super-peer agent, he puts the client to the
client information data structure and forwards the message to all the send nodes
of the spanning tree of the root of the message by changing only the sender
information.

6.1.5 Client connected message

The client connected message is sent by a super-peer to a remote super-peer
to inform him that a client is connected. The client is not a new one. He is a
registered client, he has a key, and now he is connected to the network again.
The message is broadcasted by his access point because all super-peers need to
know that the client is connected again, his address and his access point. When
a super-peer receives a client connected message he updates the client entry
in the client information data structure. Moreover, ha has to check if the client
was his client the previous time he was connected, in which case he has to send
the client any notifications or rendezvous requests. Then the super-peer agent
forwards the message to all the send nodes in the spanning tree of the root of the
message.

6.1.6 Client Disconnected message

The client disconnected message is sent from one super-peer to another to
indicate that a client is disconnected from the network. The super-peer agent
who is the access point of the client will broadcast the message. The message

74

must contain the key of the client and of course the root and the sender of the
message. When a super-peer agent receives a client disconnected message
will update the client information data structure by marking the address of the
client as null and the boolean connected as false. The access point information
will not be updated until the next time the client is connected in order to send
any notifications for the client to his access point. Additionally the super-peer
agent that receives such a message must forward it to all the send nodes in the
spanning tree of the root of the message by changing only the sender address.

6.1.7 New Profile message

The new profile message is sent by a super-peer to another to inform that a
client subscribed a new profile. The message is broadcasted by the access point
of the client and it will contain the key of the client, the DOM tree of the profile
and the root and sender of the message. When a super-peer agent receives a new

profile message updates the client information data structure. The profile will
be checked with all the resources of the clients of this super-peer. If there is any
match a notification will be sent to the root of the message, which is the access
point of the client with the new profile. Then the super-peer will forward the
message to all the send nodes in the spanning tree of the root of the message by
changing only the sender address.

6.1.8 Notification message

The notification message is sent from one super-peer A to a super-peer B when
a notification is produced and must be delivered to one of the clients that the
super-peer B serves. The resource owner is one of the clients that super-peer
A serves. The message is sent from super-peer A to super-peer B through the
spanning tree of super-peer B. The message will contain the key of the key of
the client whose profile fired the notification process, the receiver which is the
access point of the client and the sender. If the super-peers are not neighbors
the message will have to pass through other super-peers. When a super-peer
receives a notification message, he checks if he is the receiver. If he is not he
forwards the message to the receive node of the spanning tree of the receiver of the
message by changing only the sender address. If the super-peer is the receiver of
the message then he has to check if the client is online to receive the notification.
If he is online the notification is sent. If he is not online the notification is stored
in the notifications directory of the client. The notifications are stored to hard
disk for protection in a possible failure of the super-peer. Then the super-peer
agent will repeat the process for all the clients that are children of the client in
the profile hierarchy. The profiles of those clients ar less general than that of the
client who fired the notification, so they are interested in the notification too.

75

6.1.9 Client List message

The client list message is sent by a super-peer to another to give him the
client information data structure. This message is sent when a new super-peer
is added to the network or when a super-peer recovers. In both cases the super-
peer needs to know all about the clients that are registered to the network so he
can serve his clients and send notifications to clients of other super-peers. The
message contains only the client data structure. The super-peer that receives
such a message updates all the MyClient fields with the value false and creates a
clone of the client information data structure.

6.1.10 Arrange Rendezvous message

The arrange rendezvous message is sent from super-peer A to super-peer B to
inform him that one of the clients of super-peer A wants to have a rendezvous
with a file of one of the clients of super-peer B. The super-peer agent of the client
who wants the rendezvous sends this message through the spanning tree of the
access point of the client, who is the resource owner. The message must contain
the key of the client who is interested on the resource, the key of the client who is
the resource owner, the file name of the resource, the receiver of the message and
the sender. When super-peer agent receives an arrange rendezvous message,
he checks if he is the receiver and if he is not, he forwards the message to the
receive node of the spanning tree of the receiver of the message by changing only
the sender address. If the super-peer agent is the receiver, then he updates the
DOM tree of the rendezvous of the resource owner to contain the information
that a client wants a rendezvous with one of his files. The key of the client is
stored and the name of the file.

6.1.11 Search message

The search message is a request for search. The message is sent by a super-peer
agent when one of his clients sends a query as a query to the network. The
super-peer agent will try to find any matches with resources of the clients that
he serves and if there is a match the answer is sent immediately. Then the super-
peer agent broadcasts the message to all super-peers. The message must contain
the key of the client, the query, the root and the sender of the message. When a
super-peer agent receives a search message tries to find any matches between the
query and the resources of the clients that he serves. If there is a match a search
notification message is sent to the access point of the client who sent the query.
Then the super-peer agent will forward the message to all the send nodes in the
spanning tree of the root of the message by changing only the sender address.

76

Table 6.1: Super-Peer agent to Super-Peer agent messages

6.1.12 Answer message

The answer message is sent by super-peer A to super-peer B to inform him that
one of the clients of super-peer A has a resource that matched the query of one
of the clients of super-peer B. The message is sent by super-peer A through the
spanning tree of super-peer B. The packet of the message must contain the key
of the client whose query caused the answer, the DOM tree of the answer, the
receiver and the sender of the message. When a super-peer agent receives such a
message, he checks if he is the receiver and if he is not, he forwards the message to
the receive node of the spanning tree of the receiver of the message by changing
only the sender address. If the super-peer agent is the receiver of the message,
he sends the answer to the client. An answer will not be saved if the client is not
online to receive it. We assume that a client will send a query and then wait for
a few seconds to receive any answers.

77

6.1.13 Child Profile message

The child profile message is sent in order to forward the child profile. The
child profile was a child in the profile hierarchy of a profile that was forwarded.
If the forwarded profile is cancelled for any reason, for example the client sub-
scribes a new profile which belongs in a different position in the hierarchy. The
children of the profile in the hierarchy must be forwarded so their clients will
receive any notifications. The difference when forwarding a child profile is that
there is no need to match the child profile with any preexisting resources in the
network because any notifications will have been received because of the previous
forwarded profile. When a super-peer agent receives a child profile message
will update the client information data structure to conclude the child profile
but he will not try to find any matches with the resources of his clients. The
message will contain the child profile, the key of the client who owns the profile,
the root and the sender of the message. The super-peer agent who is the access
point of the client will broadcast the message through his spanning tree and all
other super-peer agents will forward the message to the send nodes of the root
by changing only the sender address.

6.1.14 Remove Profile message

The remove profile message is sent from one super-peer to another to inform
him that he must delete the specific profile from the client information data
structure. The message must contain the key of the client whose profile must
be removed, the root and the sender of the message. This message is sent by
the access point of the client when the profile of the client has been moved from
the first level of the hierarchy. This is the case when a more general profile is
subscribed and the profile goes to the second level under the new profile or when
the client sends a new profile which is less general than one or more profiles in
the hierarchy. The profile must not produce any more notification which means
that all super-peer agents must remove it from the client information. When a
super-peer agent receives a remove profile message, he removes the profile and
forwards the message to to the send nodes of the root by changing only the sender
address.

6.1.15 Broadcast Neighbors Are You Alive message

The broadcast clients are you alive message is sent by the clock agent to
the Are-You-Alive messenger in the same super-peer environment to inform him
that it is time to broadcast all neighbor super-peer agent of the super-peer an are
you alive message. The message will not contain any objects. The clock agent
does not expect any replies. The Are-You-Alive messenger will start sending
are you alive messages to all the super-peer agents of the super-peer that are

78

supposed to be online.

6.1.16 Check Alive Clients message

The check alive clients message is sent by the clock agent to the Are-You-
Alive messenger in the same super-peer environment to inform him that it is
time to check the clients that replied to the are you alive message. The message
will not contain any objects. The clock agent does not expect any replies. The
Are-You-Alive messenger will check the Alive Client list and for any client that
not answered he will sent the super-peer agent a client disconnected message.

6.1.17 Check Alive Neighbors message

The check alive neighbors message is sent by the clock agent to the Are-You-
Alive messenger in the same super-peer environment to inform him that it is time
to check the neighbors that replied to the are you alive message. The message
will not contain any objects. The clock agent does not expect any replies. The
Are-You-Alive messenger will check the Alive Neighbors list and for any neighbor
that not answered he will sent the super-peer agent a super-peer disconnected

message.

