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Summary. Publish/subscribe systems are an alternative to query-based systems
in cases where the same information is asked for over and over, and where clients
want to get updated answers for the same query over a period of time. Recent pub-
lish/subscribe systems such as P2P-DIET have introduced this paradigm in the P2P
context. In this chapter we built on the experience gained with P2P-DIET and the
Edutella super-peer infrastructure and present a semantic publish/subscribe system
supporting metadata and a query language based on RDF. We define formally the
basic concepts of our system and present detailed protocols for its operation.

1 Introduction

Consider a P2P network which manages metadata about publications, and
a user of this network, Bob, who is interested in the new publications of
some specific authors, e.g., Koubarakis and Nejdl. With conventional P2P
file sharing networks like Gnutella or Kazaa, this is really difficult, because
sending out queries which either include “Koubarakis” or “Nejdl” in the search
string will return all publications from these authors, and Bob has to filter
out the new publications each time. With an RDF-based P2P network like
Edutella [29], this is a bit easier, because Bob can formulate a query, which
includes a disjunction for the attribute dc:creator (i.e., dc:creator includes
“Nejdl” or dc:creator includes “Koubarakis”), as well as a constraint on the
date attribute (i.e., dc:date > 2003), which includes all necessary constraints
in one query and will only return answers containing publications from 2004
on. Still, this is not quite what Bob wants, because whenever he uses this
query, he will get all 2004 publications including the ones he has already seen.

What Bob really needs from his P2P file sharing network are pub-
lish/subscribe capabilities [11]:
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1. Advertising : Peers send information about the content they will publish,
for example a Hannover peer announces that it will make available all L3S
publications, including publications from Nejdl, a Crete peer announces
that it would do the same for Koubarakis’ group.

2. Subscribing : Peers send subscriptions to the network, defining the kind
of documents they want to retrieve. Bob’s profile would then express his
subscription for Nejdl and Koubarakis papers. The network might store
these subscriptions near the peers which will provide these resources, in
our case near the Hannover and the Crete peer.

3. Notifying : Peers notify the network whenever new resources become avail-
able. These resources should be forwarded to all peers whose subscription
profiles match them, so Bob should regularily receive all new publications
from Nejdl and Koubarakis.

In this chapter we will describe how to provide publish/subscribe capabili-
ties in an RDF-based P2P system, which manages arbitrary digital resources,
identified by their URI and described by a set of RDF metadata. This func-
tionality is useful in many application scenarios including distributed edu-
cational content repositories in the context of the EU/IST project ELENA
[36, 1] whose participants include e-learning and e-training companies, learn-
ing technology providers, universities and research institutes. A second ap-
plication scenario that interests us is information alert in distributed digital
library environments [23].

The organization of this chapter is as follows. The next section specifies
the formal framework for RDF-based pub/sub systems, including the lan-
guages used to express publications and subscriptions in our network. Sec-
tion 3 presents our super-peer architecture and compares it briefly with other
alternatives. Section 4 discusses the most important design aspects and op-
timizations necessary to handle large numbers of subscriptions and notifi-
cations, building upon the super-peer architecture and HyperCuP protocol
implemented in the Edutella system [29], as well as on index optimizations
recently explored in P2P-DIET [24]. Section 5 includes a short discussion of
other important features of our system, and Section 6 includes a survey of
related work. Section 7 concludes the chapter.

2 A Formalism for Pub/Sub Systems Based on RDF

In this section we formalize the basic concepts of pub/sub systems based on
RDF: advertisements, subscriptions, and notifications. We will need a typed
first-order language L. L is equivalent to a subset of the Query Exchange Lan-
guage (QEL) but has a slightly different syntax that makes our presentation
more formal. QEL is a Datalog-inspired RDF query language that is used in
the Edutella P2P network [28].

The logical symbols of L include parentheses, a countably infinite set of
variables (denoted by capital letters), the equality symbol = and the standard
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sentential connectives. The parameter (or non-logical) symbols of L include
types, constants and predicates. L has four types: U (for RDF resource identi-
fiers i.e., URI references or URIrefs), S (for RDF literals that are strings), Z
(for RDF literals that are integers), and UL (for the union of RDF resource
identifiers and RDF literals that are strings or integers). The predicates of
our language are < of type (Z,Z), w of type (S,S), and t of type (U ,U ,UL).
Predicate < will be used to compare integers, predicate w (read “contains”)
will be used to compare strings and t (read “triple”) will be used to represent
RDF triples. Following the RDF jargon, in an expression t(s, p, o), s will be
called the subject, p the predicate and o the object of the triple.

