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ABSTRACT
This paper studies the problem of evaluating continuous
multi-way joins on top of Distributed Hash Tables (DHTs).
We present a novel algorithm, called recursive join (RJoin),
that takes into account various parameters crucial in a dis-
tributed setting i.e., network traffic, query processing load
distribution, storage load distribution etc. The key idea of
RJoin is incremental evaluation: as relevant tuples arrive
continuously, a given multi-way join is rewritten continu-
ously into a join with fewer join operators, and is assigned
continuously to different nodes of the network. In this way,
RJoin distributes the responsibility of evaluating a contin-
uous multi-way join to many network nodes by assigning
parts of the evaluation of each binary join to a different
node depending on the values of the join attributes. The ac-
tual nodes to be involved are decided by RJoin dynamically
after taking into account the rate of incoming tuples with
values equal to the values of the joined attributes. RJoin also
supports sliding window joins which is a crucial feature, es-
pecially for long join paths, since it provides a mechanism to
reduce the query processing state and thus keep the cost of
handling incoming tuples stable. In addition, RJoin is able
to handle message delays due to heavy network traffic. We
present a detailed mathematical and experimental analysis
of RJoin and study the performance tradeoffs that occur.

1. INTRODUCTION
We study the problem of evaluating continuous multi-way

equi-joins on top of DHTs. Equi-join query processing over
DHTs has been studied in the past in [15, 18] by exploiting
hashing techniques. In [15, 16], the authors perform a study
of one-time query processing over DHTs by evaluating exist-
ing distributed equi-join algorithms using the PIER query
processor. These papers focus on one-time query processing
leaving open the extension to the more challenging case of
continuous queries. Thus, the most relevant previous work
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is [18] where we proposed and evaluated four algorithms for
two-way continuous equi-joins, but left open the problem of
the general case of multi-way continuous equi-joins. This
is the main question we study in this paper, and make the
following contributions.

First, we present algorithm RJoin (recursive join) for the
evaluation of continuous multi-way joins on top of DHTs
(for simplicity, in the rest of the paper the term “join” will
refer to equi-join). Our paper is the first one to present a
comprehensive solution to this open problem by generalizing
and extending the techniques of [18]. The key idea of RJoin
is to achieve good balancing of the query processing load by
evaluating a multi-way join incrementally. As relevant tu-
ples arrive continuously, RJoin rewrites a given multi-way
join continuously into joins with fewer join operators and
assigns these joins to different nodes of the network. The
answer to the original query is the union of the answers of
the rewritten queries. Thus, RJoin distributes the responsi-
bility of evaluating a multi-way join to many network nodes
by assigning parts of the evaluation of each binary join to a
different node depending on the values of join attributes.

In addition to being an extension of the main ideas of [18],
RJoin has a number of nice properties that are crucial for
the multi-way joins case. First, RJoin is capable of evaluat-
ing sliding window joins. Our approach requires only local
computations with zero overhead in terms of network traffic,
and is flexible enough to allow a continuous query to define
its own window duration, window type (sliding/tumbling)
and finally whether the window duration is defined by the
number of incoming tuples or by elapsed time. Window re-
strictions, in addition to more expressive queries, provide the
means for efficient garbage collection/status reduction. This
is of great importance, especially in join queries with long
join paths, to keep resource usage at a steady level. RJoin
can also handle message delays, e.g., due to heavy network
traffic, gracefully without losing answers. Furthermore, it
can support both set and bag semantics.

We present a formal analysis of the properties of RJoin.
We show that RJoin is sound, enjoys a property of “eventual
completeness” (a property similar to eventual consistency as
known in distributed systems) under certain assumptions
regarding the dynamism of the network, and does not gen-
erate any duplicate answers. Note that such mathematical
analysis is absent from related papers [15, 18] where “best
effort” query processing is assumed.

Finally, we show how to take into account appropriate en-
vironment parameters in order to choose suitable distributed
query plans. The actual nodes to be involved in query pro-



cessing are decided by RJoin on-line after taking into ac-
count the rate of incoming tuples with values equal to the
values of the joined attributes. In this way, a suitable query
plan is selected that minimizes network traffic. This is very
important in the case of multi-way joins since a bad plan
(especially for long join paths) can lead to huge amounts of
network traffic and query processing load. We present a de-
tailed experimental analysis of the techniques used by RJoin
and a discussion of the various tradeoffs that occur.

The rest of the paper is organized as follows. In Section 2,
we present our assumptions regarding the network model we
will use, and define an appropriate notion of continuous re-
lational query evaluation under this model. In Section 3, we
introduce algorithm RJoin and discuss its formal properties
in Section 4. In Section 5, we show how RJoin supports
sliding window joins. In Section 6, we discuss how RJoin
takes into account the rates of incoming tuples to improve
its query plans while Section 7 presents optimization tech-
niques for minimizing network traffic. Section 8 presents a
detailed experimental analysis. Finally, Section 9 discusses
related work and Section 10 concludes the paper.

2. SYSTEM MODEL AND DATA MODEL
System Model. We assume an overlay network where
nodes are organized according to a DHT protocol. Nodes
can insert data and pose continuous queries. In our exam-
ples and experiments we use Chord [25] due to its simplicity
and popularity. However, our proposal is DHT-agnostic, i.e.,
it can be applied on top of any DHT protocol since we only
use the lookup API supported by all DHTs.

Let us briefly describe the Chord protocol. Each node
n in Chord owns a unique key, denoted by Key(n). Each
item i also has a key, Key(i). Consistent hashing is used to
map keys to identifiers. Nodes and items are assigned m-bit
identifiers (large enough to avoid collisions). Identifiers are
created by hashing keys using a cryptographic hash func-
tion, such as SHA-1 or MD5. Function Hash(k) returns the
identifier of a key k. Identifiers are ordered in an identifier
circle (ring) modulo 2m i.e., from 0 to 2m − 1. A key k with
identifier id = Hash(k) is assigned to the first node n which
is equal or follows id clockwise in the identifier space. Node
n is the successor node of id, denoted by Successor(id). We
will often say that n is responsible for k. In a network of N
nodes, a query for locating the node responsible for a key
can be done in O(log N) steps with high probability [25].