6.1.18 Send Me Time To Broadcast Spanning Tree mes-
sage

The send me time to broadcast build spanning tree message is sent by
the super-peer agent to the build spanning tree scheduler to the same super-
peer environment to inform him that he must send a time to broadcast spanning
tree message after a specific amount of time. The message will not contain any
objects. The build spanning tree scheduler will found the time T to wait before
sending the message by multiplying the key of the super-peer with the interval
for spanning tree. The scheduler will sleep for T time and then will send the
message.

6.1.19 Time To Broadcast Spanning Tree message

The time to broadcast build spanning tree message is sent by the build
spanning tree scheduler to the super-peer agent in the same super-peer environ-
ment to inform him that it is time to broadcast a build spanning tree message.
The message will not contain any objects. The super-peer agent that receives the
message will broadcast a build spanning tree message to all his neighbors.

79

6.1.20 Messenger Send message

The messenger send message is sent by the super-peer agent or the Are-You-
Alive messenger to a messenger in the messenger pool of the same super-peer
environment to inform him that he must migrate to a remote environment and
deliver a message to an agent. The message will contain the address of the remote
environment, the family tag of the receiver agent and of course the message to
deliver. The messenger will migrate to the remote environment and try to deliver
the message to the target agent. If there is no messenger in the pool the super-
peer agent or the Are-You-Alive messenger will create a new messenger to deliver
the message.

6.1.21 Destroy Yourself message

The destroy yourself message is sent by the super-peer agent or the Are-You-
Alive messenger to a messenger of the same super-peer environment to inform
him that he must commit suicide because there is no room in the messenger pool
in this environment. This happens when a messenger arrives in the super-peer
environment, deliver the message and the super-peer agent or the Are-You-Alive
messenger realizes that there are too many messengers in the pool. When the
messenger receives the destroy yourself message will give up his thread and die.
This is a procedure for extra protection on the danger of running a super-peer
out of resources.

6.1.22 Add Client message

The add client message is sent by the super-peer agent to the Are-You-Alive
messenger to the same super-peer environment to inform him that a client is
connected, so the Are-You-Alive messenger will periodically check this client too,
if he is alive. The message must contain the address of the client only. The
Are-You-Alive messenger will put the client to his client list and from here on
the client will receive are you alive messages periodically.

6.1.23 Remove Client message

The remove client message is sent by the super-peer agent to the Are-You-
Alive messenger to the same super-peer environment to inform him that a client
is disconnected, so the Are-You-Alive messenger will stop checking this client.
The message must contain the address of the client only. The Are-You-Alive
messenger will remove the client from his client list.

80

6.1.24 Add Super-Peer message

The add super-peer message is sent by the super-peer agent to the Are-You-
Alive messenger to the same super-peer environment to inform him that a super-
peer is added to the network as a neighbor, so the Are-You-Alive messenger will
periodically check this super-peer too, if he is alive. The message must contain
the address of the super-peer agent only. The Are-You-Alive messenger will put
the super-peer agent to his Neighbors list and from here on the super-peer agent
will receive are you alive messages periodically.

6.1.25 I Am Alive message

The I am alive message is sent from a super-peer agent to a remote Are-You-
Alive messenger as a reply to the message are you alive that the remote Are-
You-Alive messenger sent. The message must contain the address of the super-
peer agent that replies to the are you alive message. The remote Are-You-Alive
messenger will understand that the super-peer agent is still alive.

6.1.26 super-peer Disconnected message

The super-peer disconnected message is sent by an Are-You-Alive messenger
to the super-peer agent to the same super-peer environment to inform him that
one of his neighbors is disconnected or failed. The message will contain the
address of the super-peer agent that failed. The super-peer agent will understand
that the interconnection topology of super-peer has changed and he will broadcast
a build spanning tree message.

6.1.27 Client Disconnected message

The client disconnected message is sent by an Are-You-Alive messenger to
the super-peer agent to the same super-peer environment to inform him that one
of his clients is disconnected or failed. The message will contain the address of the
client agent that failed. The super-peer agent will update the client information
to mark that the client is not online and he will broadcast through his spanning
tree a client disconnected message to all super-peers.

6.1.28 Are You Alive message

The Are You Alive message is sent by an Are-You-Alive messenger to the super-
peer agent to a remote super-peer environment to check him if he is alive. The
message will contain the address of the remote Are-You-Alive messenger. The
super-peer agent will reply to the Are-You-Alive messenger with an I am alive
message.

81

Table 6.2: Super-peer agent to Are You alive messenger messages

6.2 Client Peer - Super-Peer Communication Pro-

tocol

6.2.1 New Client message

The new client message is sent by the client agent to a remote super agent to
inform him that a new client wants to connect to the network with him as an
access point. The message will contain the environment address of the client
agent only. The super-peer agent will build anew key for the client. He will send
the key to the client with a Key message and then he will create the folders of the
client in the hard disk. Those folders are the Rendezvous folder, the notifications
folder, the profiles folder and the resource folder. Then the super-peer agent will
broadcast a new client message through his spanning tree to all super-peers.

6.2.2 Connect message

The connect message is sent by the client agent to a remote super agent to
inform him that a new client wants to connect to the network with him as an
access point. The message will contain the environment address of the client
agent and the key. The super-peer agent will check if this client was his client the
previous time he was connected to the network. If he was the super-peer agent
will send him any stored notifications. If he was not the super-peer agent asks
from the client the metadata of his resources with a request resources message.
The super-peer agent needs the resources to satisfy profiles of other clients. Then
the super-peer agent will broadcast a client connected message through his
spanning tree to all super-peers.

82

6.2.3 Disconnect message

The disconnect message is sent by the client agent to a remote super agent to
inform him that the client is disconnected from the network. The message must
contain only the key of the client. The super-peer agent will update the client
information to mark the client as disconnected and his address as null. Then he
will broadcast a client disconnected message through his spanning tree to all
super-peers.

6.2.4 New Profile message

The new profile message is sent by the client agent to a remote super-peer
agent to subscribe a new profile for the client. The message must contain the
key of the client and the DOM tree of the profile. The super-peer agent will
update the client information to conclude the new profile of the client. There
is no difference if this is the first time that the client subscribes a profile or if
there was already a subscribed profile from this client. In the second case the
old profile will be erased. The profile must take his place in the profile hierarchy.
If there is no older profile the profile will be forwarded unless there is a more
general profile already forwarded. If there is a previous profile of the same client
in the hierarchy then carefully the profile must be replaced. The older profile will
be removed and then the new one will take his place.

6.2.5 Query message

The query message is sent by the client agent to the remote super-peer agent as
a query for the network. The message must contain the query which is the query
and the key of the client. The super-peer agent will try to match the query with
the resources of this clients and sends any answers. Then the super-peer agent
will broadcast a query message to all super-peers through his spanning tree, so
if there are any matching resources somewhere in the network the appropriate
answers will produced.

6.2.6 New Resource message

The new resource message is sent by a client agent to a remote super-peer agent
to inform him that the client wants to publish a new resource to the network. The
message must contain the key of the client and the DOM tree of the resource.
The super-peer agent will try to find any matches between the new resource
and the profiles of his clients and send any notifications to directly to his clients
with a notification message. If a client is not connected his notification will be
stored. Then the super-peer agent will check all the forwarded profiles from
other super-peers. If there is a match between the new resource and one of the

83

forwarded profiles, he sends any notifications to the access point of the client who
owns the forwarded profile through the spanning tree of that access point with a
notification message.

6.2.7 Remove Resource message

The remove resource message is sent by the client agent to a remote super-peer
agent to inform him that the client wants to unpublish one of his resources. The
message must contain the key of the client and the name of the resource. The
super-peer agent will erase the DOM tree from the memory with the name of the
resource and the XML file from the hard disk.

6.2.8 Resources message

The resources message is sent by the client agent to a remote super-peer agent
to send all metadata for the resources of the client. This message is sent as a reply
ro the request resources message of the super-peer agent when the client connects
to a different access point that his previous one. The message must contain the
key of the client and the DOM tree of each of the resources of the client. The
super-peer agent will store the DOM trees as XML files to the resources directory
of the client. There is no need to check for matches because those metadata were
online to the previous access point of the client so any notifications will have been
produced.