The well-formed formulas of L (atomic or complex) can now be defined as
usual. We can also define a semantics for L in the usual way. Due to space
considerations, we omit the technical details.

The following definitions give the syntax of our subscription language.

Definition 1. An atomic constraint is a formula of L in one of the following
three forms: (a) X = c where X is a variable and c is a constant of type U ,
(b) X r c where X is a variable of type Z, c is a constant of type Z and
r is one of the binary operators =, <,≤, >,≥, and (c) X w c where X is a
variable and c is a constant, both of type S. A constraint is a disjunction of
conjunctions of atomic constraints (i.e., it is in DNF form).

We can now define the notion of a satisfiable constraint as it is standard.

Definition 2. A query (subscription) is a formula of the form

X1, . . . , Xn : t(S, p1, O1) ∧ t(S, p2, O2) ∧ · · · ∧ t(S, pm, Om) ∧ φ

where S is a variable of type U , p1, . . . , pm are constants of type U , O1, . . . , Om

are distinct variables of type UL, {X1, . . . , Xn} ⊆ {S, O1, . . . , Om}, and φ is
a constraint involving a subset of the variables S, O1, . . . , Om.

The above definition denotes the class of single-resource multi-predicate
queries in QEL. This class of queries can be implemented efficiently (as we
will show in Section 4) and contains many interesting queries for P2P file
sharing systems based on RDF. It is easy to see that only join on variable
S is allowed by the above class of queries (i.e., S is a subject common to all
triples appearing in the subscription).

As it is standard in RDF literature, the triple notation utilizes qualified
names or QNames to avoid having to write long formulas. A QName contains
a prefix that has been assigned to a namespace URI, followed by a colon,
and then a local name. In this chapter, we will use the following prefixes in
QNames:

@prefix dc: <http://purl.org/dc/elements/1.1/>

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix isl: <http://www.intelligence.tuc.gr/publications/>
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Example 1. The subscription “I am interested in articles authored by Nejdl or
Koubarakis in 2004” can be expressed by the following subscription:1

X: t(X,<rdf:type>, <dc:article>) ∧ t(X,<dc:creator>,Y) ∧
t(X,<dc:date>,D) ∧(Y w "Nejdl" ∨ Y w "Koubarakis") ∧ D=2004

Let q be a query. We will use the functions schemas(q) and properties(q)
to refer to the sets of schemas (namespaces) and properties that appear in
q. For instance, if q is the query of Example 1 then schemas(q) = {dc} and
properties(q) = {< dc : article >,< dc : creator >,< dc : date >}.

Queries (subscriptions) are evaluated over sets of RDF triples. If T is a
set of RDF triples, then ans(q, T ) will denote the answer set of q when it
is evaluated over T . This concept can be formally defined as for relational
queries with constraints.

We can now define the concept of subscription subsumption that is heavily
exploited in the architecture of Section 4.

Definition 3. Let q1, q2 be subscriptions. We will say that q1 subsumes q2 iff
for all sets of RDF triples T , ans(q2, T ) ⊆ ans(q1, T ).

We now define the concept of notification: the meta-data clients send to
super-peers whenever they make available new content. Notifications and sub-
scriptions are matched at super-peers and appropriate subscribers are notified.

Definition 4. A notification n is a pair (T, I) where T is a set of ground
(i.e., with no variables) atomic formulas of L of the form t(s, p, o) with the
same constant s (i.e., a set of RDF triples with the same subject-URIref) and
I is a client identifier. A notification n = (T, I) matches a subscription q if
ans(q, T ) 6= ∅.

Notice that because URIrefs are assumed to be unique, and subscriptions and
notifications obey Definitions 2 and 4, notification matching in the architec-
ture of Section 4 takes place locally at each super-peer.

Example 2. The notification

({t(<isl:esws04.pdf>, <rdf:type>, <dc:article>),

t(<isl:esws04.pdf>, <dc:creator>, "Koubarakis"),

t(<isl:esws04.pdf>, <dc:date>, 2004)}, C3)

matches the subscription of Example 1.

We now define three progressively more comprehensive kinds of adver-
tisement. Advertisements formalize the notion of what clients or super-peers
send to other nodes of the network to describe their content in a high-level in-
tentional manner. Super-peers will match client subscriptions with advertise-
ments to determine the routes that subscriptions will follow in the architecture
of Section 4. This is formalized by the notion of “covers” below.

1Sometimes we will abuse Definition 2 and write a constant oi in the place of
variable Oi to avoid an extra equality Oi = oi in φ.
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Definition 5. A schema advertisement d is a pair (S, I) where S is a set
of schemas (constants of type U i.e., URIrefs) and I is a super-peer id. If
d = (S, I) then the expression schemas(d) will also be used to denote S. A
schema advertisement d covers a subscription q if schemas(q) ⊆ schemas(d).

