
SEMANTIC GRID RESOURCE DISCOVERY
IN ATLAS*

Zoi Kaoudi, Iris Miliaraki, Matoula Magiridou
Dept. of Informatics and Telecommunications
National and Kapodistrian University of Athens, Greece

{zoi, iris, matoula) @di.uoa.gr

Erietta Liarou
Dept. of Electronic and Computer Engineering
Technical University of Crete, Greece
erietta@intelligence.tuc.gr

Stratos Idreos
CWI
Amsterdam, The Netherlands
S.ldreos@cwi.nl

Manolis Koubarakis
Dept. of Informatics and Telecommunications
National and Kapodistrian University of Athens, Greece

koubarak@di.uoa.gr

Abstract We study the problem of resource discovery in the Semantic Grid. We show
how to solve this problem by utilizing Atlas, a P2P system for the distributed
storage and retrieval of RDF(S) data. Atlas is currently under development in
project OntoGrid funded by FP6. Atlas is built on top of the distributed hash
table Bamboo and supports pull and push querying scenarios. It inherits all
the nice features of Bamboo (openness, scalability, fault-tolerance, resistance
to high churn rates) and extends Bamboo's protocols for storing and querying
RDF(S) data. Atlas is being used currently to realize the metadata service of
S-OGSA in a fully distributed and scalable way. In this paper, we concentrate
on the main features of Atlas and demonstrate its use for Semantic Grid resource
discovery in an OntoGrid use case scenario.

Keywords: peer-to-peer networks, DHT, RDF, query processing, Semantic Web.

*This work is partially funded by FP6lIST project OntoGrid.

186 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction

For the Semantic Grid vision [15] to become a reality, high quality of ser-
vice must be offered to users and applications at all levels of the Grid fabric.
In this paper, we concentrate on high quality of service in the provision of
resource discovery services in Semantic Grids. Resource discovery is an im-
portant problem in Grids in general, and Semantic Grids in particular. We
discuss how to achieve high-performance, scalability, resilience to failures,
robustness and adaptivity in the provision of resource discovery services in
Semantic Grids, and especially in OntoKit, the Semantic Grid toolkit currently
under development in project OntoGrid [24].

OntoGrid (h t t p : //www . o n t o g r i d . n e t) is a Semantic Grid project
funded by the Grid Technologies unit of the European Commission under the
strategic objective "Grid-based systems for Complex Problem Solving" of the
Information Society Technologies programme of FP6.

Our basic assumption in this paper is that Semantic Grid resources (e.g., ma-
chines, services or ontologies) will be annotated by RDF(S) metadata. Meta-
data pervades the Semantic Grid and is used to describe Grid resources, the
environment, provenance and trust information etc. [15]. The Resource De-
scription Framework (RDF) and RDF Schema (RDFS) are frameworks for rep-
resenting information about Web resources. RDF(S) consists of W3C recom-
mendations that enable the encoding, exchange and reuse of structured meta-
data, providing the means for publishing both human-readable and machine-
processable information and vocabularies for semantically describing things
on the Web. Although RDF(S) was originally proposed in the context of the
Semantic Web, it is also a very natural framework for representing information
about Grid resources. As a result, it is used heavily in various Semantic Grid
projects e.g., mYGrid (h t t p : //www . m y g r i d . o r g . uk) or OntoGrid.

We propose to view resource discovery in Semantic Grids as distributed
RDF query answering on top of a P2P network of Grid resource providers and
requesters. Our proposal complements well-known Grid information services
such as MDS4 of GT4 in two ways:

We offer service providers and service requesters expressive semantics-
based data models and query languages (i.e., RDF(S) and RQL instead
of XML and XPath).

We implement resource discovery using techniques from P2P systems.
This allows us to achieve full distribution, high-performance, scalability,
resilience to failures, robustness and adaptivity. Related experimental
work is presented in [26, 28,271.

Semantic Grid Resource Discovery in Atlas 187

In the context of OntoGrid, our proposal is realized with the implementation
of Atlas, a P2P system for the distributed storage and querying of RDF(S)
metadata describing Semantic Grid resources.