6.2.9 Request Other Client Address message

The request other client address is sent by the client agent to a remote
super-peer agent to ask for the address of another client in the network based
on the key of that client. The message must contain the key of the client who
sends the message and the key of the client to find the address. The request other
client address message is used in many cases. A client agent uses this message,
when the user wants to download a resource from a remote client and needs his
address for a direct connection. The message is also used when a user wants to
chat with another client so the address of the remote client is necessary. The
super-peer agent will check his client information to see if client is connected. If
the client is not connected, the super-peer agent will send a requested address
not available message to the client. If the client is online the super-peer agent
sends a requested address message along with the address of the client.

6.2.10 Request Access Point List message

The request access point list message is sent by a client agent to a remote
super-peer agent to ask for the list with all the super-peers in the network. The

84

client agent needs that list to give the choice to the user to connect to different
access points. The message must contain only the key of the client. The super-
peer agent sends all the addresses of the super-peer agents in the spanning tree
data structure with an access point list message.

6.2.11 Arrange Rendezvous message

The arrange rendezvous message is sent by a client agent to a remote super-
peer agent as a request for a rendezvous with a resource. The message is sent
when a user wants to download a resource but the resource owner is not online
so the client decides that he wants a rendezvous. The message must contain the
key of the client, the key of the resource owner and the name of the resource.
The super-peer agent will check if the resource owner is one of his clients and
this is the case, he updates the rendezvous DOM tree of the client to conclude
the new rendezvous. If the client is served by another super-peer then a arrange

rendezvous message is sent to the remote super-peer agent through his spanning
tree.

6.2.12 Request Rendezvous Condition message

The request rendezvous condition message is sent by a client agent to a re-
mote super-peer agent to ask the condition of the rendezvous requested by this
client. The message must contain the key of the client. The super-peer agent will
sent any rendezvous notifications to the client.

6.2.13 Request Rendezvous File message

The request rendezvous file message is sent by client agent to a remote
super-peer agent to request a rendezvous file for download. The message must
contain the key of the client and the name of the file to download. The super-peer
agent will send the file to the client.

6.2.14 Rendezvous File message

The rendezvous file message is sent by a client agent to a remote super-peer
agent to send a file that was requested for rendezvous from one of the clients
of the super-peer. The client that sends the message is the client who owns the
resource while the super-peer is the access point of the client who asked for the
resource. The message must contain the key of the resource owner client, the key
of the client who asked for the rendezvous and the resource file. The super-peer
agent will check if there is space in the rendezvous directory of the client and if
there is he will store the file.

85

Table 6.3: Client Peer - Super-Peer Communication Protocol messages

6.2.15 Finger Client message

The finger client message is sent by a client agent to a remote super-peer
agent to finger another client based on the key. The message must contain the
key of the client who sends the message and the key of the client to finger. The
super-peer agent will check his client information data structure, and if the client
is connected, he will send a finger client connected message or else, he will
send a finger client not connected message to the client who asked for the
finger process.

6.2.16 I Am Alive message

The I am alive message is sent from a client agent to a remote Are-You-Alive
messenger as a reply to the message are you alive that the remote Are-You-
Alive messenger sent. The message must contain the address of the client agent
that replies to the are you alive message. The remote Are-You-Alive messenger
will understand that the client agent is still alive.

86

6.3 Super-peer - Client Peer Communication Pro-

tocol

6.3.1 Key message

The key message is sent by a super-peer agent to a client agent to give him the
key of the client. The message is sent as a reply to the new client message
from the client agent. The packet of the message must contain the key. The
client agent that receives that message must update the XML file of the client to
conclude the key. Note that this scenario takes place only once for each client.
After the first connection, the client will use that key to identify himself to the
network.

6.3.2 Notification message

The notification message is sent by a super-peer agent to a client agent to give
him a notification. The message must contain the DOM tree of the notification.
The client agent will store the notification as a XML file to the notification
directory of the client. Then he will inform the interface agent with a interface

notification message.

6.3.3 Stored Notification message

The stored notification message is sent by a super-peer agent to a client
agent. This message is sent when the client connects and there are stored notifi-
cations in the notification directory of the client in the super-peer environment.
Those notifications arrived in the super-peer environment a time that the client
was no connected. The super-peer agent sends this message as a reply to the
connect message which was sent by the client agent. He checked the key of the
client and realized that there are stored notifications. He sends the notifications
with the stored notification message and then the notifications are removed from
the directory. The notifications are stored to hard disk as XML files so the mes-
sage contains the XML file of the notification. The super-peer agent could parse
the XML file and send the DOM tree but this would mean extra work for the
super-peer agent which is not necessary. The client agent can parse the XML file
when it is needed. The super-peer agent knows the correct address of the client
because the address sent along with the connect message from the client agent.

6.3.4 Notification Number message

The notification number message is sent from a super-peer agent to a client
agent to inform him on the number of the notifications that are sent. This
message is necessary because the notifications are sent one by one and there is no

87

way to guarantee that all notifications will arrive in the client peer environment.
The message must contain only the number of the notifications. The client agent
that accepts such a message checks if he has received the correct number of
notifications and sends to the interface agent a stored notifications number

message.

6.3.5 Requested Address message

The requested address message is sent by a super-peer agent to a client agent
to deliver an address of a remote client. This message is sent as a reply to the
”request other client address” message which is sent by the client agent when the
user wants to download a resource from a notification and he needs the address
of the remote client. The super-peer agent will reply with a requested address
message if the requested client exists and he is online. There is no difference if
the requested client is one of the clients that this super-peer serves or not. The
message must contain the environment address of the client agent of the remote
client.

6.3.6 Requested Address Not Available message

The requested address not available message is sent by a super-peer agent
to a remote client agent as a reply to a request other client address message.
The super-peer agent found out that either the desired client does not exist(there
is not a client in the network with the desired key) or the client is disconnected
at the moment which means that there is no way to communicate with him now
and his address in the client information is null. The message will not contain
any objects.

6.3.7 Access Point List message

The access point list message is sent by a super-peer agent to a remote client
agent as a reply to a request access pint list message, which was sent by the
client agent. The super-peer agent will build a list with addresses of all the super-
peer environment in the DIET universe and send it to the client. The message
will contain only the list with the addresses. The client agent that receives such
a message will update the log XML file on the local directory of the client(in the
client peer environment) to conclude the addresses of the super-peer environment.
If there were any super-peer environment addresses from a previous access point
list message, they will be erased because it is possible that one of the super-peers
may have failed. The next time that the user will choose to assign a new access
point from the list the GUI will see the super-peer environment addresses from
the XML file.

88

6.3.8 Rendezvous Notification message

The rendezvous notification message is sent by a super-peer agent to a client
agent to deliver a rendezvous notification. This message is sent as a reply to the
request rendezvous condition message, which was sent by the client agent.
The super-peer agent sends this message only if there is a notification in the ren-
dezvous directory of the client in the super-peer environment. The notifications
are stored to hard disk as XML files so the message contains the XML file of the
notification. The super-peer agent could parse the XML file and send the DOM
tree but this would mean extra work for the super-peer agent, which is not nec-
essary. When a client agent receives a rendezvous notification message stores the
XML file of the notification to rendezvous notification directory of the client in
the client peer environment. Then the client agent will wait for the rendezvous

notification number message from the super-peer agent. The client agent can
parse the XML file when it is needed.

6.3.9 Rendezvous Notification Number message

The rendezvous notification number message is sent from a super-peer agent
to a client agent to inform him on the number of the rendezvous notifications that
are sent. This message is necessary because the notifications are sent one by one
and there is no way to guarantee that all notifications will arrive in the client peer
environment. The message must contain only the number of the notifications.
The client agent that accepts such a message checks if he has received the correct
number of rendezvous notifications and sends to the interface agent a rendezvous

notifications number message.