Chord is able to deal gracefully with network dynamism
i.e., nodes joining, failing or leaving voluntarily. Under cer-
tain assumptions stated explicitly in [25], the Chord proto-
cols guarantee that a Chord network is robust in the pres-
ence of node joins, failures or voluntary leaves, and it will
eventually reach stability so that each node will be able to
contact any other node by using successor pointers. We
make use of these assumptions of Chord in Section 4 to char-
acterize formally the behavior of RJoin.

As in [6], we assume a relaxed asynchronous model of dis-
tributed systems where there are known upper bounds on
process execution speeds, message transmission delays and
clock drift rates. Thus, there is a universal maximum delay
δ such that a message at time t at a node n will reach an
alive destination node n′ by time t + δ.

RJoin uses the following API (originally used in [18]) for
delivering messages through the network. Function send(msg,id),
where msg is a message and id is an identifier, delivers msg

from any node to Successor(id) in O(logN) hops. Func-
tion multiSend(msg,I), where I is a set of d > 1 identifiers
I1, ..., Id delivers msg to nodes P1, P2, ..., Pd such that Pj =
Successor(Ij), where 1 < j ≤ d. This cost is d ∗ O(logN)
hops. Function multiSend() is also used as, multiSend(M,I),
where M is a set of h messages and I is a set of h identifiers.
For each Ij , message Mj is delivered to Successor(Ij) in
h ∗ O(logN) hops. Finally, sendDirect(msg, addr) delivers
msg to a known IP address addr in one hop. Our API uses
only the lookup operation of a DHT thus it is applicable to
any DHT protocol. A detailed description and evaluation of
this API on top of Chord can be found in [17].

Like the related papers [15, 18], RJoin builds on top of
existing DHTs since they offer very good support for the
main functionality that we need (i.e., indexing). We assume
that low level issues like node churn, node heterogeneity etc.
are handled by the DHT layer and are offered via APIs to
RJoin. This layered design approach offers more flexibility,
rapid design and development as explained in [3] where the
authors propose a multi-level API for P2P system design.
RJoin belongs to the application layer of the multi-layered
architecture of [3], and it is designed in such a way that it
can make maximum use of the knowledge offered by data
items (queries and tuples) to nicely utilize available network
resources. Any DHT functionality offered at a lower level,
e.g., identifier load balancing [19], communication APIs [17],
replication and so on can be directly used together with
RJoin to improve performance. In the experiments section
we give a simple example involving load balancing.
Data Model. We use the relational data model. Data is
inserted in the network in the form of tuples. As in [15, 18],
different schemas can co-exist but schema mappings are not
supported. Continuous queries are formed using the SQL
query language and we study the case of multi-way equi-
joins. As in Tapestry [26], our relations are append-only,
thus in this paper we do not consider any other operations
beyond insertion of tuples. Updates are left for future work.

For each tuple t, the publication time of t, denoted by
pubT (t), is the time that the tuple was inserted into the
network by some node. Similarly, for each query q, the in-
sertion time of q, denoted by insT (q), is the time that q
was submitted to the network by some node. Each query
q will be associated with a unique key, denoted by Key(q),
that is created from the key of the node n that poses it, by
concatenating a positive integer to Key(n).

The following definition captures the semantics of query
answering in our model.

Definition 1. Let q be a query submitted at time T0 to
be evaluated continuously for the interval [T0,∞]. Let t be
a time instant in [T0,∞], and DBt the set of tuples that
have been published in the network during the interval [T0, t].
The answer to query q at time t, denoted by ans(q, t), is the
bag union of the results of evaluating the instantaneous SQL
query q over DBt′ at every time instant T0 ≤ t′ < t.

As it is standard, the above definition assumes bag semantics
for SQL queries. In Section 4, we extend RJoin so that set
semantics (i.e., duplicate elimination) are also supported.

The above definition defines the answer to a query at each
time t after this query was submitted. In practice, RJoin
evaluates submitted queries incrementally as new tuples ar-
rive and tuples in the answer will be made available to the
querying node as soon as possible after they are generated.



3. EVALUATING MULTI-WAY JOINS
Let us now proceed with the description of our algorithm.

We first discuss the challenges one has to face and the de-
cisions one has to make when designing such an algorithm.
Then, we discuss the issue of tuple indexing, we show how
we can remember tuple insertions and query status in a dis-
tributed way, we discuss query indexing issues and finally
we give the details of the RJoin query processing algorithm.

For a multi-way join query that refers to n relations, we
need n tuples, one from each distinct relation to form an
answer tuple. According to the semantics of Section 2, tuples
that satisfy a query should be published at or after the time
the query has been submitted. In addition, there can be no
guarantee that these tuples will arrive simultaneously. In
fact, the temporal ordering according to which these tuples
arrive is an important parameter, and may lead to different
ways to evaluate a query. Finally, a single tuple can be used
to compute answers for multiple continuous queries.

Therefore, the system has to remember every tuple inser-
tion and try to combine it with every future tuple insertion
in case that it can participate in an answer for any of the
existing queries. Thus, careful handling is needed to match
the correct tuples with the correct queries in an efficient way.

Evaluating continuous multi-way joins is a complicated
problem in a centralized setting. Distributed computation
of continuous multi-way joins is even more challenging since
one has to take into account more parameters, e.g., network
traffic and load distribution. RJoin evaluates the queries
continuously (partially or fully) while new tuples are coming.
Each new tuple triggers a series of events that may lead to
the creation of one or more answers for one or more queries.

Tuple indexing. One of the key points when designing
an in-network processing algorithm is where new tuples are
indexed, i.e., in which node or nodes a new tuple will be
stored (or try to find relevant queries). The strategy of
tuple indexing determines/restricts the way we choose to
evaluate queries. In RJoin, each node will index new tuples
in the network using information found in the tuples, e.g.,
the name of the involved relation, attribute names, values
etc. Such a strategy has the advantage that when looking
for a data item, we do not have to contact all nodes of the
network or have prior/global knowledge of where this data
item is. Here the choice of using DHTs becomes useful, i.e.,
we can index data items and then find them fast if we know
exactly what we are looking for. We will describe the exact
protocol later in this section.