The rest of the paper is organized as follows. Section 6 briefly discusses
related work at the crossroads of Grid and P2P computing research. Section
3 gives a short description of the various components and protocols of Atlas.
Section 4 shows how to use Atlas for service discovery in OntoKit. Finally,
Section 5 concludes the paper.

2. Related Work
Our research can be understood to lie at the intersection of P2P and Grid

computing. Although these computing paradigms have different origins and
have been developed largely independently, there has been a lot of interesting
work lately at the crossroads of these paradigms [13, 34, 111.

Previous papers that explore connections among Grids and P2P networks
can be distinguished in the following categories:

1 General papers that discuss the similarities and differences of P2P and
Grid systems pointing out important areas where more work is needed
[13,34, 111.

2 Papers where ideas from P2P computing are used in Grid systems. Here,
we can further differentiate as follows:

(a) Works where Grid computing problems are given as a primary mo-
tivation, but the contributions are essentially in the P2P domain
and can also be applied elsewhere. For example, [4, 23, 71 con-
sider attribute-value data models that can be used to describe Grid
resources (e.g., by specifying the CPU power, disk space capac-
ity, operating system and location of a computer) and show how to
evaluate queries in these models on top of DHTs (e.g., I am looking
for an idle PC that runs Linux and has CPU > 3GHz).

(b) Works where P2P techniques are used to improve functionality in
existing Grid systems e.g., resource discovery [20, 18, 191 and
replica location management in Globus [8] or flocking in Condor
[61.

(c) Service-oriented application development frameworks that en-
hance existing frameworks for Web or Grid service computing [I ,
161 with P2P protocols.

3 Papers where ideas from Grid computing are used in P2P systems. For
example, [lo] shows how to implement a P2P data integration frame-
work using OGSA-DAI [2].

188 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Our work should be classified in categories 2(b) and 2(c) above. Work with
goals similar to ours that uses description logics instead of RDF(S) is reported
in [17].

3. The P2P System Atlas

In Atlas, we use state of the art distributed hash table (DHT) technology
[5] to implement a distributed system that will be able to scale to hundreds of
thousands of nodes and to large amounts of RDF(S) data and queries. Nodes in
an Atlas network are organized under the Bamboo DHT protocol [3 11. Bam-
boo is a DHT based on Pastry [32] from where it takes the circular identifier
space and the routing algorithms. Bamboo improves on Pastry by being able to
withstand very dynamic changes in network membership i.e., it is resilient to
churn [3 11. Like most implementations of DHTs, Bamboo offers a very sim-
ple interface consisting of two operations: put (ID, it em) and get (I D) .
The put operation inserts an item with key I D and value item in the DHT.
The get operation returns a pointer to the DHT node responsible for key I D .
Our operations for storing data and querying Atlas, described below, are based
on these simple operations offered by Bamboo.

Atlas nodes can enter RDF(S) data into the network and pose RQL queries.
Two kinds of querying functionality are supported by Atlas: one-time querying
andpublish/subscribe. Each time a node poses a one-time query, the network
nodes cooperate to find RDF(S) data that form the answer to the query. In the
publish/subscribe scenario, a node can subscribe with a continuous query. A
continuous query is indexed somewhere in the network and each time matching
RDF(S) data is published, nodes cooperate to notlfi the subscriber.

The current implementation of Atlas (Atlas v0.6) supports a subset of the
query language RQL [22] as we explain in Section 3.4 below. The query
processing algorithm we use for one-time queries is an extension of the algo-
rithm proposed in [9] for a smaller class of queries based on triple patterns
[9]. Publishlsubscribe scenarios in Atlas are handled using the algorithms in
[28,27] that are briefly discussed in Section 3.3 below but have not been fully
implemented in Atlas v0.6. In the future, Atlas will also support the recently
proposed RDF update language RUL for inserting, deleting and updating RDF
metadata [30].