Example 3. The schema advertisement ({dc, lom}, SP1) covers the sub-
scription of Example 1.

Definition 6. A property advertisement d is a pair (P, I) where P is a set of
properties (constants of type U i.e., URIrefs) and I is a super-peer identifier.
If d = (P, I) then the expression properties(d) will also be used to denote
P . A property advertisement d covers a subscription q if properties(q) ⊆
properties(d).

Example 4. The property advertisement ({<dc:article>, <dc:creator>,
<dc:date>, <dc:subject>, <lom:context>}, SP6) covers the subscription
of Example 1.

Definition 7. A property/value advertisement d is a pair ((P1, V1), . . . , (Pk, Vk)), I)
where P1, . . . , Pk are distinct properties (constants of type U i.e., URIrefs),
V1, . . . , Vk are sets of values for P1, . . . , Pk (constants of type UL) and I is a
super-peer identifier.

Definition 8. Let q be a subscription of the form of Definition 2 and d be
a property/value advertisement of the form of Definition 7. Let Y1, . . . , Yk

(1 ≤ k ≤ m) be the variables among the objects o1, . . . , om of the triples of q
that correspond to the properties P1, . . . , Pk of d. We will say that d covers a
subscription q if there exist values v1 ∈ V1, . . . , vk ∈ Vk such that the constraint
φ[Y1 ← v1, . . . , Yk ← vk] resulting from substituting variables Y1, . . . , Yk with
constants v1, . . . , vk in φ is satisfiable.

Example 5. The property/value advertisement

( (<dc:creator>, { W. Nejdl, P. Chirita}),
(<dc:title>, {"Algorithms", "Data Structures"}),
(<dc:year>, [2002, ∞]), SP1 )

covers the subscription of Example 1.

3 The Super-Peer Architecture

The algorithms that we present in this chapter are designed for super-peer
systems [45]. Thus, we assume two types of nodes: super-peers and peers. A
peer is a typical network node that wants to advertise and publish its data
and/or subscribe to data owned by others. A super-peer is a node with more
capabilities than a peer (e.g., more cpu power and bandwidth). Staying on-
line for long periods of time is another desirable property for super-peers. In
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Fig. 1. An example of a super-peer architecture

our architecture, super-peers are organized in a separate network which we
call the super-peer backbone and are responsible for processing notifications,
advertisements and subscriptions. Peers connect to super-peers in a star-like
fashion, providing content and content metadata. Each peer is connected to
a single super-peer which is its access point to the rest of the network and its
services. Once connected, a peer can disconnect, reconnect or even migrate
to a different super-peer. A high level view of this architecture is shown in
Figure 1.

Our super-peers are arranged in the HyperCuP topology. This is the so-
lution adopted in the Edutella infrastructure [28] because of its special char-
acteristics regarding broadcasts and network partitioning. An example of this
architecture is shown in Figure 2. The HyperCuP algorithm, described in [27],
is capable of organizing the super-peers of a P2P network into a binary hyper-
cube, a member of the family of Cayley graphs. Super-peers join the network
by contacting any of the already integrated super-peers which then carries
out the super-peer integration protocol. No central maintenance is necessary.
HyperCuP enables efficient and non-redundant broadcasts. For broadcasts,
each node can be seen as the root of a specific spanning tree through the
super-peer backbone, as shown in Figure 2. The topology allows for log2N
path length between any two peers and log2N number of neighbors for each
peer, where N is the total number of nodes in the network (i.e., the number
of super-peers in this case).

Super-peer architectures are usually based on a two-phase routing proto-
col, which routes messages first in the super-peer backbone and then distrib-
utes them to the peers connected to the super-peers. Super-peer based routing
can be based on different kinds of indexing and routing tables, as discussed in
[14, 29]. In the following sections we present indexing and routing mechanisms
appropriate for publish/subscribe services.

In this chapter we do not deal with the question of “Who becomes a super-
peer?”. As an example, super-peers can be centrally managed by a company
that owns and runs the overlay to offer a service (e.g., a content provider such
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Fig. 2. The HyperCuP topology and an example of a spanning tree

as Akamai). A more challenging design is that super-peers are normal peers
that either volunteer to play the role of a super-peer for a time window (i.e.,
because they will get a number of privileges as a return) or the system forces all
peers to become super-peers periodically in order to be able to use the services
of the overlay. This is an area where some interesting research has been carried
out recently e.g., [26, 31]. The authors of [31] introduce the concept of altruistic
peers, namely peers with the following characteristics, (a) they stay on line
for long periods and (b) they are willing to offer a significant portion of their
resources to speedup the performance of the network. Although [31] does not
uses the term super-peer directly, the concepts of super-peers and altruistic
peers are related: one can view altruistic peers as one kind of super-peers in
a P2P network.