Remembering events. Continuing our high level dis-
cussion, we will see now how we can remember, i.e., keep
state in our distributed setting. As we already discussed, it
is necessary to remember each tuple insertion to use it in the
future when more tuples arrive and try to create answers for
relevant queries. Otherwise, we have to periodically try and
evaluate all existing queries for all past tuples which would
create much more network traffic and force network nodes
to evaluate the same queries for the same data repeatedly.

Here we follow an approach that allows us to keep state
for each query and each relevant data item in a distributed
way. Each new tuple t will force all relevant queries to be
rewritten into queries with fewer joins that reflect the fact
that t has arrived. Let us give an example of this rewriting
step. Assume the following query q1:

(q1) select R.B, S.B from R,S,P where R.A=S.A and S.B=P.B

Assume now an incoming tuple t of R where t = (3, 5). A
new rewritten query q2 is created by replacing the attributes
of R in q1 with their corresponding value in t and simplifying
the where clause if necessary. Then, q2 is as follows:

(q2) select 5, S.B from S,P where 3=S.A and S.B=P.B

Future tuples can safely be combined with rewritten queries
to create new ones and so on, until the where clause of a
query becomes equivalent to “true” and an answer to the
original query can be created. In order to distribute the
query processing load in the network and exploit available
resources, each time a new rewritten query is created, it will
be assigned to a different node where relevant data might
arrive (and/or might already be there).

Query indexing. Thus, the next issue is how we decide
where to index the queries or, in other words, decide the
criteria for distributing the query processing load. We can
distinguish between two kinds of queries. First, we have the
input queries, i.e., the queries that were submitted to the
network. Second, we have the queries that we create either
by rewriting an input query or a query that has already been
rewritten once. We will refer to these queries as rewritten
queries. We will see below that rewritten queries allow more
flexibility regarding where to index them.

As an example, consider an input query such as q1 in our
previous example. Trying to find a good way to index this
query leads us to the following decisions. Recall that our
main goal is to use multiple nodes of the network to exploit
available resources and distribute query processing respon-
sibilities. In this way, we would like different queries to be
evaluated by different nodes. One way to do that would be
to assign queries to nodes based on the relation names used
in the query. For example, we can index q1 using the name
of the relation R. Thus, the node n = Successor(Hash(R))
will be responsible for q1. Then, we can ensure without
global knowledge that this node n will receive all new tuples
of relation R. This is easy to ensure since the required in-
formation is contained in each tuple of R. However, such a
solution would not scale since only a few nodes would suffer
all the query processing load, namely, as many nodes as the
distinct relations in the schema or schemas used.

In order to achieve a better load distribution, a possible
next step is to also use the attribute names, e.g., we can
index the query to n = Successor(Hash(R + A)). We use
the operator ‘+‘ to denote concatenation of string values.
Then, a new tuple of R can reach n if indexed by R+A. Of
course, in order to guarantee completeness of the algorithm,
a tuple has to be indexed under all its attributes. At this
point, we observe that there is no more information in the
query that we can use for indexing, i.e., information that
can be found both in the query and in the relevant tuples,
so the second solution is satisfactory and will be adopted.

Now, if we observe a rewritten query (e.g., q2 in our earlier
example), we can see that there is more to use, i.e., values
that replaced attribute names during the rewriting process.
In our example, the rewritten query can be indexed to node
n = Successor(Hash(S + A + 3)). In order to make a rele-
vant new tuple meet the query, we have to index new tuples
in the same way too. This is possible since the required in-
formation exists in a tuple. Thus, in order to make tuples
reach all relevant input and rewritten queries, we index new
tuples both under the concatenation of relation name and at-
tribute name, and under the concatenation of relation name,



attribute name and value. Naturally, indexing using values
gives us much better properties in terms of load distribution
than using only relation names and attribute names.

When an item, a query or a tuple, is indexed using the con-
catenation of a relation name and an attribute name, then
we will say that this item is indexed at the attribute level.
Similarly, when an item is indexed using the concatenation
of a relation name, an attribute name and a value, then we
will say that it is indexed at the value level. We will now
describe in detail the exact protocols to index queries and
tuples, and present the query processing algorithm RJoin.

The recursive join algorithm. The “typical” tempo-
ral order of events in our continuous query processing al-
gorithm is as follows. First, a query is submitted and is
indexed somewhere in the network waiting for matching tu-
ples. Then, tuples arrive. Each tuple that is a match, causes
the query to be rewritten and recursively reindexed at a dif-
ferent node waiting for new tuples. When a rewritten query
has a where clause equivalent to “true”, it is not reindexed
any further. Instead, an answer is formed and is sent back
to the node that submitted the corresponding input query.
Thus, we call our algorithm the recursive join (RJoin) al-
gorithm. In the following paragraphs, we describe the indi-
vidual steps in detail. For the time being let us assume that
events take place according to the “typical” temporal order
we just discussed. In Section 4, we revisit this assumption.

Let us first see how a node x submits a query q. Node
x will index q in the network under the concatenation of
a relation name and an attribute name which form one of
the expressions RelName.AttName in the where clause of
q. Since there are multiple such expressions in the where
clause of a multi-way join query, we have to make a choice.
This is an important choice because it affects multiple op-
timization parameters. For now, assume for simplicity that
we choose randomly (in our examples, we always choose the
first expression in the order they appear in the where clause).
In Section 6, we discuss how to make this choice in a judi-
cious way. The query is sent then to the successor node
of the identifier computed by hashing the concatenation of
the chosen relation and attribute name. There, the query is
stored waiting for future tuples.

In Procedure 1, we show how a new tuple is indexed. A
tuple is indexed twice for each attribute it has; once at the
attribute level and once at the value level. Procedure 1
shows in detail all the messages created by the publishing
node and how the API presented in Section 2 is used to route
them in the network.