Atlas is used in OntoKit for realizing a fully distributed metadata service.
A high level view of Atlas and the metadata service of OntoKit is shown in
Figure 1.

3.1 RDF Documents and Queries in Atlas

Atlas nodes provide their data in the form of RDF documents [25]. These
documents are decomposed into RDF triples that are indexed in various nodes

Semantic Grid Resource Discovery in Atlas 189

L
Bamboo networlc layer

\ /
QueryMetadata(R0LQuery) UpdateMetadata(RUL0peranon)

-.. -. ---..- -. -. --. -. -.

Metadata Service

Figure I . Atlas and the metadata service

of the network. A triple represents a statement about a domain and has the
form (subject, predicate, object) where subject and predicate are URIs and
object is a URI or a literal. We adopt the triple indexing algorithm presented in
[9], where each triple is indexed on the DHT three times, once for its subject,
once for its predicate and once for its object. For each of these storage opera-
tions we make use of the put operation provided by the Bamboo DHT using
as key the subject, predicate or object value respectively. The key is hashed to
create the identifier that leads to the appropriate node where the triple is stored.

Atlas supports internally the query language TPQL (triple-pattern query
language) which allows the expression ofpositive (i.e., without negation) con-
junctive queries where each conjunct is a triple pattern.

A conjunctive query q is a formula of the form

where s l , . . . , s,, pl, . . . , p, are variables or URIs, 0 1 , . . . , om are vari-
ables, URIs or literals, ? X I , . . . ,?xk are variables and {?x l , . . . , ? xk) C
i s 1 , . . . , Sm,pl , . . . ,p,, 0 1 , . . . ,om). Variables will always start with the '?'
character. The triple patterns (s l , pl , o l) , . . . , (s,, p,, 0,) are the subqueries
of q. A query will be called atomic if it consists of a single conjunct.

The class of conjunctive queries can be used to express many interesting
requests in P2P applications using RDF. For example, assume that a service

190 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

requester wants to discover a Web service for arranging the repair of a car.
This request can be expressed as a conjunctive query as follows:

?x, ?y : (?x, hasServiceKeyword, "Cars") A

3.2 One-Time Query Processing in Atlas

In this section, we describe the algorithm for one-time query processing
in Atlas using terminology from relational databases. Each triple can be un-
derstood to be a tuple in a relation T R I P L E (S , P, 0) with attributes S for
subject, P for predicate and 0 for object. Then, conjunctive queries are
select-project-join queries over the database that consists simply of the rela-
tion T R I P L E . The exact query processing algorithm of Atlas is as follows.

Let n l be a node that wants to pose a conjunctive query q of the form intro-
duced in Section 3.1. Node n l creates a message

partialResult, variables, returnAddress)

and sends it to the node with identifier id using the underlying Bamboo infras-
tructure. In this message, tr iplepattern is the triple pattern of q which node
n l chooses to be evaluated first', id is the identifier obtained by hashing one of
the constants in triple pattern triplepattern, restTriplePatterns is the list
of remaining triple patterns of q, partialResult is a relation for partial results
(see below) which is initially empty, variables is the list of answer variables
of q, and returnAddress is the IP address of node n l .

When another node n2 receives the above message queryRequest, it does
the following. It first computes the bindings of the variables included in
the given triple pattern by finding the triples in its local database that match
tr iplepattern. These bindings form a new relation R with attributes the
variables in question. If partialResult is empty, then node n2 assigns
R to partialResult. Otherwise, n2 computes the natural join of R and
partialResult (i.e., partialResult M R) and assigns it to partialResultt.
Then, n2 creates a new message

partial Result', variables, returnAddress)

 his choice is crucial depending on the metric one wants to optimize; in Atlas v0.6, we simply pick the
first triple pattedconjunct.

