
P2P-DIET: Ad-hoc and Continuous Queries in
Peer-to-Peer Networks using Mobile Agents?

Stratos Idreos and Manolis Koubarakis

Intelligent Systems Laboratory
Dept. of Electronic and Computer Engineering

Technical University of Crete
GR73100 Chania, Crete, Greece

{sidraios, manolis}@intelligence.tuc.gr

Abstract. This paper presents P2P-DIET, a resource sharing system
that unifies ad-hoc and continuous query processing in super-peer net-
works using mobile agents. P2P-DIET offers a simple data model for the
description of network resources based on attributes with values of type
text. It also utilizes very efficient query processing algorithms based on
indexing of resource metadata and queries. The capability of location-
independent addressing is supported, which enables P2P-DIET clients
to connect from anywhere in the network and use dynamic IP addresses.
The features of stored notifications and rendezvous guarantee that all
important information is delivered to interested clients even if they have
been disconnected for some time. P2P-DIET has been developed on top
of the Open Source mobile agent system DIET Agents and is currently
been demonstrated as a file sharing application.

1 Introduction

In peer-to-peer (P2P) systems a very large number of autonomous computing
nodes (the peers) pool together their resources and rely on each other for data and
services. P2P systems are application level virtual or overlay networks that have
emerged as a natural way to share data and resources. Popular P2P data sharing
systems such as Napster, Gnutella, Freenet, KaZaA, Morpheus and others have
made this model of interaction popular.

The main application scenario considered in recent P2P data sharing systems
is that of ad-hoc querying: a user poses a query (e.g., “I want music by Moby”)
and the system returns a list of pointers to matching files owned by various
peers in the network. Then, the user can go ahead and download files of interest.
The complementary scenario of selective information dissemination (SDI) or
selective information push [8] has so far been considered by few P2P systems [1,
10]. In an SDI scenario, a user posts a continuous query to the system to receive
notifications whenever certain resources of interest appear in the system (e.g.,

? This work was carried out as part of the DIET project (IST-1999-10088), within the
UIE initiative of the IST Programme of the European Commission.

ad-hoc / continuous query

resource metadata

notification /answer

rendezvous /
stored notification

TCP/IP
P2P-DIET CP

request / send resource

(a)

Client Application Specific Agents

Agent Communication Protocols Extensions

Filtering Algorithms

Application Language

Agent Communication Protocols

Profile/Resource/Notification Directories

Routing mechanism

Network topology

Fault-tolerance mechanism

Application
Layer

Core Layer

DIET Agents Platform
DIET Layer

Graphic User Interface

(b)

Fig. 1. The architecture and the layered view of P2P-DIET

when a song of Moby becomes available). SDI can be as useful as ad-hoc querying
in many target applications of P2P networks ranging from file sharing, to more
advanced applications such as alert systems for digital libraries, e-commerce
networks etc.

At the Intelligent Systems Laboratory of the Technical University of Crete,
we have recently concentrated on the problem of SDI in P2P networks in the
context of project DIET1. Our work, summarized in [9], has culminated in
the implementation of P2P-DIET, a service that unifies ad-hoc and continu-
ous query processing in P2P networks with super-peers. Conceptually, P2P-
DIET is a direct descendant of DIAS, a distributed information alert system
for digital libraries, that was presented in [10] but was never implemented.
P2P-DIET combines ad-hoc querying as found in other super-peer networks
[2] and SDI as proposed in DIAS. P2P-DIET goes beyond DIAS in offering
many new features discussed above: client migration, dynamic IP addresses,
stored notifications and rendezvous, simple fault-tolerance mechanisms, mes-
sage authentication and encryption. P2P-DIET has been implemented on top
of the open source DIET Agents Platform2[3] and it is currently available at
http://www.intelligence.tuc.gr/p2pdiet. This paper concentrates on the
architecture, functionality and agents of P2P-DIET.

A high-level view of the P2P-DIET architecture is shown in Figure 1 (a).
There are two kinds of nodes: super-peers and clients. All super-peers are equal
and have the same responsibilities, thus the super-peer subnetwork is a pure
P2P network (it can be an arbitrary undirected graph). Each super-peer serves
a fraction of the clients and keeps indices on the resources of those clients.