It should be clear now that because a new tuple t of a
relation R is indexed at the attribute level, it will reach all
input queries that have been indexed under the concatena-
tion of R and any of the attribute names of R. Queries that
refer to attributes of R but are indexed at the attribute level
using the concatenation of another relation and any of its
attribute names, will still have the chance to meet the new
tuple t as rewritten queries when they need the values used
in t. This is why when a node receives a new tuple t at the
value level, it will always store t locally (see Procedure 2)
since it may become useful in the future when a rewritten
query arrives.

Let us then go through the actions taken by a node n that
receives a tuple t. The exact steps are described in Proce-
dure 2 and are almost the same independently of whether
n receives t at the attribute or value level (this is signaled

Procedure 1 A node x inserts a tuple t of k attributes
M = ∅, I = ∅
for i = 0 to k do

Key1 = RelationName(t) + AttributeName(t, i)
id1 = Hash(Key1)
Level1 = attribute
msg1 = newTuple(t, Key1, IP (x), Level1)
M = M ∪ {msg1}
I = I ∪ {id1}
Key2 = RelationName(t) + AttributeName(t, i) + V alue(t, i)
id2 = Hash(Key2)
Level2 = value
msg2 = newTuple(t, Key2, IP (x), Level2)
M = M ∪ {msg2}
I = I ∪ {id2}

end for
multiSend(M, I)

Procedure 2 A node n receives a new tuple with a message
newTuple(t, id, Key, IP (x), Level)

Q = list of input queries q stored locally that match t based on
Key
M = ∅, I = ∅
for i = 0 to sizeof(Q) do

q′
i = rewrite(qi, t)

if WhereClauseOf(q′
i) == True then

msg = CreateAnswer(q′
i)

sendDirect(msg, Owner(qi))
continue

end if
Key = nextKey(q′

i)
id = Hash(Key)
msg = Eval(q′

i, key, Owner(qi))
M = M ∪ {msg}
I = I ∪ {id}

end for
if Level == V alue then

store t locally
end if
multiSend(M, I)

by parameter Level in Procedure 2). In both cases, the
receiver node searches locally to find which queries are trig-
gered by t. A query q is triggered by a tuple t = (v1, . . . , vm)
over a schema R(A1, . . . , Am) if pub(t) ≥ insT (q) and the
where clause of q contains a conjunct either of the form
R.Ai = S.Bj or of the form R.Ai = vi. Each triggered
query q1 will be rewritten using tuple t. If a rewritten query
q1 has a where clause equivalent to “true”, then the query q
from which q1 originates has been satisfied, and an answer
can be created and returned to the node that posed q. The
remaining rewritten queries are reindexed to other nodes to
find (or wait for) the rest of the matching tuples needed so
that we can create answers given tuple t. The message msg
sent contains the rewritten query, the key used to index it
(so that the next node can search its local data based on that
key) and the identifier of the node that submitted the input
query (this is returned by the function Owner()). To decide
where to index the rewritten query, the function nextKey()
is used. This function returns the relation-attribute pair or
relation-attribute-value triple to be used as the key to deter-
mine the node that will receive the rewritten query. For now,
assume for simplicity that nextKey() makes this choice ran-
domly (in our examples, nextKey() returns the first pair or
triple in the where clause of the rewritten query). The exact
algorithm used by nextKey() will be discussed in Section 6.
If t has been received by n at the value level (Level = value),
t is stored locally to wait for future rewritten queries.

Note that only tuples received by a node at the value level



Procedure 3 A node receives a rewritten query with a mes-
sage Eval(q, Key, I, Owner(q))

store q locally as a rewritten query
T= list of tuples t stored locally that match q based on Key
M = ∅, I = ∅
for i = 0 to sizeof(T ) do

if pub(ti) >= insT (q) then
q′ = rewrite(q, ti)
if WhereClauseOf(q′) == True then

msg = CreateAnswer(q′)
sendDirect(msg, Owner(q))
continue

end if
Key = nextKey(q′)
id = Hash(Key)
msg = Eval(q′, key, Owner(q))
M = M ∪ {msg}
I = I ∪ {id}

end if
end for
multiSend(M, I)

are stored locally. Tuples received by a node at the attribute
level are used to trigger and rewrite stored input queries and
then are discarded. We revisit this choice and point out its
significance in Section 4.

Let us now describe the actions taken by a node when
it receives a rewritten query (see Procedure 3). First, the
query is stored locally since matching tuples might arrive in
the future. In addition, there might be already some match-
ing tuples stored locally, i.e., tuples that were published after
the input query was submitted and arrived at this node be-
fore this rewritten query. For each such tuple the query is
further rewritten and each new rewritten query with a where
clause not equivalent to “true” is reindexed to a new node.
For each new rewritten query with a where clause equivalent
to “true”, an answer is created and is sent to the node that
submitted the corresponding input query.

Summarizing the steps of our algorithm as presented above,
we can make the following observations. At each event, e.g.,
a tuple insertion, one or more steps may happen, e.g., a
node may forward a rewritten query to another node and
this node may further rewrite this query into one or more
queries and forward them to more nodes. Furthermore, the
distributed query plan for a query is dynamically built as
new tuples arrive. Initially, the query is in its initial place
in the index. Then, as tuples arrive to this node, the query is
migrated to other nodes according to incoming tuple values.

Since rewritten queries are born with every tuple inser-
tion, this leads to an ever increasing state. It is important,
especially for long join paths, to have a mechanism to reduce
this state. We discuss this issue in detail in Section 5.

Intuitively, nodes where queries or tuples are indexed at
the attribute level incur more load than those nodes that
their indexing targets at the value level regarding how of-
ten a node is required to process an incoming tuple. For
example, a node responsible for R.B receives more tuples to
process than a node responsible for R.B + v, where v is a
value that R.B can take. This issue has been solved through
replication of queries in [18] so we do not further pursue this
in the current paper.