Semantic Grid Resource Discovery in Atlas 19 1

When this message is received by another node ns, the same procedure is
followed. These nodes join the relation R of the bindings they retrieve locally
with the relation partialResult and send a message to the next node. This pro-
cedure terminates in two possible ways. Either, the list restTriplePatterns
becomes empty or the relation partialResult becomes empty. The latter
means that the current triple pattern does not match with any triples stored
locally, and thus relation R becomes empty and the join operation results in an
empty relation. In both cases, a response with the results should be returned
to node n l which issued the query. The field returnAddress is used for this
purpose; it remains unchanged throughout the whole procedure and refers to
the IP address of node n l .

The node n, that determines that the query evaluation procedure is fin-
ished computes the bindings of the answer variables ?xl,. . . , ?xk. In or-
der to do that, n, computes the projection of relation partialResult on the
variables included in the list variables and inserts the results in the relation
variableBindings i.e.,

Then, n, sends a response message queryResponse(variab1eBindings) to
node n l , where variableBindings is a relation with the answer to the query.

The key idea in the algorithm we described above is that we split a conjunc-
tive query to the triple patterns that is consists of and evaluate each one at a
different node of the network. In this way, we try to distribute the responsi-
bility of answering a query to several nodes. Intermediate results flow through
these nodes and finally the last one delivers the results back to the node that
submitted the query. Notice that in order to determine which node will evaluate
a triple pattern the algorithm uses one of the constants contained in it. Finally,
the distributed query plan is created once, i.e., at the time that the query is
submitted.

In [26] , we propose an improved algorithm for the evaluation of conjunctive
RDF queries on top of DHTs. In this algorithm, the distributed query plan is
created dynamically by exploiting the values of matching triples found while
processing the query incrementally. This time we use combination of constants
in a triple pattern to determine which will be the node to evaluate it. By enrich-
ing the triple patterns with new values we have more combinations to use. In
this way, this algorithm distributes the responsibility of evaluating a query to
more nodes than the previous one. Our initial experiments show a significant
improvement on load distribution but, on the other hand, there is an overhead
in network traffic.

192 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

3.3 Publish/Subscribe in Atlas

In [28, 271, we propose two distributed algorithms for publishhbscribe on
top of DHTs when publications are RDF triples and subscriptions are conjunc-
tive multi-predicate queries.

In our algorithms, when a continuous query is submitted, it is indexed some-
where in the network and waits for triples to satisfy it. Each time a new triple is
inserted, the network nodes cooperate to determine what queries are satisfied,
compute their answers and create notifications for the subscribers. The case
of conjunctive queries is an interesting one, since a single triple may satisfj, a
query q onlypartially by satisfying a subquery of q. In other words, more than
one triples may be needed to answer a query. Moreover, since the appropriate
triples do not necessarily arrive in the network at the same time, the network
should "remember" the queries that have been partially satisfied in the past
(e.g., by keeping intermediate results) and create notifications only when all
subqueries of a given query are satisfied.

We could index queries to a globally known node or set of nodes, but this
would eventually overload these nodes. In a P2P environment, we want as
many nodes as possible to contribute some of their resources (storage, cpu,
bandwidth, etc.) for achieving the overall network functionality. The resource
contribution of each node will obviously depend on its capabilities, its gains
from participating in the network, etc. In our work, we make the simplifying
assumption that all nodes are altruistic, with equivalent capabilities, and, thus,
can contribute to query evaluation in identical ways.

Let us now discuss the issues involved in publishhbscribe with conjunctive
queries. We first consider an atomic query q = (?sl, p l , ?ol). We can simply
assign q to the successor node x of Hash(p1) by using the constant part p l of
the query. Triples that have predicate value equal to p l will be indexed to x
too, where they will meet q. Assume now the atomic query q' = (?s2, pa, 02).
We can index q' either to node x l = Successor(Hash(p2)) or to node
x2 = Successor(Hash(02)). We prefer the second option since intuitively
there will be more object values than predicate values in an instance of a given
schema, which will allow us to distribute queries to a greater number of nodes.
Another solution is to index q' to the node 23 = Successor(Hash(p2 + 02)).
We use the operator + to denote the concatenation of string values. This is the
best option because the possible combinations of predicate and object values
will be greater than the number of object values alone, so this will lead to an
even better distribution of queries.