Alternatives to this topology are possible, provided that they guarantee
the spanning tree characteristic of the super-peer backbone, which we exploit
for maintaining our index structures. For example, the super-peers may form
an unstructured overlay like in P2P-DIET [21]. P2P-DIET does not force any
kind of structure between super-peers. Instead it lets super-peers choose their
neighbour peers. An example is shown in Figure 3(b). A minimum weight
spanning tree is formed for each super-peer based on the algorithm presented
in [7]. Then brodcasting in the super-peer backbone takes place according to
a well-known and widely used solution, reverse path forwarding [46]. This is
a very simple technique with minimum storage requirements for the nodes
of the network. According to reverse path forwarding, a node that receives
a message will accept it only if the sender is part of the shortest path that
connects this node with the node that generated and broadcasted the original
message (the root of the message). Then, it will forward the message to all its
neighbors except the sender.

A crucial difference between an unstructured and a structured super-peer
topology is the depth of the spanning tree which is unbounded for the struc-
tured topologies but bounded for unstructured ones. The HyperCuP protocol
can limit this depth to logN by forcing the HyperCuP structure as super-
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(a) HyperCup (b) Unstructured

(c) Chord (d) Chord

Fig. 3. Various super-peer architectures

peers join or leave (see Figure 3(a)). Of course, this brings an extra cost to
the join and leave operation for the super-peers but it is a cost that we are
willing to pay given our wish for efficient query processing. The main advan-
tage of limiting the depth of the spanning tree is the low latency achieved for
broadcast operations. For example, consider the extreme case of an unstruc-
tured super-peer backbone where the super-peers form a chain. In this case,
if a super-peer at the one end of the chain decides to broadcast a message,
then the super-peer at the other end will see the message only after all other
peers have received it (i.e., after N − 1 steps). The advantage of HyperCup is
that it limits the path between any two super-peers to log2N which is much
better than the N − 1 path length of the unstructured design of the previous
example.

Another architectural choice for the super-peer backbone is to organize the
super-peers according to a distributed hash table based protocol like Chord
[37] as shown in Figure 3(c). An interesting approach is that even the peers
attached to a super-peer can be organized according to a DHT based proto-
col. An example is shown in Figure 3(d). A good discussion of such possible
architectural choices can be found in [31].
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4 Processing Advertisements, Subscriptions and
Notifications

In this section we present protocols for processing advertisements, subscrip-
tions and notifications in a super-peer based network. In addition, we discuss
the data structures and indices that a super-peer uses.

4.1 Processing Advertisements

Once a peer connects to the network, it is mandatory to advertise the kind of
resources it will offer in the future. For example, an advertisement can include
information on the schema that a peer supports. As we have already discussed,
each peer is attached to one super-peer, which is its access point to the rest
of the network. Thus, a peer constructs an advertisement and sends it to its
access point. A peer will send an advertisement again if its information needs
to be updated.

A super-peer receives advertisements from all peers that are attached to
it. A super-peer uses these advertisements to construct advertisement routing
indices that are utilized when processing subscriptions. There are three levels
of indexing: the schema level, the property (attribute) level, and the prop-
erty/value level. Each time an advertisement arrives from one of the peers,
the super-peer updates those three indices. In the following paragraphs we
give a description of each index.

Schema Index. The first level of indexing contains information on the
schema that peers support. We assume that different peers will support dif-
ferent RDF schemas and that these schemas can be uniquely identified (e.g.,
by a URI). The schema index contains zero or more schema identifiers. Each
schema identifier points to one or more peers that support this schema. As an
example of the use of this index, we can say that subscriptions are forwarded
only to peers which support the schemas used in the subscription. We discuss
about this in more detail in the next section.

Property Index. The second level of indexing is the property index.
This index is useful in cases where a peer might choose to use only part
of one or more schemas, i.e., certain properties/attributes, to describe its
content. While this is unusual in conventional database systems, it is more
often used for data stores that use semi-structured data, and very common
for RDF-based systems. In such a case, the schema index cannot be used
and indexing is done at the property level. Thus, the property index contains
properties, uniquely identified by name space/schema ID plus property name.
Each property points to one or more peers that support them.