Example. RJoin is shown in operation in Figure 1 through
a simple example. Each event in this figure represents an
event in the network, i.e., either the arrival of a new tuple or
the arrival of a new query. Events are drawn starting from
the top which represents the chronological order in which

r1

Node x submits the query 
q = Select S.B, M.a From R,S,J,M Where R.A=S.A AND S.B=J.B AND J.C=M.C

x r1= Successor(Hash(R+A))

A new tuple t1=(2,5,8) of R arrives. r1 rewrites q into 
q1 = Select S.B, M.A From S,J,M Where 2=S.A AND S.B=J.B AND J.C=M.C

r2r1 r2= Successor(Hash(S+A+'2'))

A new tuple t2=(2,6,3) of S arrives. r2 rewrites q1 into 
q2 = Select 6, M.A From J,M Where 6=J.B AND J.C=M.C

r3r2 r3= Successor(Hash(J+B+'6'))

q

q1

q2

t1

t2

A new tuple t3=(9,1,2) of M arrives. r4 stores t3

r4

t3

r4= Successor(Hash(M+C+'2'))

A new tuple t4=(7,6,2) of J arrives. r3 rewrites q2 into 
q3 = Select 6, M.A From M Where 2=M.C

r4r3 r4= Successor(Hash(M+C+'2'))
q3

t4

Because of q3 and t3, r4 creates an answer for q  
S.B=6,M.A=9

Event 1

Event 2

Event 3

Event 4

Event 5

Figure 1: An example

these events have happened. In each event, the figure shows
the steps of the algorithm that take place due to this event.
For readability, in each event we draw only the nodes that
do something due to this event, i.e., store or search for tu-
ples, evaluate a query etc. In Events 2 and 3, we show how a
query is being rewritten and sent to another node according
to the values used in an incoming tuple. Event 5 shows the
case where a rewritten query that arrives to a new node is
triggered by a tuple already stored there.

4. FORMAL PROPERTIES OF RJOIN
We will now characterize the behavior of RJoin formally.
Soundness and Completeness. It is easy to see that

RJoin is a sound algorithm. RJoin might fail to be a com-
plete algorithm (i.e., return all answers to a query) due to
network dynamism (e.g., nodes failing or leaving silently) or
even simple network delays. So far, we have not dealt with
network dynamism and assumed that events follow their
“typical” temporal order in the description of RJoin. Un-
fortunately, even if this “typical” temporal order of events is
not followed e.g., due to network delays, RJoin may fail to
produce an answer as the following example illustrates.

Example 1. Let us consider relations R(A1, A2, A3) and
S(B1, B2, B3) and the following query q

select R.A1, S.B1 from R, S where R.A2 = S.B2

submitted at time T0. If R.A2 is used to index q at attribute
level to node n then n = Successor(Hash(R+A2)). Let tq be
the time that n receives q. If a tuple τ is published to relation
R at time T1 > T0, τ will be sent to n as well (Procedure
1). Let tτ be the time that n receives τ . If tτ > tq then τ
will trigger q and RJoin will work correctly by creating and
further forwarding a rewritten query q′. However, if tτ < tq,
then q and τ will not meet and a potential answer might be
lost. The case where tτ = tq simply depends on whether n
will process q or τ first. If τ is processed first, then again a
potential answer might be lost.

To ensure that RJoin will never lose an answer due to mes-
sage delays, we introduce the following rules (modifications
to RJoin):



1. When a node receives a tuple τ at the attribute level,
it stores τ in a new local table, called the attribute
level tuple table (ALTT). τ will be removed from ALTT
after time ∆ > 0.

2. When a node receives an input query q at the attribute
level, it always searches for matching tuples in ALTT.

Naturally, ∆ can be infinity (i.e., tuples are not removed
from ALTT). This rather extreme solution will be useful if
we want to support one-time queries in the same framework.
However, to reduce the storage load per node at the attribute
level, a garbage collection approach may be used. Then,
∆ can be a system parameter or even be defined by each
node separately given its system resources. It is possible to
estimate an appropriate value of ∆ so that we do not lose
completeness of RJoin. Since each node in a Chord network
can contact another node using lookup in O(log N) hops,
and we assume that it takes at most δ time units to reach
another node (see Section 2), then each node running our
protocol can estimate the number of nodes in the network
(e.g., using the techniques of [14]) and then compute an
overestimate of ∆: an upper bound on the number of time
units it takes for a message to be transmitted by one node
to another node in a Chord network using lookup.

Given this extension, the following definition and theo-
rem show that RJoin enjoys the useful property of “eventual
completeness” (similar to eventual consistency as known in
distributed systems) even in the presence of network delays.

Definition 2. Let q be a continuous SQL query submit-
ted at time T0. The set of new answers to q at time instant
t > T0, denoted by new(q, t), is the set of tuples τ such that
τ is in the answer of instantaneous SQL query q over DBt,
but it is not in the answer of instantaneous SQL query q
over DBt′ for all T0 < t′ < t.

Theorem 1. Let q be a multi-way join submitted by node
nq at time T0. Let t > T0 be a time instant and τ a tuple
with the same arity as q. Under the assumption that nodes
can always compute the function Successor() correctly, if
τ ∈ new(q, t) then τ will eventually be delivered to node nq

by RJoin at some time t′ > t.

Proof. Let q be an m-way join of the form

select ∗ from R1, . . . , Rm where φ

that is processed recursively at some step of RJoin. We
assume that each relation Ri has schema {Ai1, . . . , Aifi}.

Let τ ∈ new(q, t). Then, there are tuples τ1, . . . , τm such
that τi is in the instance of Ri at time t, φ is satisfied when
values from the τi’s are substituted for attribute expressions,
and τ = τ1 1 · · · 1 τm. Without loss of generality, let
us assume that τ1, . . . , τm were published in the network
at times t1, . . . , tm respectively and t1 < · · · < tm. Then,
obviously, T0 ≤ t1 < · · · < tm = t from the definition of
new(). We can now distinguish two cases:

1. q is indexed by RJoin at attribute level e.g., using rela-
tion Rk and one of its attributes Akl. In this case, q is
an input query (but See Section 6 for a generalization
of RJoin where q can be a rewritten query; this case
makes sure that the proof goes through for this gen-
eralization too). Therefore, RJoin forwards q to node
nk = Successor(H(Rk + Akl)) where it is stored from
time s onwards.