6.3.10 Send File To Server message

The send file to server message is sent from a super-peer agent to a remote
client agent as a command. The client agent must send a file to a remote super-
peer agent(not the one that sent him the message). The super-peer agent sends
this message when the client agent connects to the network and there are ren-
dezvous obligations for the client which means that another client has asked for
a rendezvous with one of the resources of this client. The super-peer agent will
send a send file to Server message to inform the client agent that he must
send the resource to a specific super-peer agent for a specific client that asked
for the resource. The message must contain the name of the resource, the super-
peer environment address of the receiver and the key of the client, who asked for
the resource. The super-peer agent will find all these information in the Ren-
dezvous XML file of the client which is checked every time a client connects. to
the network(not necessarily to the same super-peer). When the client agent re-
ceives this message will immediately send the file to the desired super-peer with

89

Table 6.4: Super-Peer - Client Peer Communication Protocol messages

a rendezvous file message. This process is abstract to the real user.

6.3.11 Finger Client Connected message

The finger client connected message is sent by a super-peer agent to a client
agent to deliver an address of a remote client. This message is sent as a reply
to the finger client message, which is sent by the client agent when the user
to finger a remote client. The super-peer agent will reply with a finger client
connected message, if the requested client exists and he is online. There is no
difference if the requested client is one of the clients that this super-peer serves
or not. The message must contain the environment address of the client agent
of the remote client. The client agent will send to the interface agent a finger

client is online message so the real user will understand that the client is
online.

6.3.12 Finger Client Not Connected message

The finger client not connected message is sent by a super-peer agent to a
client agent. This message is sent as a reply to the finger client message, which

90

is sent by the client agent when the user to finger a remote client. The super-peer
agent will reply with a finger client not connected message, if the requested client
not exists or he is not online. There is no difference if the requested client is one
of the clients that this super-peer serves or not. The message will contain the key
of the desired client. The client agent will send to the interface agent a finger

client is not online message so the real user will understand that the client
is not online.

6.3.13 Are You Alive message

The are you alive message is sent by an Are-You-Alive messenger to a client
agent. The purpose of the message is to check the client agent, if he is alive. The
message must contain the super-peer environment address of the Are-You-Alive
messenger so the client agent can reply. When a client agent receives an are you
alive message, immediately replies with an I am alive message.

6.4 Client Peer - Client Peer Communication

Protocol

6.4.1 Request Resource message

The request resource message is sent by a client agent to a remote client agent
as a request for a download. The message is sent when the client agent receives
a download interface message from the interface agent and has found through
the access point the environment address of the client agent of the resource owner.
The message must contain the environment address of the client that wants to
download and the file name. The two client agents communicate directly to each
other. The client agent that receives a request resource message will check if the
resource with the desired name exists and if it does, he will reply with a send

resource message to the remote client agent. If the resource does not exist he
will reply with a resource does not exist message. All this process is abstract
to the real user in the resource owner client node.

6.4.2 Send Resource message

The send resource message is sent by a client agent A to a remote client agent
B as a reply to a request resource message that the client agent B sent to
the client agent A. The message is sent only if the requested resource exists and
must contain the resource file. The client agent that receives a send resource
message will store the resource file to the download directory in the local client
peer environment, using the same name. Then, when the download is complete,

91

he will send a interface download complete message to the interface agent, so
the real user will understand that the resource is downloaded.

6.4.3 Resource Does Not Exist message

The resource does not exist message is sent by a client agent A to a remote
client agent B as a reply to a request resource message that the client agent
B sent to the client agent A. The message is sent only if the requested resource
does not exists. Note that there is no possibility that the name in the request

resource message was wrong because the name was produced by a notification
that the client agent B had received by his access point super-peer agent. This
means that the only possibility is that the client A has unpublished the resource
after a user request. The message will not contain the name of the desired
resource. The client agent that receives a resource does not exist message will
send a interface file does not exist message to the local interface agent,
so the real user will be informed that the resource is unpublished by the resource
owner.

6.4.4 Chat Request message

The chat request message is sent by a client agent A to a remote client agent
B as a request for chat. The message is fired by the chat interface message
received by the local interface agent and after the client has verified through the
access point super-peer agent that the desired client exists and is online at the
moment. The message must contain the environment address of the client. The
client agent that receives a chat message will check if the user is already chatting
with another client. In that case he will reply to the client agent with a chat

request denied message. If the user is not in a chat mode the request is ac-
cepted and the client agent will reply with a chat request accepted message.
Moreover, he will send a interface connected chat message to the local in-
terface agent, so the real user will know that he is in a chat mode with another
user.

6.4.5 Chat Request Accepted message

The chat request accepted message is sent by a client agent A to a remote
client agent B as a reply to the chat request message that the client agent
B sent. The message is sent only if the request is accepted and must contain
the environment address of the client agent. The client agent that receives a
chat request accepted message will send to the local interface agent a interface

connected chat message, so the real user will know that he is in a chat mode
with another user.

92

6.4.6 Chat Request Denied message

The chat request denied message is sent by a client agent A to a remote client
agent B as a reply to the chat request message that the client agent B sent. The
message is sent only if the request is denied and must contain the environment
address of the client agent. The request is denied only if the client is already in
a chat mode with another client. The client agent that receives a chat request
denied message will send to the local interface agent a interface connected

chat failed message, so the real user will know that his request for chat was
denied by the remote client.

6.4.7 Chat Message message

The chat message message is sent by a client agent to a remote client agent
when the two clients are in a chat mode. The message is fired by the interface
agent that sends a chat message interface message to the client agent. The
message must contain the environment address of the client agent and the string
of the chat message. When a client agent receives a chat message message
will forward the message to the local interface agent with an interface chat

message message, so the real user may see the message that the remote user sent.

6.4.8 Chat Exit message

The chat exit message is sent by a client agent A to a remote client agent B
when the user of the client agent A wants to exit chat mode. The message is fired
when the local interface agent sends a chat disconnect interface message or a
chat exit interface message. The message must contain the environment ad-
dress of the client agent. When a client agent receives a chat exit will exit from
chat mode and send to local interface agent a interface chat disconnected

message, so the real user will understand that the remote user has quit chatting
with him.

6.4.9 Messenger Send message

The messenger send message is sent by the client agent to a messenger in the
messenger pool of the same client peer environment to inform him that he must
migrate to a remote environment and deliver a message to an agent. The message
will contain the address of the remote environment, the family tag of the receiver
agent and of course the message to deliver. The messenger will migrate to the
remote environment and try to deliver the message to the target agent. If there
is no messenger in the pool the client agent or the Are-You-Alive messenger will
create a new messenger to deliver the message.

93

Table 6.5: Client Peer-Client Peer Communication Protocol messages (1)

6.4.10 Destroy Yourself message

The destroy yourself message is sent by the client agent to a messenger of the
same client peer environment to inform him that he must commit suicide, because
there is no room in the messenger pool in this environment. This happens, when
a messenger arrives in the client peer environment, deliver the message and the
client agent realizes that there are too many messengers in the pool. When the
messenger receives the destroy yourself message will give up his thread and die.
This is a procedure for extra protection on the danger of running a client peer
out of resources.

6.4.11 Connect Interface message

The connect interface message is sent by an interface agent to the local client
agent as a command to connect to the P2P-DIET network. The message is fired
by a change in the GUI when the user enables the connect choice and will not
contain any objects. The client agent that receives such a message will try to
connect to the super-peer agent in the access point that is already assigned. The
client agent always uses the super-peer environment address that is in the XML
log file of the client. This address changes only if the real user wants to assign
a new access point. The client agent will send a connect message to the remote
super-peer agent.

94

6.4.12 Disconnect Interface message

The disconnect interface message is sent by an interface agent to the local
client agent as a command to disconnect from the P2P-DIET network. The
message is fired by a change in the GUI when the user enables the disconnect
choice and will not contain any objects. The client agent that receives such a
message will try to disconnect by sending a disconnect message to the super-peer
agent in the remote super-peer environment of the access point.

6.4.13 Exit Interface message

The exit interface message is sent by an interface agent to the local client
agent as a command to exit the client application. The message is fired by a
change in the GUI when the user enables the exit choice and will not contain any
objects. When the client agent receives an exit interface message will check if
he is connected to the network and if he is he will send a disconnect message to
the super-peer agent in the remote super-peer environment of the access point.
Then the client agent will exit.

6.4.14 Send Profile Interface message

The send profile interface message is sent by an interface agent to the local
client agent as a command to subscribe a profile. The message is fired by a change
in the GUI when the user enables the subscribe profile choice and will contain the
DOM tree of the profile. When the client agent receives a send profile interface
message will send to the super-peer agent in the remote super-peer environment
of the access point a new profile message.