Property/Value Index. Finally, the third index is the property/value
index. For many properties it will be advantageous to create a value index to
reduce network traffic. This case is identical to a classical database index with
the exception that the index entries do not refer to the resource, but the peer
providing it.
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Fig. 4. An example of SP/SP advertisement routing indices

We use two kinds of indices, namely the super-peer/super-peer indices
(SP/SP indices) that handle communication in the super-peer backbone and
the super-peer/peer indices (SP/P indices) that handle communication be-
tween a super-peer and all peers connected to it. These indices draw upon
our previous work for query routing, as discussed in [29], as well as further
extensions and modifications necessary for publish/subscribe services based
on [24, 21]. Except for the functionality they employ, both indices use the
same data structures, have the same update process, etc. Figure 4 shows an
example of super-peer/super-peer indices.

Let us now discuss how a super-peer reacts upon receiving an advertise-
ment. Assume a super-peer SPi that receives a new advertisement d from a
peer p which is one of the peers that are directly connected to SPi. First
the new advertisement has to be inserted in the local indices as follows. An
advertisement contains one or more elements. Each element is either a prop-
erty value pair, for example, {<dc:year>, 1900}, or a property, for example,
<dc:year> or a schema identifier, for example, <dc>. For each element e, SPi

does the following.

1. If e is a property value pair then e is inserted in the property/value index.
2. If e is just a property then it is inserted in the property index.
3. If e is just a schema identifier then it is inserted in the schema index.

After having updated the local indices, the advertisement is selectively
broadcasted from SPi to reach other super-peers. This is necessary so that
subscriptions of peers that are attached to other access points are able to
reach SPi and the peer that advertised d. Thus, for each super-peer SPx that
is a child of SPi in the spanning tree of SPi, SPi does the following. For each
element e of d, SPi checks if it has already forwarded an identical element of
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e to SPx, i.e., because of an advertisement of another peer. If this is not true
then e is forwarded to SPx.

When another super-peer, say SPy, receives a forwarded element e, it
inserts it into its local indices as described above. Then for each super-peer
SPx that is a child of SPy in the spanning tree of SPi (that originally initiated
the selective broadcast procedure), SPy checks if it has already forwarded an
identical element of e to SPx. If not, the element is forwarded to SPx.

Updating Advertisement Indices. Index updates as discussed above
are triggered when (a) a new peer connects, (b) a peer leaves the system
permanently, (c) a peer migrates to another access point, or (d) the metadata
information of a registered peer changes.

In the case of a peer joining the network, its respective metadata/schema
information are matched against the SP/P entries of the respective super-
peer. If the SP/P advertisement indices of the super-peer already contain the
peers’ metadata, only a reference to the peer is stored in them. Otherwise the
respective metadata with references to the peer are added to SP/P indices
and then are selectively broadcasted to the rest of the super-peer backbone.
If a peer leaves from a super-peer AP permanently, then all references to
this peer have to be removed from the SP/P indices of AP . If no other peer
attached to AP supports the same metadata/schema information, then AP
has to selectively broadcast a remove message to the rest of the super-peers
so believes that AP supports this schema anymore. This is done in the same
way as selectively broadcasting advertisements with the difference that now
advertisements are removed from the SP/SP indices. In the case that a peer
x migrates from an access point AP1 to an access point AP2, then AP1 acts
as if x left permanently while AP2 acts as if x just joined the network.

4.2 Processing Subscriptions

Until now we have described how a super-peer reacts upon receiving an ad-
vertisement either from a peer or from a super-peer. In this section we present
the protocol used by a peer for inserting a subscription in the network. Re-
member that the purpose of the subscription is that the subscriber peer will
receive all future matching notifications from all peers of the network.

A peer always sends a new subscription to its access point. When a super-
peer receives a subscription, it inserts it into the local subscription poset.
A subscription poset is a partially ordered set (a hierarchical structure of
subscriptions), and captures the notion of subscription subsumption defined
in Section 2. Figure 5 shows an example of a poset. Each super-peer adds to
its local subscription poset information about where the subscription came
from (either from one of the peers connected to it or from another super-
peer). The addition of super-peer information in the poset reduces the overall
network traffic and is therefore very important. The use of subscription posets
in publish/subscribe systems was originally proposed in SIENA [11].
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Fig. 5. An example of a poset

Like SIENA, our system utilizes the subscription poset to minimize net-
work traffic, i.e., super-peers do not forward subscriptions which are subsumed
by previously forwarded subscriptions. In this way, when a super-peer receives
a subscription, it inserts it into the local poset and decides whether to further
forward it in the super-peer backbone or not. If this super-peer has already
forwarded a subscription that subsumes the new one, then no forwarding takes
place. If not, then the subscription has to be forwarded to all neighbour super-
peers (according to the spanning tree of the super-peer that broadcasted the
subscription) that may have peers that will create matching notifications.
Once a super-peer has decided to send the subscription further, it will initiate
a selective broadcast procedure. This procedure depends on the advertisement
routing indices of the super-peer in the following way.