Let t′k ≥ T0 be the time tuple τk arrives and gets stored
at node nk. Let t′′k be the time τk is garbage collected
from nk by RJoin. If t′k > s then τk will arrive at node
nk after query q and will trigger it (Procedure 2). If
t′k < s then τk will still be at node nk when q arrives,
and would have not been garbage collected yet because
s − t′k < ∆ and t′′k − t′k ≥ ∆ (it is s − t′k < ∆ because
T0 ≤ t′k and s − T0 < ∆ since s − T0 is the time it
takes for the rewritten query to be transmitted from
node nq to node nk where it is stored). Thus, tuple τk

will be used to rewrite q into a new query q′. If t′k = s,
then even if τk is processed first and q second, τk will
still be available and q will be triggered because of our
assumptions about ∆.

2. q is indexed by RJoin at value level e.g., using relation
Rk, one of its attributes Akl and value v. In this case
q is a rewritten query. q will be forwarded by RJoin
to node nk = Successor(H(Rk + Akl + v)) where it is
stored from time s onwards (Procedure 3). According
to Procedure 3, nk first stores τ locally from time s
onwards, and then searches for locally stored tuples
that match q.

Let t′k be the time tuple τk arrives and gets stored
at node nk. If t′k > s, q will be triggered. q will be
triggered even if tk < s since when nk receives q it
searches for locally stored matching tuples. Finally,
for the same reasons, q will be triggered even if tk = s,
independently of whether nk processes q or τ first.

In both of the above cases, tuple τk will be used to rewrite
q into a new query q′ and RJoin will continue in a similar
way after being invoked recursively on q′. Thus, eventually
tuple τ will be formed and delivered to node nq using the
underlying network infrastructure. Throughout the proof,
the assumption regarding network nodes allow us to con-
clude that RJoin messages will eventually be delivered to
their right recipients using our protocol since the function
Successor() will be computed correctly.

If m = 2, the above theorem shows that algorithm SAI
of [18] shares the same eventual completeness property with
RJoin if it is modified as we have suggested above for RJoin.

One might say that the above assumption regarding the
computation of Sucessor() is rather strong, given the typical
assumptions for network dynamism in DHTs. Nevertheless,
as new DHT protocols are designed and further properties of
Chord-like DHTs are proven, it is beneficial to have a clear
formal analysis for algorithms built on top of DHTs.

Duplicate Elimination. The following example shows
that RJoin can generate duplicate answers to a given query.

Example 2. Let us consider relations R(A1, A2, A3) and
S(B1, B2, B3) and the query

select R.A1, S.B1 from R, S where R.A2 = S.B2

submitted at time 0. If tuples (1, 2, 3), (b, 2, c), (b, 2, e) are
published to relations R, S and S at times 1, 2 and 3 respec-
tively, then RJoin will return the answer (1, b) twice: first,
after (b, 2, c) is published to S and, again, after (b, 2, e) is
published to S.

We modify RJoin as follows so that no duplicate answers
are returned and query evaluation assumes a semantics based



on sets instead of bags. Our solution is based on local com-
putations only. If an input query q requests distinct answers
using the keyword DISTINCT, then each node n that receives
and stores a rewritten query q′ originating from q does the
following. Let us assume that n receives at value level a
tuple τ of relation R that triggers q′. Let A1, . . . , Ak be the
attributes of R in the select or where clause of q′. The new
rule is that n keeps track of the projection πA1,...,Ak (τ) and
allows a new tuple τ ′ to trigger q′ only if its projection on
attributes A1, . . . , Ak has not occurred in the past in one of
the tuples that have already triggered q′.

The duplicate answers above were due to the nature of the
submitted query and the published tuples. The following
theorem shows that the continuous rewriting of queries in
RJoin cannot lead to “accidental” duplicates. The proof of
the theorem is by contradiction and is omitted due to space.

Theorem 2. Let q be a multi-way join in SQL involving
relations R1, . . . , Rm. Let τ1, . . . , τm be tuples of appropriate
arities that satisfy the where clause of q and produce the
answer τ . Under the same assumptions as in Theorem 1,
τ will be delivered to node nq exactly once if nq submits
continuous query q to the network at time t and each τi, 1 ≤
i ≤ m is published to the network at time t′ ≥ t.

5. SLIDING WINDOW MULTI-WAY JOINS
In the previous sections, we described the main concepts

of the RJoin algorithm. Here, we extend RJoin to support
sliding window multi-way joins over data streams: given m
streams S1, . . . , Sm of data tuples published to the network
and m sliding windows, we would like to evaluate the join
of all m windows [12]. In sliding window joins, a window
“slides”, i.e., if we have a time window of duration T , then a
tuple inserted at time t1 can be combined only with tuples
that arrive between t1 and t1 + T .

Such time restrictions are often very useful in network ap-
plications [7]. Another important usage of window queries
is the fact that they limit the amount of data processed. In
a streaming/continuous query environment this of great im-
portance. For example, for the case of join queries, if there
are no window restrictions, then every new tuple has to be
considered together will all past tuples for all existing rel-
evant queries. Both in a centralized and in a distributed
setting this leads in an ever increasing usage of system re-
sources. In the case of RJoin, the effect is the increasing
number of stored rewritten queries which in turn trigger in-
coming tuples and so on, leading to a continuous increase
in the amount of network traffic, query processing load and
storage load required to handle incoming tuples. Window
restrictions act as a garbage collection mechanism, allowing
the system to discard past (possibly expired) events, focus
on the current parts of the data and in this way keep a
constant cost for query processing/event handling.