6.4.15 Publish Resource Interface message

The publish resource interface message is sent by an interface agent to the
local client agent as a command to publish a resource. The message is fired by
a change in the GUI when the user enables the publish resource choice and will
contain the DOM tree of the metadata of the resource. When the client agent
receives a publish resource interface message will send to the super-peer agent in
the remote super-peer environment of the access point a new resource message.

6.4.16 Remove Resource Interface message

The remove resource interface message is sent by an interface agent to the
local client agent as a command to remove a resource. The message is fired
by a change in the GUI when the user enables the remove resource choice and
will contain the name of the resource. When the client agent receives a remove

95

resource interface message will send to the super-peer agent in the remote super-
peer environment of the access point a remove resource message and then will
remove from the Resources directory the resource and the XML file with the
metadata.

6.4.17 Assign Access Point Interface message

The assign access point interface message is sent by an interface agent
to the local client agent as a notification on the current access point super-peer
environment address. The message is fired by a change in GUI when the real user
enables the choice assign access point or assign access point from list.
The packet of the message must contain the environment address of the new
super-peer. When a client agent accepts an assign access point interface

message will update the variable access point which shows the current access
point environment address. Moreover, the client agent will update the access
point element in the client XML log file with the current value. The client agent
will not try to connect to the super-peer agent until the interface agent sends a
connect message. This means that the access point environment address may
change several times while the client is disconnected from the network but the
last value will be used as an access point environment address.

6.4.18 Request Access Point List Interface message

The request access point list interface message is sent by an interface
agent to the local client agent as a command to request the current access point
list from the super-peer agent in the super-peer environment of the access point.
The message is fired by a change in GUI when the real user enables the choice
request access point list. The packet of the message will not contain any
objects. When the client agent receives the request access point list interface mes-
sage will send a request access point list message to the super-peer agent
in the super-peer environment of the access point.

6.4.19 Request Rendezvous Condition Interface message

The request rendezvous condition interface message is sent by an interface
agent to the local client agent as a command to request the condition of the
requested rendezvous from the access point. The message is fired by a change
in GUI when the real user enables the choice request rendezvous condition.
The packet of the message will not contain any objects. When the client agent
receives such a message will send a request rendezvous condition message to
the super-peer agent in the super-peer environment of the access point.

96

6.4.20 Download Rendezvous File Interface message

The download rendezvous file interface message is sent by an interface
agent to the local client agent as a command to download a rendezvous file from
the access point. The message is fired by a change in GUI when the real user
enables the choice download rendezvous file. The packet of the message will
contain the name of the desired resource. When the client agent receives such a
message will send a request rendezvous file message to the super-peer agent
in the super-peer environment of the access point.

6.4.21 Finger Interface message

The finger interface message is sent by an interface agent to the local client
agent as a command to finger another client. The message is fired by a change
in GUI when the real user enables the choice finger. The packet of the message
will contain the key of the desired client. When the client agent receives such a
message, he will send a finger client message to the super-peer agent in the
super-peer environment of the access point.

6.4.22 Download Interface message

The download interface message is sent by an interface agent to the local client
agent as a command to download a resource. The message is fired by a change
in GUI when the real user enables the choice download notification. The
interface agent parses the notification XML file and finds the key of the resource
owner and the file name of the resource. The packet of the message will contain
those information. When the client agent receives such a message, he will update
the variable resource to download with the file name of the resource and he will
send a request other client address message to the super-peer agent in the
super-peer environment of the access point. The environment address of the
desired client agent is not known and because clients use dynamic IP address if
the resource owner is connected, he will have a different address than the previous
one. This means that the client agent has to be informed if the resource owner
is connected to any access point in the network at this time and of course his
address, so he sends the request other client address to the super-peer agent.
Note that the fact that the resource owner may has changed access point does
not affect at all this process because his new access point will have informed the
rest of the network on this change.

6.4.23 Start Download Interface message

The start download interface message is sent by an interface agent to the
local client agent as a command to start downloading a resource. This message

97

is sent as a reply to the interface start download question message sent
by the local client agent. We have already described the download interface

message which fires the download process and that the client agent will send a
request other client address message to the super-peer agent. If the super-
peer agent replies to the client agent with a requested address message, which
means that the client exists and that he is online, then the client agent will
send the interface start download question message to the interface agent.
The start download interface message is a verify from the interface agent
(and from the real user, who selects the OK choice and fires the message) to start
downloading the resource. The message will contain the name of the resource and
the environment address of the recourse owner client agent. The interface agent
will have these information from the packet of the interface start download

question message sent by the local client agent.

6.4.24 Search Interface message

The search interface message is sent by an interface agent to the local client
agent as a command to query the network using the query. The message is fired
by a change in GUI when the real user enables the choice search. The packet of
the message will contain DOM tree of the query. When the client agent receives
such a message will send a query message to the super-peer agent in the super-
peer environment of the access point. The query DOM tree will not be used again
and it will not be saves as an XML file.

6.4.25 Chat Interface message

The chat interface message is sent by an interface agent to the local client agent
as a command to chat with a remote client. The message is fired by a change
in GUI when the real user enables the choice chat from the menu or after the
finger selection. The packet of the message will contain key of the desired client.
When the client agent receives such a message will send a request other client

address message to the super-peer agent in the super-peer environment of the
access point. In order to chat the remote client must be connected to the network
at this time.

6.4.26 Chat Message Interface message

The chat message interface message is sent by an interface agent to the local
client agent as a command to send a chat message to a remote client. The
message is fired by a change in GUI when the real user writes a message in the
chat interface. The packet of the message will contain string of the message to
send. When the client agent receives such a message will send a chat message

message to the client agent in the client peer environment of the remote client.

98

Table 6.6: Client Peer-Client Peer Communication Protocol messages (2)

This is the basic message that implements the communication between two clients
that are in a chat mode because it transfers their messages.

6.4.27 Chat Disconnect Interface message

The chat disconnected interface message is sent by an interface agent to the
local client agent as a command to disconnect from the remote client and stop
chatting with him. The message is fired by a change in GUI when the real user
writes the disconnect command to the chat interface. The packet of the message
will not contain any objects. When the client agent receives such a message,
he will send a chat disconnected message to the client agent in the client peer
environment of the remote client and he will update the variable chatting to false.

6.4.28 Chat Exit Interface message

The chat exit interface message is sent by an interface agent to the local
client agent as a command to exit from chat mode. The message is fired by a
change in GUI when the real user writes the exit command to the chat interface.
The packet of the message will not contain any objects. When the client agent

99

receives such a message, he will send a chat disconnected message to the client
agent in the client peer environment of the remote client and he will update the
variable chatting to false.

6.4.29 Get File From Chat Client Interface message

The get file from chat client interface is sent by an interface agent to
the local client agent as a command to download a resource from the remote
client agent with whom the local client is chatting. The message is fired by a
change in GUI when the real user writes the get command followed by the name
of the resource to the chat interface. The packet of the message will contain the
resource file name. When the client agent receives this message, he will send a
request resource message to the client agent in the client peer environment
of the remote client. The rest of the download process does not change which
means that the remote client agent will reply with the messages from the standard
download process.

6.4.30 Interface Notification message

The interface notification message is sent by a client agent to the local
interface agent to inform him that a new notification has arrived in the local
client peer environment. The message is fired by the notification message
which was sent by the super-peer agent in the super-peer environment of the
access point. The packet of the message will contain the name and the size of
the resource. When the interface agent receives the interface notification message
will fire a change to the GUI to inform the user on the new notification.

6.4.31 Interface Stored Notifications Number message

The interface stored notifications number message is sent by a client agent
to the local interface agent to inform him on the number of the stored notifica-
tions downloaded from the access point. The message is fired by the stored

notifications number message, which was sent by the super-peer agent in the
super-peer environment of the access point. The message will contain the number
of the stored notifications. The interface agent that receives this message will fire
a change to the interface to show the client this information.