Assume a super-peer SPi that receives a new subscription q from one of
the peers that are directly connected to it. Then for each super-peer SPx that
is a child of SPi in the spanning tree of SPi, SPi performs the following steps.

1. If the local index at the property/value level contains SPx and one or
more of its advertisements cover the subscription q, i.e., the values of the
properties in an advertisement are consistent with the constraints of q,
then q is forwarded to SPx.

2. If the above is not true, then if the indices in the schema or property level
contain SPx and one or more of its advertisements cover the targeted
schema (or properties) used in the subscription q, then q is forwarded to
SPx.

When another super-peer, say SPy, receives a forwarded subscription q,
it inserts it into its local subscription poset. Then, for each super-peer SPx

that is a child of SPy in the spanning tree of SPi (that originally initiated



Designing Semantic Publish/Subscribe Networks Using Super-Peers 13

the selective broadcast procedure), SPy checks if it has already forwarded a
subscription q′ to SPx that subsumes q. If not, q is forwarded to SPx.

Forwarding subscriptions when advertisement indices are up-
dated. As we have already discussed, when a super-peer receives a subscrip-
tion q, it forwards q to a portion of its neighbor super-peers or it does not
forward it at all, according to the local subscription poset and advertise-
ment indices. However, advertisement indices may change in the future so
the following process takes place each time a new advertisement arrives to a
super-peer AP from another super-peer AP1: AP has to check if there are
one or more subscriptions in its local subscription poset that (a) cover the
new advertisement and (b) have not been forwarded towards AP1. Any found
subscriptions are sent to AP1. This is necessary to happen in order not to
ignore future matching notifications that are generated by AP1 or by other
super-peers that forward those notifications through AP1.

4.3 Processing Notifications

Let us now discuss how subscriptions are triggered by notifications. A peer
creates a notification for a new resource that it wants to make available to
other peers, and publishes the notification to the network. The goal is that
all appropriate subscriptions are triggered and their subscribers receive the
notification.

A peer always forwards a new notification to its access point. A notifica-
tion is a message that contains metadata about the new item and additional
information on the peer that makes it available, i.e., its IP address and its
identifier. The schema that is used to create a notification has to agree with
the schema that this peer has previously advertised, otherwise the protocols
cannot guarantee that all relevant subscribers will receive the notification.

When a new notification n arrives at a super-peer with a database db of
local subscriptions, the super-peer has to find all subscriptions q ∈ db that
satisfy n. This can be done as follows using ideas from SIENA [11]. The new
notification is first matched against the root subscriptions of a super-peer’s
local subscription poset. In case of a match with the subscription stored in
a root node R, the notification is further matched against the children of
R, which contain subscriptions refining the subscription from R. For each
match, the notification is sent to a group of peers/super-peers (those where
the subscription came from), thus following backwards the exact path of the
subscription. It is also possible to use more sophisticated filtering algorithms
like those in P2P-DIET [42] and those in [6, 12, 16, 19].

5 Dynamics of P2P Pub/Sub Networks

As peers dynamically join and leave the network, they may be off-line when
new resources arrive for them. These are lost if no special precautions are
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taken. In the following paragraphs, we discuss which measures are necessary
to enable peers to receive notifications that are generated when those peers
are off-line.

5.1 Offline Notifications and Rendezvous at Super-Peers

Whenever a peer A disconnects from the network, its access point AP keeps
the peer’s identification information and subscriptions for a specified period
of time, and its indices will not reflect that A has left the network. This means
that notifications for A will still arrive at AP , which has to store these and
deliver them to A after it reconnects. A peer may request a resource at the
time that it receives a notification n, or later on, using a saved notification n
on his local notifications directory.

Let us now consider the case when a peer A requests a resource r, but the
resource owner peer B is not on-line. Peer A requests the address of B directly
from AP2 (the access point of B). This is feasible since the address of AP2 is
included in r. In such a case, peer A may request a rendezvous with resource
r from AP2 with a message that contains the identifier of A, the identifier of
B, the address of AP and the location of r. When peer B reconnects, AP2
informs B that it must upload resource r to AP as a rendezvous file for peer
A. Then, B uploads r. AP checks if A is on-line and if it is, AP forwards r to
A or else r is stored in the rendezvous directory of AP and when A reconnects,
it receives a rendezvous notification from AP.