In the rest of this section we show how RJoin supports
time-based sliding windows and tuple-based sliding windows
as defined in [1]. In the former case, the duration of a win-
dow is defined in terms of time, while in the latter case it
is defined in terms of the number of tuples that arrive in a
window. In RJoin we can support sliding window joins with
simple extensions that require only local computations. Re-
call that a rewritten query q1 reflects the fact that certain
tuples have arrived in the past and led to its creation. If
these tuples are no longer in the relevant window, all we

have to do is to forget q1, i.e., delete it, and thus stop cre-
ating rewritten queries and eventually answers by rewriting
and reindexing q1. In this way, we are neglecting the com-
bination of the tuples that originally led to q1 and this is
exactly what we need to do to support sliding windows.

In our extension of RJoin, each query has the following
parameters: a Boolean parameter useWindows to indicate
if this is a window join or not, a numeric parameter window
that defines the duration of the window and, finally, a nu-
meric parameter start that denotes the beginning of the
window. For simplicity, we assume that all windows are the
same; the extension to the multiple-window case is obvious.

RJoin can handle time-based sliding window joins if it is
extended with the following rules:

• When a tuple τ is indexed at the attribute level and
triggers an input query q, then each rewritten query qi

created, inherits parameters useWindows and window
from q. Furthermore, we have start(qi) = pubT (τ).

• When a rewritten query q1 is triggered at a node n by
an incoming tuple τ , n checks if q1 is still valid, i.e., if
|start(q1)− pubT (τ)|+ 1 ≤ window(q1). If this is not
true, then n deletes q1. If it is true, then the generated
rewritten query q2 inherits parameters useWindows,
window and start from q1.

• Similarly, when a rewritten query q1 is indexed at a
node n, it is triggered by an already stored tuple τ
at n only if |start(q1)− pubT (τ)| + 1 ≤ window(q1).
The generated rewritten query q2 inherits parameters
useWindows and window from q1 while start(q2) =
max(start(q1), pubT (τ)).

With these simple rules that require only local actions
RJoin supports sliding window joins. Tuple-based windows
are supported in a similar way. The only difference is that
a node has to monitor how many tuples have arrived in
the current window for a given relation that may trigger a
rewritten query. Other types of sliding windows e.g., time-
based tumbling windows [7] can also be easily supported by
RJoin using similar extensions. Proofs of formal properties
of these algorithms are similar to the ones for the basic ver-
sion of RJoin and are omitted due to available space.

6. DECIDING WHERE TO INDEX QUERIES
Let us now discuss the important issue of how we choose

the relation name and attribute name we use to index a
query (an input query or a rewritten one). So far, for sim-
plicity, we described the algorithm RJoin by evaluating the
joins of a query in the order they appear in the where clause.
This can be highly inefficient. The critical parameter is the
rate of incoming tuples of each relation involved in the query.
We would like to evaluate the joins in such an order so that
the number of intermediate results (i.e., rewritten queries)
transferred is the minimum possible. In this way, we im-
prove network traffic and also minimize the query process-
ing load since by transferring fewer queries further in the
query plan, less work has to be done. The critical question
is which queries are waiting for which tuples. If a query is
waiting for tuples of a relation that arrive at a very high
rate, then a lot of traffic and query processing load is gener-
ated since each new tuple leads to rewriting and reindexing
of the query. Thus, we would like to index an input query



under the concatenation of a relation name and one of its
attribute names such that the tuples of the relation arrive at
a low rate. Similarly with rewritten queries; we would like
to avoid indexing a query under a relation-attribute-value
triple (R, A, v) if tuples of R with A = v arrive very often.

In the one-time query scenario, this problem is equivalent
to choosing the appropriate join order in a query plan based
on selectivity estimation. In the continuous query scenario,
we have to make a prediction. We have to choose a relation
(and any of its attributes) or a relation, one of its attributes
and a value such that the corresponding rate of tuple publi-
cations is predicted to be low. Whether this choice is right
or wrong will be judged by future tuple insertions.

Collecting RIC information. Our solution is that be-
fore indexing a query (input or rewritten) a node asks each
candidate node for information about the rate of incoming
tuples (we will refer to this kind of information as RIC in-
formation). Then, the node takes a decision.

The above approach costs only a few extra messages and
leads to significant improvements. The cost to index an in-
put query without requesting RIC information is O(logN),
i.e., we pick one attribute randomly and index the query
using the name of this attribute. Now the cost becomes
O(k ∗ logN) where k is the number of distinct relations in
the where clause of the query. In the implementation, we
use the multiSend(M, I) primitive of our API that exploits
grouping of messages in the network (see Section 2). As-
sume a node n that wants to index a query q and there are
3 candidate nodes, n1, n2 and n3. If (n1, n2, n3) is the opti-
mal order to contact these nodes, first a message msg goes
from n to n1 requesting RIC information. Then, msg is for-
warded from n1 to n2 by piggy-backing the RIC information
of n1 and the address IP(n1). Similarly, n2 forwards msg to
n3 including RIC information about tuples it receives and
the address IP(n2). Finally, n3 sends all RIC information
and IPs to n in one hop since its address is included in the
request. Then, after having seen all answers and taken a
decision, the query can be indexed with one extra hop since
all answers contain the IP address of the candidate nodes.
This leads to a total cost of O(k ∗ logN) + 2 messages. Ob-
serve that this is a cost we pay only once for each input
query while the benefits of avoiding large amounts of net-
work traffic are applicable to every tuple insertion.

In our experiments, in order to investigate the cost and
benefits of utilizing RIC information to make indexing deci-
sions, we do the following: we observe what has happened
during the last time window and assume a similar behavior
for the future. Of course, there are many more cases that
one can consider. For example, some values might have a
periodic behavior or others might be extreme cases, outliers
that occur only once or only for one period and so on. What
is a good model to make this prediction is out of the scope
of this paper. Here we point out that our distributed query
processing algorithm, RJoin, can take into account such is-
sues in a viable way. More sophisticated criteria to make
this prediction can be directly plugged-in since this is a lo-
cal decision of the node that indexes the query after having
seen relevant data from candidate nodes.