The difficulty with arbitrary conjunctive queries is that they demand more
than one conditions to be satisfied before the whole query can be satisfied.
As an example, consider the query q = ql A q2 A q3. Our approach is to
split the query to the subqueries that it consists of, and to index each subquery

Semantic Grid Resource Discovery in Atlas 193

separately. Then, three usually different nodes will be responsible for query
processing regarding q. Each one will be responsible for a single subquery of
q, e.g., nodes r l , r 2 and r3 will be responsible for ql, 92 and q3 respectively.
These nodes will form the query chain of q, denoted by chain(q). Each one
of these nodes will monitor the satisfaction of only the subquery that it is re-
sponsible for. To determine the satisfaction of q, we have to allow some kind
of communication between these three nodes. In this way, as triples arrive and
satisfy a subquery e.g., in node r l , rl will forward partial results of q to r2.
Node r 2 will forward partial results that also satisfy the second subquery to r3

and r3 will realize that the whole query is satisfied and create a notification.
The first algorithm that we present in [28] creates a single query chain for

each conjunctive query while the second one creates multiple query chains
for a single query to achieve a better query processing load distribution. The
first algorithm of [28] is essentially identical to the one-time query processing
algorithm discussed in Section 3.2 except that, in the publish/subscribe case,
it is executed in a reactive manner as matching triples arrive in the network.
In [28], the two algorithms presented are experimentally evaluated for con-
junctive multi-predicate queries (i.e., queries where the subject of all the triple
patterns is the same variable ?s and predicates p l , . . . , p, are all constant).
However, the general idea of these algorithms is easily extensible to support
the full class of conjuctive queries as we show in the forthcoming paper [27].

3.4 The RQL-to-TPQL Translator

Atlas offers to users the ability to write queries in TPQL or in the well-
known RDF query language RQL. RQL [22], which stands for RDF Query
Language, is a declarative language which relies on a formal graph model that
captures the RDF modelling primitives. The novelty of RQL lies in its ability to
combine schema and data querying smoothly while exploiting the taxonomies
of labels and multiple classification of resources. The syntax of RQL includes
a set of basic queries (e.g. Resource, SubClassOf () etc.) as well as
SQL-like select - f rom-where queries to iterate over RDF collections and
introduce variables2.

Consider the schema of Figure 2 which describes information about Web
services in RDFS. This example is part of the core services data model used
in project , y ~ r i d ~ . Suppose we want to find a Web service for arranging the
repair of the car. What follows is an appropriate RQL query:

SELECT X
FROM {~}ns:has~ervice~escription{~}

'RQL is implemented in ICS-FORTH's Suite h t t p : //139.91.183.30: YOYO/RDF/ ' http://www.mygrid.org.uk

1 9 4 K N O W L E D G E A N D DATA M A N A G E M E N T I N G R I D S

haslnpuVOulpul

ns:hltp://www,mygrid.org,uWontology#

hasServiceName ~ h asOpe'r@ti_on I

gWSDL-opetalion

~ ~ ' i \ ~ " / ~ -- - --- ~ hasServiceName \,

& RepairCar-serviee

"Car Repair Servicer

Figure 2.

< _ i > o,a,,
Literal

RDFS schema for Web Services

• Resource

i~ Property

. ~ InstanceOf

WHERE Y like "*car*"
USING NAMESPACE ns=&http ://www. mygrid, org. uk/#ontology

In order to support RQL queries in Atlas, we have introduced a module
responsible for mapping a query expressed in RQL to a query in TPQL, which
is the query language supported internally by Atlas and described in Section
3.1. In Atlas v0.6, we do not support the full functionality of RQL but only
data queries with filtering conditions.

Recall the RQL query presented earlier, about the discovery of service for
arranging the repair of the car. The equivalent conjunctive query is the follow-
ing:

?x : (?x, http ://www.mygrid.org.uk/ontology~hasServiceDescription, ?y)

A ?y l ike " * car * "

To design the RQL-to-TPQL translator we have followed the RQL Inter-
preter architecture developed by ICS-FORTH [14] (see Figure 3). Our imple-
mentation has been done in Java using the Java Compiler Compiler (JavaCC)
[3] parser generator.