Clients can run on user computers. Resources (e.g., files in a file-sharing
application) are kept at client nodes, although it is possible in special cases to
store resources at super-peer nodes. Clients are equal to each other only in terms
of download. Clients download resources directly from the resource owner client.
1 http://www.dfki.de/diet
2 http://diet-agents.sourceforge.net/

2

A client is connected to the network through a single super-peer node, which is
the access point of the client. It is not necessary for a client to be connected to
the same access point continuously since client migration is supported in P2P-
DIET. Clients can connect, disconnect or even leave from the system silently
at any time. To enable a higher degree of decentralization and dynamicity, we
also allow clients to use dynamic IP addresses. Thus, a client is identified by an
identifier and public key (created when a client bootstraps) and not by its IP-
address. Super-peers the keep the client’s identification information and resource
metadata for a period of time when a client disconnects. In this way, the super-
peer is able to answer queries matching those resource metadata even if the owner
client is not on-line. Finally, P2P-DIET provides message authentication and
message encryption using PGP technology. For details on the network protocols
and implementation see [6].

The rest of the paper is organized as follows. Section 2 presents the meta-
data model and query language used for describing and querying resources in
the current implementation of P2P-DIET. Section 3 discusses the protocols for
processing queries, answers and notifications. Section 4 discusses other inter-
esting functionalities of P2P-DIET. Section 5 discusses the implementation of
P2P-DIET using mobile agents. Finally, Section 6 presents our conclusions.

2 Data models and query languages

In [10] we have presented the data model AWPS, and its languages for speci-
fying queries and textual resource metadata in SDI systems such as P2P-DIET.
AWPS is based on the concept of attributes with values of type text. The query
language of AWPS offers Boolean and proximity operators on attribute values
as in the Boolean model of Information Retrieval (IR) [5]. It also allows textual
similarity queries interpreted as in the vector space model of IR [11].

The current implementation of P2P-DIET supports only conjunctive queries
in AWPS. The following examples of such queries demonstrate the features of
AWPS and its use in an SDI application for a digital library:

AUTHOR w Smith ∧ TITLE w (peer-to-peer ∨
(selective ≺[0,0] dissemination ≺[0,3] information))

AUTHOR w Smith ∧
ABSTRACT ∼0.8 “Peer-to-peer architectures have been...”

The data model AWPS is attractive for the representation of textual meta-
data since it offers linguistically motivated concepts such as word and traditional
IR operators. Additionally, its query language is more expressive than the ones
used in earlier SDI systems such as SIFT [11] where documents are free text
and queries are conjunctions of keywords. On the other hand, AWPS can only
model resource metadata that has a flat structure, thus it cannot support hierar-
chical documents as in the XML-based models of [4]. But notice that IR-inspired
constructs such as proximity and similarity cannot be expressed in the query lan-
guages of [4] and are also missing from W3C standard XML query languages

3

XQuery/XPath. The recent W3C working draft3 is expected to pave the way for
the introduction of such features in XQuery/XPath. Thus our work on AWPS
can be seen as a first step in the introduction of IR features in XML-based
frameworks for SDI.

3 Routing and Query Processing

P2P-DIET targets content sharing applications such as digital libraries [10],
networks of learning repositories [12] and so on. Assuming that these applications
are supported by P2P-DIET, there will be a stakeholder (e.g., a content provider
such as Akamai) with an interest in building and maintaining the super-peer
subnetwork. Thus super-peer subnetworks in P2P-DIET are expected to be more
stable than typical pure P2P networks such as Gnutella. As a result, we have
chosen to use routing algorithms appropriate for such networks.

P2P-DIET implements routing of queries (ad-hoc or continuous) by utilizing
minimum weight spanning trees for the super-peer subnetwork, a poset data
structure encoding continuous query subsumption as originally suggested in [1],
and data and query indexing at each super-peer node. Answers and notifications
are unicasted through the shortest path that connects two super-peers.