The features of off-line notifications and rendezvous take place even if
peers migrate to different access points. For example, let us assume that peer
A has migrated to AP3. The peer program understands that it is connected
to a different access point AP3, so it requests from AP any rendezvous or
off-line notifications and informs AP that it is connected to a different access
point. A receives the rendezvous and off-line notifications and updates the
variable’s previous access point with the address of AP3. Then, AP updates
its SP/P and SP/SP indices. Finally, A sends to AP3 its subscriptions and
AP3 updates its SP/P and SP/SP indices. A complete example is shown in
Figure 6.

5.2 Peer Authentication

Typically, authentication of peers in a P2P network is not crucial, and peers
connecting to the network identify themselves by just using their IP-addresses.
In a pub/sub environment, however, where we have to connect peers with their
subscriptions and want to send them all notifications relevant for them, this
leads to two problems:

• IP addresses of peers may change. Therefore the network will not be able
to deliver any notifications, which might have been stored for a peer during
its absence, after it reconnects with another IP address. Furthermore, all
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Fig. 6. An off-line notification, rendezvous and migration example

subscriptions stored in the network for this peer lose their relationship to
this peer.

• Malicious peers can masquerade as other peers by using the IP address
of a peer currently offline. They get all notifications for this peer, which
are then lost to the original peer. Moreover they can change the original
peer’s subscriptions maliciously.

We therefore have to use suitable cryptography algorithms to provide
unique identifiers for the peers in our network (see also the discussion in
[4]).

When a new peer x wants to register to the network, it generates a pair
of keys (Ex, Dx) where Ex is the public key of x (or the encryption key) and
Dx is the private key of x (or the decryption key) as in [34]. We assume that
the peer x has already found the IP address and public key of one of the
super-peers s, through some secure means e.g., a secure web site. Then, x
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securely identifies the super-peer s and if this succeeds, it sends an encrypted
message to s (secure identification and encryption are explained below). The
message contains the public key, the IP address and port of x. The super-peer
s decrypts the message and creates a private unique identifier and a public
unique identifier for x by applying the cryptographically secure hash function
SHA-1 to the concatenated values of current date and time, the IP address of
s, the current IP address of x and a very large random number. The properties
of the cryptographically secure hash function now guarantee that it is highly
unlikely that a peer with exactly the same identifiers will enter the network.
Then, s sends the identifiers to x with an encrypted message. From there on
the private identifier is included to all messages from x to its access-point and
in this way a super-peer knows who sends a message. The private identifier of
a peer is never included in messages that other peers will receive; instead the
public identifier is used. To clarify the reason why we need both public and
private identifiers we give the following example. When a peer x receives a
notification n, n contains the public identifier of the resource owner x1. When
x is ready to download the resource, it communicates with the access-point of
x1 and uses this public identifier to request the address of x1. If a peer knows
the private identifier of x then it can authenticate itself as x, but if it knows
the public identifier of x then it can only use it to request the address of x or
set up a rendezvous with a resource owned by x. All the messages that a peer
x sends to a super-peer and contain the private identifier of x are encrypted.
In this way, no other peer can read such a message and acquire the private
identifier of x.

Secure identification of peers is carried out as in [4]. A peer A can securely
identify another peer B by generating a random number r and send EB(r) to
B. Peer B sends a reply message that contains the number DB(EB(r)). Then,
peer A checks if DB(EB(r)) = r in which case peer B is correctly identified.
For example, in our system super-peers securely identify peers as described
above before delivering a notification. In this case, the super-peer starts a
communication session with a peer so it cannot be sure that the peer listens
on the specific IP address.

When a peer disconnects, its access point does not erase the public key
or identifiers of; it only erases the private identifier from the active peer list.
Later on, when the peer reconnects, it will identify itself using its private
identifier and it will send to its access point, its new IP address. In case that
the peer migrates to a different access point, it will notify the previous one, so
that it erases all information about the peer. Then, the peer securely identifies
the new access point and sends a message to it that contains the public key,
the public and the private identifiers and the new IP address of the peer. All
the above messages are encrypted since they contain the private identifier of
the peer.
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6 Related Work

In this section we review related research on pub/sub systems in the areas of
distributed systems, networks and databases.

Most of the work on pub/sub in the database literature has its origins in
the paper [17] by Franklin and Zdonik who coined the term selective dissem-
ination of information (SDI). Their preliminary work on the system DBIS
appears in [6]. Another influential system is SIFT [43, 44] where publications
are documents in free text form and queries are conjunctions of keywords.
SIFT was the first system to emphasize query indexing as a means to achieve
scalability in pub/sub systems [43]. Later on, similar work concentrated on
pub/sub systems with data models based on attribute-value pairs and query
languages based on attributes with comparison operators (e.g., Le Subscribe
[16], the monitoring subsystem of Xyleme [30] and others). [10] is also no-
table because it considers a data model based on attribute-value pairs but
goes beyond conjunctive queries – the standard class of queries considered by
other systems [16]. More recent work has concentrated on publications that
are XML documents and queries that are subsets of XPath or XQuery (e.g.,
XFilter [25], YFilter [15], Xtrie [12] and xmltk [19]). All these papers discuss
sophisticated filtering algorithms based on indexing queries.