The syntax analyser module receives as input a string, representing an RQL
query, and returns the corresponding CNF syntax tree (if the query is valid).
The syntax tree is passed to the graph constructor module, which creates a
graph corresponding to the semantic representation of the query. These two
modules are based on the code of RQL Interpreter. The translator module
takes as input the syntax tree and graph of an RQL query and returns the

Semantic Grid Resource Discovery in Atlas

Mapping
iuncfions

ROL

4
Tr

equivalent expression in TPQL, as a list of triple patterns and constraints. It
consists of a list of mapping functions, which implement the mapping rules
between RQL and TPQL presented in [2 11. The main module contains either a
JNI-client and a standalone application for the management of the RQL query
translator or directly creates the triple patterns data structures to be passed to
the rest of the Atlas modules for query processing.

4. Atlas in Operation: Service Discovery in OntoKit

(1)

In this section, we show how Atlas can be used in OntoKit during service
annotation and discovery [24]. The whole scenario is depicted in Figure 4.

OntoGrid is developing annotation technology for Grid services 1331; this
technology is deployed as the annotation service of OntoKit. For the purposes
of this section, it is also important to mention another service of OntoKit, the
ontology service [12]. The current version of the ontology service provides
a Grid interface to an RDFS store where RDFS ontologies are stored (e.g.,
service ontologies or domain ontologies etc.).

An ontology for services and various domain ontologies are needed in or-
der to create a service annotation. Let us suppose that the annotation service
chooses to search for an ontology about cars in order to annotate a car-repair
service (the example comes from a car insurance use case studied in OntoGrid).
The annotation service can pose an RQL query to the metadata service and get

Query

Lexical
Synfacticai

analysis

Synlacl cal Tree

CNF algorithm

I

Oue%
(string)

ples
Pdttern

(2) Syntactical tree under CNF

(3) 4

Main lunclion

A

Evaluation 01
dependencies and

I
Semantical Representation (query graph)

Graph conslrucfion
lacforirafion +-D

(6)

(5) C

Triples Pattern

Translalion

I

KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. l want a

about cars

Metadata Service
FROM (X)ns:harSewiceDeocriptbnM
WHERE Y like "can'
USING NAMESPACE m - 8h~Jh.mypl.org.IWontoloevI

Figure 4. Using Atlas for Service Annotation and Discovery

information about such ontologies e.g., the location and description of a par-
ticular ontology - let us call it car - r e p a i r - o n t o l o g y . After discovering
information about car - r e p a i r - o n t o l o g y , the annotation service can re-
trieve it from the ontology service.

If the annotation service does not know the ontology for annotating services,
it has to search for such an ontology as well. An example ontology describing
services that could be found in this case is the mYGrid service ontology [29].
We should mention here that this step may be unnecessary if a specific service
ontology has been selected for annotating services in OntoKit.

Using these ontologies, the annotation service can complete the service an-
notation process. The result of the annotation process will be stored in Atlas
by calling the UpdateMe tadata operation (see Figure 4). The ontology
used for describing the service should have been stored previously in Atlas by
calling the S t o r e o n t 01 o g y operation.

Let us suppose now that an OntoKit user wants to discover a service for
repairing cars. This is accomplished by submitting RQL queries using appro-
priate service and domain ontologies (see Figure 4).

Finally, notice that after an annotation is stored, it might be necessary to be
able to update it. An appropriate update operation can be expressed in RUL
and executed in Atlas.

Semantic Grid Resource Discovery in Atlas

5. Conclusions
We have argued that resource discovery services for Semantic Grids can

be made scalable, fault-tolerant, robust and adaptive, by exploiting distributed
RDF query processing algorithms implemented on top of DHTs. We have
discussed the implementation of our ideas in the system Atlas and its role in
the Semantic Grid toolkit OntoKit. The implementation of Atlas was started at
the Technical University of Crete and is currently continued at the National and
Kapodistrian University of Athens. More information on the current version
of Atlas is available in [21]. Although we have stressed performance issues,
we have not provided any measurements or experimental results in this paper.
Experimental results based on simulations can be found in [28] and more
experimentation is underway [27, 261. Finally, we expect to be able to analyse
the performance of Atlas soon on real-world wide-area networks using the
PlanetLab infrastructure.