3.1 Ad-hoc querying

P2P-DIET supports the typical ad-hoc query scenario. A client A can post a
query q to its access point AP. AP broadcasts q to all super-peers through
its minimum weight spanning tree. Answers are produced for all matching net-
work resources and are returned to the access point AP that originated the
query through the shortest path that connects the super peer that generated
the answer with AP (unicasting). Finally, AP passes the answers to A for fur-
ther processing. Answers are produced for all matching resources regardless of
whether owning resource clients are on-line or not, since super-peers do not erase
resource metadata when clients disconnect (see Section 4).

Each super-peer can be understood to store a relation

resource(ID, A1, A2, . . . , An)

where ID is a resource identifier and A1, A2, . . . , An are the attributes known to
the super-peer network. In our implementation, relation resource is implemented
by keeping an inverted file index for each attribute Ai. The index maps every
word w in the vocabulary of Ai to the set of resource IDs that contain word w
in their attribute Ai. Query evaluation at each super-peer is then implemented
efficiently by utilizing these indices in the standard way.

3 http://www.w3.org/TR/xmlquery-full-text-use-cases

4

5

2

6

A
B

1

1. A connects to AP1
2. A subscribes to AP1 with a continuous query q
3. AP1 broadcsats q to all super-peers
4. A disconnects from AP1
5. B connects to AP3
6. B publishes a resource r
7. AP3 generates a notification n for A and
 unicasts n to AP1
8. A connects to AP2 (migration)
9. A requests stored data from AP1
10. AP1 sends the stored notification n to A
11. AP2 request resource metadata from A
12. B disconnects from AP3
13. A requests address of B from AP3

7

8

12

13

14

15

11

16

14. AP3 replies that B is disconnected
15. A requests from AP3 to arrange a
 rendezvous with r
16. A disconnects from AP2
17. B connects to AP4 (migration)
18. B requests stored data from AP3
19. AP3 informs client B that it must upload r
 to AP2
20. B sends r to AP2
21. A connects to AP5 (migration)
22. A requests stored data from AP2
23. AP2 sends the rendezvous notification to A
24. A requests to download r from AP2
25. AP2 sends r to A

AP1

AP2

AP5

AP3

AP4

A

B

3

3
3

4

79

10

17

18
19

2021

22

24

23

25

Fig. 2. A stored notification and rendezvous example

3.2 Continuous queries

SDI scenarios are also supported. Clients may subscribe to their access point
with a continuous query expressing their information needs. Super-peers then
forward posted queries to other super-peers. In this way, matching a query with
metadata of a published resource takes place at a super-peer that is as close as
possible to the origin of the resource.

Whenever a resource is published, P2P-DIET makes sure that all clients with
continuous queries matching this resource’s metadata are notified. Notifications
are generated at the access point where the resource was published, and travel
to the access point of every client that has posted a continuous query matching
this notification following the reverse path that was set by the propagation of
the query.

We expect P2P-DIET networks to scale to very large numbers of clients, pub-
lished resources and continuous queries. To achieve this, we utilize the following
data structures at each super-peer:

– A partially ordered set (called the continuous query poset) that keeps track
of the subsumption relations among the continuous queries posted to the
super-peer by its clients or forwarded by other super-peers. This poset is
inspired by SIENA [1]. We can also have it in P2P-DIET because the relation
of subsumption in AWPS is reflexive, anti-symmetric and transitive i.e., a
(weak) partial order. Like in SIENA, P2P-DIET utilizes the continuous query
poset to to minimize network traffic: in each super-peer no continuous query
that is less general than one that has already been processed is actually
forwarded.

– A sophisticated index over the continuous queries managed by the super-
peer. This index is used to solve the filtering problem: Given a database of
continuous queries db and a notification n, find all queries q ∈ db that match
n and forward n to the neighbouring super-peers or clients that have posted
q.

5

4 Stored notifications and rendezvous at super-peers

Clients may not be online all the time, thus we can not guarantee that a client
with a specific continuous query will be available at the time that matching
resources are added to the network and relevant notifications are generated. Mo-
tivated by our target applications (e.g., digital libraries or networks of learning
repositories), we do not want to ignore such situations and allow the loss of
relevant notifications.

Assume that a client A is off-line when a notification n matching its contin-
uous query is generated and arrives to its access point AP. AP checks if A is
on the active client list. If this is true then n is forwarded to A, otherwise n is
stored in the stored notifications directory of AP. Notification n is delivered to
A by AP next time A connects to the network.