6.4.32 Interface Start Download Question message

The interface start download question is sent by a client agent to the local
interface agent. This message is a part of the download process and is fired
by the requested client address message, which was sent by the super-peer
agent in the super-peer environment of the access point. This means that the

100

resource owner is online and now the user must verify that he wants to download
the resource. The message must contain the environment address of the resource
owner and the resource name. The interface agent that receives such a message
will fire a change in the GUI by showing the dialog to choose between starting
the download or cancel it.

6.4.33 Interface Start Download Not Possible message

The interface start download not possible message is sent by a client agent
to a local interface agent to inform him that is is not possible to download a re-
source. This is due to the fact that the resource owner client is not online at
the moment. The message is fired by the requested address not available

message, which was sent by the super-peer agent in the super-peer environment
of the access point. This means that the resource owner is not online and that
it is not possible to continue the download process. The message will contain
the key of the resource owner and the name of the resource. When an interface
agent receives an interface start download not possible message will fire
a change in the GUI to inform the user and will show a dialog for the user to
choose if he wants to arrange a rendezvous with this file or not.

6.4.34 Interface Download Complete message

The interface download complete message is sent by a client agent to the
local interface agent to inform him that the download of a resource is completed.
This message is the last part of the download process. The message is fired by
the send resource message, when the resource file is received. The packet of the
message will contain the name of the resource. When an interface agent receives
such a message will fire a change in the GUI to inform the user.

6.4.35 Interface File Does Not Exists message

The interface file does not exist message is sent by a client agent to the
local interface agent to inform him that the requested file does not exist. This can
happen when the resource owner has unpublished the resource from the network.
The message is fired by the resource does not exists message, which was sent
to the client agent by the client agent of the resource owner client. The message
must contain the name of the resource. The interface agent that receives the
message will fire a change to the GUI so the user will understand that the file
does not exist. In such a case nothing can be done. If the resource owner chooses
to republish the resource in the future and this client has not changed his profile,
then he will receive again a notification.

101

6.4.36 Interface Rendezvous Notification Number mes-
sage

The interface rendezvous notification number message is sent by a client
agent to the local interface agent to inform him on the number of the rendezvous
that are uploaded to the access point. The message is fired by the rendezvous

notification number message, which was sent by the super-peer agent in the
super-peer environment of the access point. The message will contain the number
of the stored notifications. The interface agent that receives this message will fire
a change to the interface to show the client this information.

6.4.37 Interface Connected Chat message

The interface connected chat message is sent by a client agent to the local
interface agent to inform him that he is in chat mode with a remote client. The
message is fired by the chat request accepted message, which was sent to
the client agent by the remote client agent with whom the user wants to chat.
The packet of the message will contain the key of the remote client. When the
interface agent receives this message will print a message to the chat interface to
inform the client that the remote user has accepted his request and that he can
start chatting.

6.4.38 Interface Connected Chat Failed message

The interface connected chat message is sent by a client agent to the local
interface agent to inform him that his request for chat failed. This can happen
due to the fact that the remote client is not online at the moment or because
he is already chatting with another client, so he did not accept the request for
chat. The message is fired by the chat request not accepted message, which
was sent to the client agent by the remote client agent with whom the user wants
to chat or by the requested address not available message , which was sent
by the super-peer agent in the super-peer environment of the access point. The
packet of the message will contain the key of the remote client. When the interface
agent receives this message will print a message to the chat interface to inform
the client that the chat request failed.

6.4.39 Interface Chat Disconnected message

The interface chat disconnected message is sent by a client agent to the
local interface agent to inform him that the remote client is not in chat mode
anymore. This means that they cannot chat and can happen either because the
remote client chooses to disconnect or because the remote client chooses to exit
chat mode. The message must contain the key of the remote client. When the

102

Table 6.7: Client Peer-Client Peer Communication Protocol messages (3)

interface agent receives this message, he will print the appropriate message to the
chat interface so the user will understand that he is not chatting anymore.

6.4.40 Interface Chat Message message

The interface chat message is sent by a client agent to the local interface agent
to inform him that a new chat message has arrived. The message is fired by the
chat message message, which was sent to the client agent by the remote client
agent with whom the user is in chat mode. The packet of the message must
contain the string of the chat message. When an interface agent receives a chat

message message, he will print the message to the chat interface so the user will
see it.

6.4.41 Interface Finger Client Is Online message

The interface finger client is online message is sent by a client agent to
the local interface agent to inform him that the requested client is online. The
message is fired by the finger client connected message, which was sent by
the super-peer agent to the remote super-peer environment of the access point.
The message must contain the key of the remote client and his environment
address. The interface agent that receives such a message must fire a change to
GUI to inform the user on the fact that the client is online and show a dialog to

103

give him the choice to chat with the remote user.

6.4.42 Interface Finger Client Is Not Online message

The interface finger client is not online message is sent by a client agent
to the local interface agent to inform him that the requested client is not online.
The message is fired by the finger client not connected message, which was
sent by the super-peer agent to the remote super-peer environment of the access
point. The message must contain the key of the remote client. The interface
agent that receives such a message must fire a change to GUI to inform the user
on the fact that the client is not online.

6.5 Summary

In this chapter we described in detail the different protocols that the agents in the
P2P-DIET universe use to communicate. We showed the header of each message,
the scenario that the message is used for and how the receiver agent must react
and probably reply. In the next Appendix A we give extensive examples of the
different scenarios, that take place in the system by describing the conversations
between the agents.

104

Chapter 7

Concluding Remarks

Let us now summarize what we have done in this dissertation. In this work we
dealt with the problem of designing and implementing an agent-based query and
event notification service in the peer-to-peer context. The main goal was to build
a system to work in the real world, the internet, so we had to focus on scalability,
fault-tolerance and location independent addressing. On top of the service we
implemented a file sharing application, which gives maximum flexibility to its
users, since it supports both the query and the dissemination scenario.

Initially we surveyed the area of distributed systems. The process of designing
a distributed, peer-to-peer, event notification service requires careful study of
the different peer-to-peer architectures and their tradeoffs. We discussed some
alternative architectures for peer-to-peer systems. We briefly presented some well-
known architectures and informally discussed their advantages and disadvantages,
in terms of fault-tolerance, routing, scalability and other fundamental network
issues. We considered four basic architectures: hierarchical, pure peer-to-peer,
centralized peer-to-peer and super-peer.

Then, we presented in detail the architecture chosen for P2P-DIET. More-
over, we presented the agents that were implemented, their responsibilities, their
goals and how they interact with each other and with the users of the network.
In P2P-DIET there are many worlds. Each super-peer and each client has a
different world, which means that each different computer represents a different
world. All the worlds together are the P2P-DIET universe. Each world has
one environment. The world in the super-peer nodes has one super-peer envi-
ronment, where 5 different types of agents inhabit. One super-peer agent, one
Are-You-Alive messenger, one clock agent, one build spanning tree scheduler and
the messenger pool, which contains zero or more messenger agents. The world
in the client peer nodes has one client peer environment, where 3 different types
of agents inhabit. One client agent, one interface agent, and the messenger pool,
which contains zero or more messenger agents.

We described the language, that the clients use to query the system. The
metadata that are currently supported are: File name, File type, File size, Title,

105

Author and Desired clients. Note that the language is totally abstract to the
system. This means, that a new language can be easily supported possibly to
implement a different application scenario or to extend the current language.

Then, we dealt with the problem of routing messages in the peer-to-peer
context of our service. Since our system is a super-peer network and the topology
of the servers forms a general undirected graph, we have to deal with the routing
problem, because as we discussed in Chapter 2, routing has no trivial solution
in a general graph. We presented the network demands and we considered some
basic solutions. We explained how we use minimum weight spanning trees and
shortest paths to satisfy the demands of our network and how we build them. We
discussed about clients, the real users of the network, and presented the way that
the system handles the problem of dynamic IP addresses and the problem that
a client might be disconnected. We continued by discussing the fault-tolerance
problem and its solutions. We discussed the problem of socket handling, where
we described why we try to keep open the connections in many cases and how
we do that.

We presented the event notification service in detail. We gave details for the
basic concepts of our event service such as profiles, resources, notifications, stored
notifications, queries, rendezvous. We described the propagating strategy, which
concludes a profile hierarchy and we showed how we build and use the hierarchy
and why it is so useful for the network, since it allows the super-peer agents to
forward one notification that interests many clients.