References

[I] jxta. http://www.sun.com/software/jxta/.

[2] Open Grid Services Architecture Data Integration (OGSA-DAI).
http://www.ogsadai.org.uW.

[3] Java Compiler Compiler(JavaCC). https://javacc.dev.java.net/, 2004.

[4] A. Andrzejak and Z. Xu. Scalable, Efficient Range Queries for Grid Information
Services. In the second IEEE International Conference on Peer-to-Peer Computing
(P2P2002), Linkoping, Sweden, 5-7 September 2002.

[5] H. Balakrishnan, M. Frans Kaashoek, D. R. Karger, R. Morris, and I. Stoica. Looking up
data in P2P systems. Communications of the ACM, 46(2):43-48,2003.

[6] A. Raza Butt, R. Zhang, and Y. Charlie Hu. A Self-organizing Flock of Condors. In
Proceedings of Supercomputing Conference (SC), Phoenix, Arizona, November 2003.

[7] M. Cai, M. Frank, and P. Szekely. MAAN: A Multi-Attribute Addressable Network for
Grid Information Services. In Pmceedings of the 4th International Workshop on Grid
Computing (Grid2003), 2003.

[8] M. Cai, A. Chervenak, and M. Frank. A Peer-to-Peer Replica Location Service Based
on A Distributed Hash Table. In the 2004 ACMIEEE Conference on Supercomputing
(SC2004), Pittsburgh, November 2004.

[9] M. Cai, M. R. Frank, B. Yan, and R. M. MacGregor. A Subscribable Peer-to-Peer RDF
Repository for Distributed Metadata Management. Journal of Web Semantics: Science,
Services and Agents on the World Wide Web, 2(2): 109-1 30, December 2004.

[lo] D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, and G. Vetere. Hyper: A Frame-
work for Peer-to-Peer Data Integration on Grids. In Proceedings of the International
Conference on Semantics of a Networked World: Semantics for Grid Databases (ICSNW
2004), pages 144-157,2004.

[I 11 J. Crowcroft, T. Moreton, I. Pratt, and A. Twigg. The GRID2: Blueprint for a New Com-
puting Infrastructure, chapter Peer-to-Peer Technologies. 2004.

198 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

[12] M. Esteban Gutirez (ed), S. Bechhofer, 0. Corcho, M. Ferndez-Lez, A. Gez-Perez,
Z. Kaoudi, I. Kotsiopoulos, M. Koubarakis, M C. Suez-Figueroa, and V. Tamma. Speci-
fication and Design of Ontology Grid Compliant and Grid Aware Services. Deliverable
3.1 OntoGrid project.

[I31 I. Foster and A. Iamnitchi. On Death, Taxes, and the Convergence of Peer-to-Peer and
Grid Computing. In 2nd International Workshop on Peer-to-Peer Systems (IPTPS'03),
Berkeley, CA, February 2003.

[I41 G. Karvounarakis. RQL. http:N139.91.183.30:9090/RDFiRQLl, 2003.

[15] C. A. Goble and D. De Roure. The Semantic Grid: Myth Busting and Bridge Building.
In Proceedings of ECAI, pages 1129-1 135,2004.

[16] A. Harrison and I. Taylor. Dynamic Web Service Deployment Using WSPeer. In Pro-
ceedings of 13th Annual Mardi Gras Conference - Frontiers of Grid Applications and
Technologies, pages 1 1-16. Louisiana State University, February 2005.

[17] F. Heine, M. Hovestadt, and 0. Kao. Towards Ontology-Driven P2P Grid Resource Dis-
covery. In 5th International Workshop on Grid Computing (GRID 2004), pages 76-83,
Pittsburgh, PA, USA, November 2004.