A client may request a resource at the time that it receives a notification
n, or later on using a saved notification n on his local notifications directory.
Consider the case when a client A requests a resource r, but the resource owner
client B is not on-line. A requests the address of B from AP2 (the access point of
B). A may request a rendezvous with resource r from AP2 with a message that
contains the identifiers of A and B, the address of AP and the path of r. When
B reconnects, AP2 informs B that it must upload r to AP as a rendezvous file
for A. Then, B uploads r. AP checks if A is on-line and if it is, AP forwards r to
A or else r is stored in the rendezvous directory of AP and when A reconnects,
it receives a rendezvous notification from AP.

The features of stored notifications and rendezvous take place even if clients
migrate to different access points. For example, let us assume that A has mi-
grated to AP3. The client agent understands that, and requests from AP any
rendezvous or notifications. A updates the variable previous access point with
the address of AP3. AP deletes A form its client list, removes all resource meta-
data of A from the local resource metadata database and removes the continuous
queries of A from the poset. Finally, A sends to AP3 its resource metadata and
continuous queries. A complete example is shown in Figure 2.

5 Agents of P2P-DIET

The implementation of P2P-DIET makes a rather simple use of the DIET Agents
concepts environment, world and infohabitant. Each super-peer and each client
occupy a different world, and each such world consists of a single environment.
All the worlds together form the P2P-DIET universe. However, the P2P-DIET
implementation makes heavy use of all the capabilities of lightweight mobile
agents offered by the platform to implement the various P2P protocols. Such
capabilities are agent creation, cloning and destruction, agent migration, local
and remote communication between agents etc.

6

Data Management Agent
Fault

Tolerance
Agent

P
ro

fil
es

M
et

ad
at

a

N
ot

ifi
ca

tio
ns

Super peers Client peers

Client Peer - Super Peer
Communication Protocol

Messenger
Pool

XML Reader - XML Printer - XML Parser

Super-Peer Evnironment

DIET Universe

Super Peer - Client Peer
Communication Protocol

Super Peer - Super Peer
Communication Protocol

Notification
Carrier

R
en

de
zv

ou
s

Client Information

Profile Hierarchy

Clock Agent

Online client peers

Neighbors

Query Answering
Agent

Subscriber

Are-You-Alive
Agent

RouterShortest Path Table Spanning TreeTable

(a)

G
U
I

Client Agent
Interface

Agent

R
es

ou
rc

es

M
et

ad
at

a

N
ot

ifi
ca

tio
ns

Super peers Client peers

Client Peer -Super Peer
Communication Protocol

Messenger
Pool

XML Reader - XML Printer - XML Parser

Client-Peer Evnironment

DIET Universe

Super Peer - Client Peer
Communication Protocol

Client Peer - Client Peer
Communication Protocol

Subscriber

Query Answering
Agent

Notification Carrier user

(b)

Fig. 3. A Super-Peer Environment and a Client Peer Environment

5.1 The super-peer environment

A world in a super-peer node consists of a single super-peer environment, where
10 different types of agents live. A super-peer environment is shown in Figure 3
(a).

The data management agent is the agent with the greatest number of respon-
sibilities in the P2P-DIET universe. This agent manages the local database of
peer meta-data, resource meta-data, continuous queries and their indices. More-
over, it arranges rendezvous and stores notifications and rendezvous files. The
data management agent can create notification carriers and messengers (these
agents will carry out the tasks discussed below).

The router is responsible for the correct flow of messages in the network.
It holds the shortest path table and the spanning tree table of the local super-
peer. Mobile agents travel around the network using information from the local
Router on each super-peer environment where they arrive. The make routing
paths scheduler is a very lightweight agent that decides when it is the right time
for the router to update its routing paths when the network is in an unstable
condition.