In the area of distributed systems and networks various pub/sub systems
have been developed over the years. Researchers have utilized here various
data models based on channels, topics and attribute-value pairs (exactly like
the models of the database papers discussed above) [11]. The latter systems
are usually called content-based because attribute-value data models are flexi-
ble enough to express the content of messages in various applications. Work in
this area has concentrated not only on filtering algorithms as in the database
papers surveyed above, but also on distributed pub/sub architectures [5, 11].
SIENA [11] is probably the most well-known example of system to be devel-
oped in this area. SIENA uses a data model and language based on attribute-
value pairs and demonstrates how to express notifications, subscriptions and
advertisements in this language. From the point of view of this paper, a very
important contribution of SIENA is the adoption of a P2P model of interac-
tion among servers (super-peers in our terminology) and the exploitation of
traditional network algorithms based on shortest paths and minimum-weight
spanning trees for routing messages. SIENA servers additionally utilize par-
tially ordered sets encoding subscription and advertisement subsumption to
minimize network traffic. The core ideas of SIENA have recently been used in
the pub/sub systems DIAS [23] and P2P-DIET [2, 24, 21] but now the data
models utilized were inspired from Information Retrieval. DIAS and P2P-
DIET have also emphasized the use of sophisticated subscription indexing at
each server to facilitate efficient forwarding of notifications [42]. In some sense,
the approach of DIAS and P2P-DIET puts together the best ideas from the
database and distributed systems tradition in a single unifying framework.
Another important contribution of P2P-DIET is that it demonstrates how to
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support by very similar protocols the traditional ad-hoc or one-time query
scenarios of standard super-peer systems [45] and the pub/sub features of
SIENA [11].

With the advent of distributed hash-tables (DHTs) such as CAN [33],
CHORD [37] and Pastry [3], a new wave of pub/sub systems based on DHTs
has appeared. Scribe [35] is a topic-based publish/subscribe system based on
Pastry [3]. Hermes [32] is similar to Scribe because it uses the same underlying
DHT (Pastry) but it allows more expressive subscriptions by supporting the
notion of an event type with attributes. Each event type in Hermes is managed
by an event broker which is a rendezvous node for subscriptions and publi-
cations related to this event. Related ideas appear in [38] and [39]. PeerCQ
[18] is another notable pub/sub system implemented on top of a DHT in-
frastructure. The most important contribution of PeerCQ is that it takes into
account peer heterogeneity and extends consistent hashing [22] with simple
load balancing techniques based on appropriate assignment of peer identifiers
to network nodes.

Meghdoot [20] is a very recent pub/sub system implemented on top of a
CAN-like DHT [33]. Meghdoot supports an attribute-value data model and
offers new ideas for the processing of subscriptions with range predicates (e.g.,
the price is between 20 and 40 Euros) and load balancing. A P2P system with
a similar attribute-value data model that has been utilized in the implemen-
tation of a publish-subscribe system for network games is Mercury [8]. Two
other recent proposals on publish/subscribe using DHTs is DHTrie [41] and
LibraRing [40]. These works use the same data models with P2P-DIET and
concentrate on publish/subscribe functionality for information retrieval and
digital library applications.

In the area of RDF-based P2P systems, Min Cai et. al. have also re-
cently studied publish/subscribe systems for RDF [9] using essentially the
same query language as this chapter and our original paper [13]. The ap-
proach of [9] is complementary to ours since their design builds on Chord. It
would be interesting to compare experimentally the algorithms of this paper
and the algorithms of [9] in more detail.

7 Conclusions

Publish/subscribe capabilities are a necessary extension of the usual query
answering capabilities of P2P networks, and enable us to efficiently receive
answers to long-standing queries over a given period of time, even if peers
connect to and disconnect from the network during this period.

In this chapter we have discussed how to incorporate publish/subscribe
capabilities in an RDF-based P2P network, specified a formal framework for
this integration, including appropriate subscription and advertisement lan-
guages, and described how to optimize the processing of subscriptions and
notifications handling in this network.
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Further work will include the full integration of these capabilities into our
existing P2P prototypes Edutella and P2P-DIET, as well as further investi-
gations for extending the query language in this chapter with more expressive
relational algebra and IR operators, while still maintaining efficient subscrip-
tion/notification processing.
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