[18] A. Iamnitchi, I. Foster, and D. C. Nurmi. A Peer-to-Peer Approach to Resource Location
in Grid Environments. In Proceedings of the 11th Symposium on High Performance
Distributed Computing, Edinburgh, UK, August 2002.

[19] A. Iamnitchi, I. Foster, and D.C. Nurmi. A Peer-to-Peer Approach to Resource Discovery
in Grid Environments. Technical Report TR-2002-06, University of Chicago, 2002.

[20] A. Iamnitchi and I. Foster. On Fully Decentralized Resource Discovery in Grid Environ-
ments. In International Workshop on Grid Computing, Denver, Colorado, 2001. IEEE.

[21] Z. Kaoudi, I. Miliaraki, M. Magiridou, A. Papadakis-Pesaresi, E. Liarou, S. Idreos,
S. Skiadopoulos, and M. Koubarakis. Deployment of Ontology Services and Seman-
tic Grid Services on top of Self-organized P2P Networks. Deliverable D4.2, Ontogrid
project, February 2006.

[22] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A
Declarative Query Language for RDF. In Proceedings of the I lth International World
Wde Web Conference, May 2002.

[23] A. Kothari, D. Agrawal, A. Gupta, and S. Suri. Range Addressable Network: A P2P
Cache Architecture for Data Ranges. In Proceedins of the 3rd International Conference
on Peer-to-Peer Computing (P2P'03), Linkoping, Sweden, 2003.

[24] I. Kotsiopoulos, S. Bechhofer, P. Alper, P. Missier, 0 . Corcho, D. Kuo, and C. Goble.
Specification of a Semantic Grid Architecture. Deliverable 1.2, OntoGrid project.

[25] 0 . Lassila and R. R. Swick. Resource Description Framework (RDF) Model and Syntax
Specification. Technical report, W3C Recommendation, 1999.

[26] E. Liarou, S. Idreos, and M. Koubarakis. Evaluating Conjunctive Triple Pattern Queries
over Large Structured Overlay Networks. Submitted.

[27] E. Liarou, S. Idreos, and M. Koubarakis. Evaluating Continuous Conjunctive RDF
Queries over Large Structured Overlay Networks. Manuscript in preparation.

[28] E. Liarou, S. Idreos, and M. Koubarakis. Publish-Subscribe with RDF Data over Large
Structured Overlay Networks. In Proceedings of the 3rd International Workshop on
Databases, Information Systems and Peer-to-Peer Computing (DBISP2P 2005), Trond-
heim, Norway, 28-29 August.

Semantic Grid Resource Discovery in Atlas 199

[29] P. Lord, P. Alper, C. Wroe, and C. Goble. Feta: A light-weight architecture for user
oriented semantic service discovery. In Proceedings of the 2nd European Semantic Web
Conference (ESWC 2005), Heraklion, Crete.

[30] M. Magiridou, S. Sahtouris, V. Christophides, and M. Koubarakis. RUL: A Declara-
tive Update Language for RDF. In Proceedings of the 4rth International Semantic Web
Conferece (ISWC2005), 2005.

[3 I] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a DHT. In USENIX
Annual Technical Conference, 2004.

[32] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location and Routing
for Large-Scale- Peer-to-Peer Storage Utility. In Proceedings of the 18th IFIP/ACM In-
ternational Conference on Distributed Systems Paltforms (Middleware 2001), November
2001.

[33] J. 0 . Segura, R. Benjamins, J. M. G6mez Ptrez, J. Contreras, R. Salla, 0 . Corcho,
R. Gonzilez, G. Aguado de Cea, I. ~ l v a r e z de Mon y Rego, A. Pareja Lora, and R. Plaza
Arteche. Specification and Design of Annotation Services. Deliverable D5.1, Ontogrid
project, March 2005.

[34] D. Talia and P. Trunfio. Toward a Synergy Between P2P and Grids. IEEE Internet
Computing, 7(4):94-96,2003.