We described in detail the protocols that agents use in P2P-DIET universe
to communicate. There are four different protocols:

1. The super-peer - super-peer communication protocol, which is used by
agents in a super-peer environment to communicate with agents in the
local or a remote super-peer environment.

2. The client peer - super-peer communication protocol, which is used by
agents in a client peer environment to communicate with agents in a remote
super-peer environment.

3. The super-peer - client peer communication protocol, which is used by
agents in a super-peer environment to communicate with agents in a re-
mote client peer environment.

4. The client peer - client peer communication protocol, which is used by
agents in a client peer environment to communicate with agents in the
local or a remote client peer environment.

Note that remote communication is achieved by the messenger agent. This
means that when an agent wants to communicate with a remote agent, it com-
municates with a local messenger agent and the messenger will implement the
remote communication.

106

Bibliography

[1] A. Carzaniga. Architectures for an Event Notification Service Scalable to a
Wide Area Networks. Phd thesis, Politecnico di Milano, Italy, 1998.

[2] A. Carzaniga and D.S. Rosenblum and A. L. Wolf. Achieving scalability
and expressiveness in an internet-scale event notification service. In Proceed-
ings of the 19th ACM Symposium on Principles of Distributed Computing
(PODC’2000), pages 219–227, 2000.

[3] A. Carzaniga and D.S. Rosenblum and A.L. Wolf. Design and evaluation
of a wide-area event notification service. ACM Transactions on Computer
Systems, 19(3):332–383, August 2001.

[4] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems.
In Proceedings of the 28th International Conference on Distributed Systems,
July 2002.

[5] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location
and routing for large-scale- peer-to-peer storage utility. In Proceedings of the
18th IFIP/ACM International Conference on Distributed Systems Paltforms
(Middleware 2001), November 2001.

[6] A. Rowstron and P. Druschel. Storage managment and caching in past, a
large scale, persistent peer-to-peer storage utility. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles, October 2001.

[7] B. Kantor and P. Lapsley. Network news transfer protocol. RFC 977, Febru-
ary 1986.

[8] B. Mukherjee and L. Heberlein and K. Levitt. Network intrusion detection.
IEEE Network, pages 26–41, May 1994.

[9] B. Yang and H. Carcia-Molina. Designing a super-peer network. In Proceed-
ings ICDE, 2003.

[10] B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-peer systems.
In Proceedings ICDE of the 27th International Conference on Very Large
Databases, September 2001.

107

[11] B. Yang and H. Garcia-Mollina. Improving efficiency of peer-to-peer search.
In Proceedings of the 28th International Conference on Distributed Systems,
July 2002.

[12] B. Zhao and J. Kubiatowicz and A. Joseph. Tapestry: An infrastructure
for fault-tolerant wide area location and routing. Technical report ucb/scd-
0101141, Computer Science Division, U.C.Berkley, April 2001. Available at
http://www.cs.berkley.edu/ravenben/publications.CSD-01-1141.pdf.

[13] Bearshare Home page. http://www.bearshare.com.

[14] C. Hoile and F. Wang and E. Bonsma and P. Marrow. Core specification and
experiments in diet: a decentralised ecosystem-inspired mobile agent system.
In Proceedings of the 1st International Joint Conference on Autonomous
Agents & Multiagent Systems (AAMAS 2002), pages 623–630, July 15–19
2002.

[15] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 1987.

[16] DIET Home page. http://www.dfki.de/diet.

[17] D.S. Milojisic and V. Kalogeraki and R. Lukose and K. Nagaraja and J.
Pruyne and B. Richard and S. Rollins and Z. Xu. Peer-to-peer computing.
Technical Report HP-2002-57, HP Laboratories, Palo Alto, 2001.

[18] E. Bonsma and C. Hoile. A distributed implementation of the swan look-up
system using mobile agents. In Proceedings of the AAMAS 2002 Workshop
on Agents and Peer-to-Peer Computing, 2002. Forthcoming volume in Lec-
ture Notes in Computer Science, G. Moro and M. Koubarakis (eds.).

[19] E.A. Kendall and C.V. Pathak and P.V.M. Krishna and C.B. Suresh. The
layered agent pattern language. In Proceedings of the Conference on Pattern
Languages of Programms (PLoP’97), 1997.

[20] E.A. Kendall and P.V.M. Krishna and C.V. Pathak and C.B. Suresh. Pat-
terns of intelligent and mobile agents. pages 92–99.

[21] European Commission IST Future and Emerging Tecnologies. Universal
information ecosystems proactive initiative, 1999.

[22] F. Bellifemine and A. Poggi and G. Rimassa. Jade — a fipa-compliant
agent framework. In Proceedings of the 4th International Conference on
the Practical Applications of Agents and Multi-Agent Systems (PAAM-99),
pages 97–108, London, UK, 1999. The Practical Application Company Ltd.
Available at http://sharon.cselt.it/projects/jade/PAAM.pdf.

108

[23] F. Dabek and M.F. Kaashoek and D. Karger and R. Morris and I. Stoica.
Wide area cooperative storage with cfs. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles, October 2001.

[24] FIPA Home page. http://www.fipa.org.

[25] Freenet website. http://freenet.sourceforge.net.

[26] G. Gugola and E. DI Nitto and A. Fuggeta. Exploiting an event based
infrastructure to develop complex distributed systems. In Proceedings of
the 20th International Conference on Software Engineering ICSE 98, Kyoto,
Japan, April 1998.

[27] G. Vigna and R. Kemmerer. Netstat: A network based intrusion detection
approach. In Proceedings of the 14th Annual Computer Security Application
Conference, Scottsdale AZ, USA, December 1998.

[28] Gnutella website. http://gnutella.wego.com.

[29] H.S. Nwana and D. TNdumu. A perspective on software agents. The Knowl-
edge Engineering Review, 14(2):1–18, 1999.

[30] I. Clark. A distributed decentralized information storage and retrieval sys-
tem. Division of Informatics, Universiry of Edinburg, 1999.

[31] I. Clark and O. Miller and T.T. Hong. Freenet: A destributed anony-
mous information retrieval system. In H. Federrath, editor, Designing Pri-
vacy Enhancing Technologies: International Workshop on Design Issues in
Anonymity an Unobservability, LNCS 2009, New York. Springer.

[32] I. Stoica and R. Morris and D. Karger and M.F. Kaashoek and H. Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the ACM SIGCOMM ’01 Conference, San Diego, Califor-
nia, August 2001.

[33] ICQ Home Page. http://www.icq.com.

[34] J. Kubiatowicz and D. Bindel and Y. Chen and S. Czerwinski and P. Eaton
and D. Geels and R. Gummadi and S. Thea and H. Weather-Spoon and W.
Weimer and C. Wells and B. Zhao. Oceanstore: An architecture for global
scale persistent storage. In Proceedings ASPLOS, pages 190–201, November
2000.

[35] J.E. Cook and A.L. Wolf. Discovering models of software processes from
event based data. ACM Transactions on software Engineering and Method-
ology, 7(3):191–230, July 1998.

109

[36] J.M. Bradshaw. Software Agents. AAAI Press, Mento Prak, USA, 1997.

[37] K. Ilgun and R. Kemmerer and P. Porras. Stare transition analysis: A rule
based intrusion detection system. IEEE Transactions on Software Engineer-
ing, 21(3), March 1995.

[38] K. Sycara and A. Pannu and M. Williamson and D. Zeng. Distributed
intelligent agents.

[39] K. Truelove. To the bandwidth barrier and beyond. Originally an online
document available through DSS Clip2, now unavailable because the com-
pany has gone out of business. Please contact the primary author of this
paper for a copy of the document.

[40] KazaA Home Page. http://www.kazaa.com.

[41] Konspire Home Page. http://konspire.sourceforge.com.

[42] Limewire Home page. http://www.limewire.com.

[43] L.R. Ford and D.R Fukkerson. Flows in Networks. Princeton University
Press, 1963.

[44] M. Koubarakis and T. Koutris and P. Raftopoulou and C. Tryfonopoulos.
Information alert in distributed digital libraries: The models, languages and
architecture of dias. In Proceedings of the 6th European Conference on Re-
search and Advanced Technology for Digital Libraries (ECDL 2002), volume
2458 of Lecture Notes in Computer Science, pages 527–542, September 2002.