A subscriber is a mobile agent that is responsible for subscribing continuous
queries of clients to super-peers. To subscribe a continuous query q of client
C, a subscriber S starts from the environment of C. Then, it migrates to all
super-peers of the network to subscribe q and to find any resource meta-data
published earlier that match q. S will start from the super-peer environment of
the access point A of C and it will reach all super-peers through the minimum-
weight spanning tree of A. Whenever a subscriber finds any resource metadata
matching its continuous query in a super-peer environment B, it clones itself. The
clone returns to the environment of C to deliver the notification by travelling
towards super-peer A through the shortest path that connects B and A. The

7

original subscriber will continue in order to visit the rest of the super-peers of
the network. A subscriber agent destroys itself when it returns to the client-peer
environment with a notification. A subscriber can also destroy itself away from
its starting client environment when it is on a remote super-peer environment
with no notifications to deliver and no more super-peers to visit.

A notification carrier is a mobile agent that is responsible for delivering
notifications. A notification carrier may start from a super-peer environment SP
and travel along the shortest path to the environment of super-peer AP and from
there migrates to the environment of client C if C is online. Note, that it is not
possible for the notification carrier to travel directly to the client environment
for two reasons. First, the super-peer SP does not know the IP address of C.
Second, the notification must arrive to environment AP because more than one
clients may have continuous queries that match the notification. A notification
carrier destroys itself after it has delivered the notification to the client or when
it arrives to the access point of the client and the client is not online.

A query answering agent is a mobile agent that answers queries. The query-
answering agent that finds the answers to query q of client C starts from the
environment of C. Then, it migrates to all super-peers of the network to search
for answers to q. It will start from the super-peer environment of the access point
A of C and it will reach all super-peers through the minimum-weight spanning
tree of A. Each time, it finds any resource metadata matching q in a super-peer
environment B, it clones itself. The clone returns to the environment of client C
to deliver the answer by travelling towards super-peer A through the shortest
path that connects B and A. The original query-answering agent will continue
in order to visit the rest of the super-peers of the network to search for answers
to q. A query-answering agent destroys itself when it returns to the client-peer
environment with an answer. A special case that a query-answering agent will
destroy itself away from its starting client-peer environment, is when it is on
a remote super-peer environment with no answers and no more super-peers to
visit.

A messenger is a mobile agent that implements remote communication be-
tween agents in different worlds. A messenger is a very lightweight agent that
will migrate to a remote environment and deliver a message to a target agent.
We need Messengers to support simple jobs i.e, just send a message to a remote
agent. For example, consider the case that a client agent sends a connect or
disconnect message to its access point. In this way, we do not create a new
type of agent for each simple job that is carried out by our system. Messengers
can be used to support new simple features that require remote communication.
Each environment has a messenger pool. When a messenger arrives at an envi-
ronment, it delivers the message and stays in the pool, if there is space. In this
way, when an agent wants to send a remote message, it assigns the message to a
messenger from the pool unless the pool is empty, in which case a new messenger
will be created.

Subscribers, notification carriers, query-answering agents and messengers use
information from the local router on each super-peer environment that they

8

arrive in order to find the address of their next destination. They use shortest
paths and minimum weight spanning trees to travel in the pure peer-to-peer
network of super-peers. In this way, they may ask two types of questions to a
router:

– I want to migrate to all super-peers and I started from super-peer X. The
answer of the local router to this question are the IP addresses of remote the
super-peers that are children in the minimum weight spanning tree of the
local super-peer.

– I want to migrate to super-peer X. The answer of the local router to this
question is the IP address of the remote super-peer that is its neighbor and is
in the shortest path from the local super-peer to the destination super-peer
X.

The fault-tolerance agent is responsible for periodically checking the clients
agents, that are supposed to be alive and are served by this super-peer. The
agents of the neighbor super-peers are checked too, to guarantee connectivity.
The fault-tolerance agent can create are-you-alive agents. A useful heuristic in
P2P-DIET, is that a fault-tolerance agent does not check a node x (client or
super-peer) if x has sent any kind of message during the last period of checks
(there is no need to ensure that x is alive in this case). An are-you-alive agent is
a mobile agent that is sent by the fault-tolerance agent to a remote client-peer
environment or super-peer environment to check whether the local agents are
alive or not. An are-you-alive agent will return to its original environment with
the answer. In each super-peer environment there is an are-you-alive agent pool
where agents wait for the local fault-tolerance agent to assign them a remote en-
vironment to check. All are-you-alive agents return to their original environment
to inform the local fault-tolerance agent on the status of the remote environment
that they checked and then they stay in the local are-you-alive agent pool. The
clock agent is the scheduler for the fault-tolerance agent. It decides when it is
the right time to send messages or to check for replies.