[45] M.R. Cagan. The hp softbench environment: An architecture for a new gen-
eration of software tools. Hewlett Packard Journal: Technical Information
from the Laboratories of Hewlett Packard Company, 41(3):36–67, June 1990.

[46] M.T. Rose. The Simple Book. Prentice Hall, Englewood Cliffs, 5th edition
edition, 1991.

[47] N. Daswani and H. Garcia-Molina and B. Yang. Open problems in data
sharing peer-to-peer systems. In Proceedings of the 9th International Con-
ference on Database Theory (ICDT 2003), volume 2572 of Lecture Notes in
Computer Science, pages 1–15. Springer, January 2003.

[48] N. Jennings and M. Wooldridge. Software agents. IEE Review, pages 17–20,
1996.

[49] Napster website. http://www.napster.com.

110

[50] N.S. Bargouti and B. Krishnamurthy. Using event contexts and matching
constraints to monitor software processes enginnering. IEEE Computer So-
ciety, May 1995.

[51] OpenNap Home Page. http://opennap.sourceforge.com.

[52] OSF. OSF Motif Programmers Quide. Prentice Hall, Englewood Cliffs, 5th
edition edition, 1991.

[53] P. Leigh and P. Benyola. Future developments in peer networking. Technical
report, Raymond James and Associates, INC, 2001.

[54] P. Maes. Modeling adaptive autonomous agents. Artificial Life Journal, 1,
1994.

[55] P. Marrow and M. Koubarakis and R.H. van Lengen and F. Valverde-
Albacete and E. Bonsma and J. Cid-Suerio and A.R. Figueiras-Vidal and
A. Gallardo-Antolin and C. Hoile and T. Koutris and H. Molina-Bulla and
A. Navia-Vazquez and P. Raftopoulou and N. Skarmeas and C. Tryfonopou-
los and F. Wang and C. Xiruhaki. Agents in Decentralised Information
Ecosystems: The DIET Approach. In M. Schroeder and K. Stathis, editors,
Proceedings of the AISB’01 Symposium on Information Agents for Electronic
Commerce, AISB’01 Convention, pages 109–117, University of York, United
Kingdom, March 2001.

[56] P. Suthar and J. Ozzie. The groove platform architec-
ture. Available at Groove Networks Presentation. dev-
zone.groove.net/library/Presentations/GrooveApplicationArchitecture.ppt.

[57] P.D. O’Brien and M.E. Wiegand. Agents of change in business process
management. Lecture Notes in Artificial Intelligence, 1198:132–145, 1997.

[58] Pointera Home Page. http://www.pointera.com.

[59] P.R. Pietzuch and J.M. Bacon. Hermes: A distributed event-based mid-
dleware architecture. In Proceedings of the 1st International Workshop on
Distributed Event-Based Systems (DEBS’02), July 2002.

[60] R. Bellmann. Dynamic Programming. Princeton University Press, 1957.

[61] R.G. Gallager and P.A. Humblet and P.M. Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Transactions on Programming
Languages and Systems, 5(1):66–77, January 1983.

[62] R.O. Hart and G. Lupton. Dec fuse: Building a graphical software devel-
opment from unix tools. Digital Technical Journal of Digital Equipment
Corporation, 7(2):5–19, Spring 1995.

111

[63] R.S. Hall and D. Hembigner and A. van der Hoek and A.L. Wolf. An ar-
chitecture for post-development configuration management in a wide area
network. In Proceedings of the 17th International Conference on Distributed
Computing Systems, May 1997.

[64] S. Ratnasamy and P. Francis and M. Handley and R. Karp and S. Shenker. A
scalable content-addressable network. In Proceedings of the ACM SIGCOMM
’01 Conference, San Diego, California, August 2001.

[65] S. Reiss. Connecting tools using message passing in the field environment.
IEEE Software, pages 57–66, July 1990.

[66] S. Russel and P. Norvig. Arificial Intelligence: A Modern Approach. Prentice
Hall Inc, 1995.

[67] S. Weibel. The dublin core: A simple content description model for electronic
resources. Nfais Newsletter, July 1998.

[68] S. Weibel and K. Traugott. The dublin core metadata initiative: Mission,
current activities, and future directions. Dlib Magazine, December 2000.

[69] SETI@home Home Page. http://setiathome.ssl.berkley.edu.

[70] S.R. Hedberg. The first harvest of softbots looks promising. IEEE Expert,
pages 6–9, August 1995.

[71] T. Barners-Lee. Universal resources identifiers in www, a unifying syntax
for the epression of names and addresses of obhects on the network as used
in the world wide web. Technical report, RFC 1630, June 1994.

[72] Toadnode Home page. http://www.toadnode.com.

[73] Y.K. Dalal and R.M. Metcalfe. Reverse path forwarding of broadcast pack-
ets. Communications of the ACM, 21(12):1040–1048, December 1978.

112

Appendix A

Scenarios

In Chapter 6 we presented the communication protocols. Each agent understands
a fraction of those protocols. This depends on the type of his environment and
the type of the environment that the target agents inhabit. This chapter presents
the possible conversations between agents. Each conversation is a scenario that
happens while the system works. By reading a scenario, the reader understands
which agents are involved, what protocols and messages use to communicate
and exchange information and the time sequence of those messages. Actually
this chapter completes Chapter 6 by describing the use of each message and the
way that an agent responds to it and handles the situation. In many cases we
give more details on how an agent reacts in order for the scenario to be more
readable. As we have already described, remote communication is implemented
by the messenger agent. In each scenario we use one messenger agent to represent
the type of those agents and we do that to save space on the paper and have
more readable scenarios. For example, when a messenger migrates to a remote
environment to deliver a message, the target agent will need to reply or to send
a message to another remote agent. To do so a messenger agent from the pool
is used and this means that it is more possible that a different messenger is
used than the one that brought the message. When describing the scenarios we
use only one messenger to make the scenario more easy to read. Moreover, the
scenario hides many details, for example, in the remote communication between
super-peer agents, we hide the fact the sender has to find the IP address of
the receiver node in the spanning tree of the receiver agent and that he builds
the appropriate communication packet to contain the useful information of the
message. The word ”migrate” represents the fact the messenger has migrated to
a remote environment and again hides all the details that a socket was opened or
an already opened socket with the same remote computer is used. By describing
the scenarios we indent to present the situations that a message is used, the
respond of the receiver (probably with another message), the agents and their
role in each scenario and the time sequence of the messages.

113

Figure A.1: Are You Alive Client scenario

114

Figure A.2: Are You Alive Neighbor scenario

115

Figure A.3: Publish Resource scenario

116

Figure A.4: Subscribe Profile scenario

117

Figure A.5: Query scenario

118

Figure A.6: Forward Child Profile Scenario

119

Figure A.7: Forward Profile Scenario

120

Figure A.8: Forward Query Scenario

121

Figure A.9: Forward Remove Profile Scenario

122

Figure A.10: Forward Notification Scenario

123

Figure A.11: Connect Scenario

124

Figure A.12: Disconnect Scenario

125

Figure A.13: Forward Client Connected Scenario

126

Figure A.14: Forward Client Disconnected Scenario

127

Figure A.15: Ask Resources And Profile Scenario

128

Figure A.16: Send Stored Notifications And Rendezvous Scenario

129

Figure A.17: Upload Rendezvous File Scenario

130

Figure A.18: Produce Notification Scenario

131

Figure A.19: Finger Scenario

132

Figure A.20: Send Notification To Clients Scenario

133

Figure A.21: Remove Resource Scenario

134

Figure A.22: Request Access Point List Scenario

135

Figure A.23: New Client Scenario

136

Figure A.24: Request Other Client Address Scenario

137

Figure A.25: Arrange Rendezvous Scenario

138

Figure A.26: Forward Rendezvous Request Scenario

139

Figure A.27: Request Rendezvous Condition Scenario

140

Figure A.28: Request Rendezvous File Scenario

141

Figure A.29: Download Scenario

142

Figure A.30: Send Resource Scenario

143

Figure A.31: Build Spanning Tree Scenario

144

Figure A.32: Forward Build Spanning Tree Scenario

145

Figure A.33: Reply Spanning Tree Scenario

146

Figure A.34: New Neighbor Scenario

147

Figure A.35: Connect Chat Scenario

148

Figure A.36: Chat Message Scenario

149