5.2 The client-peer environment

The world in the client-peer nodes has a client-peer environment. The client
agent is the agent that connects the client-peer environment with the rest of the
P2P-DIET universe. It communicates, through mobile agents, with the super-
peer agent that is the access point or any other remote client agents. The client
agent sends the following data to the remote super-peer agent of the access
point: the continuous query of the client, the metadata of the resources, the
queries, the requests for rendezvous etc. The client agent can create Subscribers,
query-answering agents and messengers. Figure 3 (b), shows all the agents in
the client-peer environment. Additionally, an interface agent is responsible for
forwarding the demands of the user to the client agent and messages from the
client agent to the user. A messenger, query-answering agent, notification carrier
and subscriber may inhabit a client-peer environment and are exactly the same
as the agents that inhabit the super-peer environments.

9

6 Conclusions

We have presented the design of P2P-DIET, a resource sharing system that uni-
fies ad-hoc and continuous query processing in P2P networks with super-peers.
P2P-DIET has been implemented using the mobile agent system DIET Agents
and has demonstrated the use of mobile agent systems for the implementation
of P2P applications. Currently we are working on implementing the query and
SDI functionality of P2P-DIET on top of a distributed hash table like Chord
[7] and compare this with our current implementation. We are also working on
more expressive resource description and query languages e.g., such as the ones
based on RDF and currently used in EDUTELLA [12].

References

1. A. Carzaniga and D. S. Rosenblum and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM TCS, 19(3):332–383, August 2001.

2. B. Yang and H. Garcia-Molina. Designing a super-peer network. In Proc. of ICDE
2003, March 5–8 2003.

3. C. Hoile and F. Wang and E. Bonsma and P. Marrow. Core specification and
experiments in diet: a decentralised ecosystem-inspired mobile agent system. In
Proc. of AAMAS 2002, pages 623–630, July 15–19 2002.

4. C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient Filtering of XML
Documents with XPath Expressions. In Proc. of ICDE 2002, pages 235–244, Febru-
ary 2002.

5. C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. Predicate Rewriting for Trans-
lating Boolean Queries in a Heterogeneous Information System. ACM TIS, 17(1):1–
39, 1999.

6. S. Idreos and M. Koubarakis. P2P-DIET: A Query and Notification Service Based
on Mobile Agents for Rapid Implementation of P2P Applications. Technical Re-
port TR-TUC-ISL-2003-01, Intelligent Systems Laboratory, Dept. of Electronic
and Computer Engineering, Technical University of Crete, June 2003.

7. I. Stoica and R. Morris and D. Karger and M. F. Kaashoek and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In Proc.
of ACM SIGCOMM 2001, San Diego, California, August 2001.

8. M. J. Franklin and S. B. Zdonik. “Data In Your Face”: Push Technology in Per-
spective. In Proc. ACM SIGMOD 1998, pages 516–519, 1998.

9. M. Koubarakis and C. Tryfonopoulos and S. Idreos and Y. Drougas. Selective
Information Dissemination in P2P Networks: Problems and Solutions. ACM SIG-
MOD Record, Special issue on Peer-to-Peer Data Management, K. Aberer (editor),
32(3), September 2003.

10. M. Koubarakis and T. Koutris and P. Raftopoulou and C. Tryfonopoulos. Informa-
tion Alert in Distributed Digital Libraries: The Models, Languages and Architec-
ture of DIAS. In Proc. of ECDL 2002, volume 2458 of Lecture Notes in Computer
Science, pages 527–542, September 2002.

11. T.W. Yan and H. Garcia-Molina. The SIFT information dissemination system.
ACM TDS, 24(4):529–565, 1999.

12. W. Nejdl and B. Wolf and Changtao Qu and S. Decker and M. Sintek and A.
Naeve and M. Nilsson and M. Palmer and T. Risch. Edutella: A P2P Networking
Infrastructure Based on RDF. In Proc. of WWW-2002. ACM Press, 2002.

10