There is a final point that we wish to make. In Section
3, a rewritten query was always indexed using a relation-
attribute-value triple since this intuitively gives more index-
ing possibilities. The discussion of this section forces us to
change this part of RJoin as follows. To index a rewrit-

ten query q, we consider the following indexing possibilities
and choose the most appropriate one depending on the RIC
information received from relevant nodes: (a) all relation-
attribute pairs that appear in a join condition in the where
clause of q, (b) all relation-attribute-value triples that ap-
pear explicitly as a selection condition in the where clause
of q and (c) all relation-attribute-value triples such that the
selection condition relation.attribute = value is logically
implied by the where clause of q.

7. MINIMIZING NETWORK TRAFFIC
In this section, we introduce optimizations to RJoin that

help reduce the network traffic requirements by efficiently
reusing RIC information whenever possible.

Assume a node n2 that receives a query q1 from a node n1

and creates a query q2 by rewriting q1 (q1 can be an input
query or a rewritten one). Node n2 has to reindex q2 to an-
other node. For this reason, n2 needs to know the RIC infor-
mation for the relation-attribute pairs and relation-attribute-
value triples that appear in the where clause of q2. Observe
now that since q2 was created by rewriting q1, these ex-
pressions in q2 are almost the same as in q1. The differ-
ence is that n2 has probably introduced one or more new
relation.attribute = value expressions in the where clause
of q2 compared to that of q1. According to RJoin, when
n1 indexed q1, it asked for RIC information regarding all
expressions in the where clause of q1. This information can
be passed from n1 to n2 along with the message that trans-
fers q1. Then, n2 needs to ask for RIC information only the
candidate nodes of the new relation.attribute = value ex-
pressions which the rewriting step introduced in the where
clause of q2. Thus, we choose to always pack the IPs of avail-
able candidate nodes with a rewritten query. In this way, a
new rewritten query asks for RIC information only the new
candidate nodes. As a result, rewritten queries become very
cheap to index, i.e., k ∗ O(logN) + 1 hops where k is the
number of new candidates. Typically, k will be equal to 1.

In addition, for each node n1 that a node n2 contacts
for RIC information, n2 stores locally the IP address of n1.
Locally, a node n groups all this information in a hash table,
called candidate table (CT) so that it can exploit available IP
addresses collected for all queries. Assume that n creates a
rewritten query q1 and asks node x = Successor(Hash(R+
A + v)) for RIC information regarding expression R.A = v
of q1. If r is the returned RIC information and Tr is a
timestamp that denotes when r was learned, then n will
store the pair (r, Tr) in CT using key R+A+v. In addition, n
might receive a rewritten query that carries RIC information
for the expression R.A = v. Then n will keep in its local CT
the most recent RIC information. In this way, by using CT,
future queries that need RIC information for R.A = v can
access it without having to contact x. Thus, a node n can
avoid locating in O(logN) hops a candidate x for a query, if
x has been contacted in the past (even by a different query
and from a different node). If the stored RIC information is
not considered valid, e.g., if it was acquired a long time ago,
then we can contact x in one hop and ask for an update.

8. EXPERIMENTAL ANALYSIS
In this section, we experimentally evaluate the perfor-

mance of our algorithm. Our experiments are based on a
Java implementation that allows us to run multiple Chord
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Figure 2: Effect of taking into account RIC information
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Figure 3: Effect of increasing the number of incoming tuples

nodes in one machine. Our workload is created as follows.
We have a schema of 10 relations, each one with 10 at-
tributes. Each attribute has a value range of 100 values.
In order to create a new tuple, we choose one relation us-
ing a Zipf distribution, and then we assign values to all its
attributes again using a Zipf distribution. Unless explicitly
mentioned in an experiment, the default parameter used for
our Zipf distribution is θ = 0.9, thus our experimental data
is highly skewed. In most cases, we experiment with 4-way
joins with a where clause of the following form: R.A = S.B
and S.C = J.F and J.C = K.D. An experiment that shows
the effect of query complexity is also provided where we
experiment with 4-way, 6-way and 8-way joins. The only
restriction in the above syntax is that adjacent joins must
have a common relation. Relations and attributes are cho-
sen randomly for each query. Most of our experiments are
for queries without windows since this kind of queries is the
most challenging one forcing nodes to consider all past tuples
and combine them with future ones. The effect (and benefits
due to garbage collection) of having a “bigger” or “smaller”
window on RJoin can be seen in a single experiment where
the techniques of Section 5 are evaluated.

We define as network traffic the number of messages that
a node n has to send. This includes both the messages that
n creates due to RJoin, e.g., index a rewritten query to a
new node, and also the messages that n has to route due to
the DHT routing protocols. In most of the experiments, we
measure this cost at a per tuple basis. Messages are small,
since only rewritten queries are transferred, so the cost to
send a message is mainly due to the initialization phase, i.e.,
establishing the connection with the remote node. Thus, a
message has always weight 1. The query processing load
that a node n incurs is defined as the sum of the number of
rewritten queries that n receives in order to search for locally

stored tuples, plus the number of tuples that n receives in
order to search for matching locally stored queries. The
storage load that a node n incurs is defined as the sum of
the number of rewritten queries plus the number of tuples
that n has to store locally.

Effect of taking into account RIC information. The
first experiment demonstrates how important it is to take
into account the RIC information and make the right deci-
sions while processing multi-way joins in a distributed envi-
ronment. We created two variations of our query processing
algorithm to compare with RJoin. The first one simulates
the worst case scenario, i.e., what happens if we always make
the worst choice regarding where we decide to index a query.
The second one makes random choices. In a network of 103

nodes we insert 2 ∗ 104 queries. In Figure 2, we show what
happens after 50, 100, 200 and 400 tuples have been inserted.

For all the parameters assessed, there is a clear advantage
of taking into account the RIC information. For example, in
Figure 2(a) we present the total traffic cost per node. The
total cost of RJoin includes the cost of requesting RIC infor-
mation. We also show this cost separately to give a feeling
of how expensive requesting RIC information is. This cost
is mainly dominated by the DHT routing of messages. Ob-
serve that the remaining cost, i.e., the cost to actually index
the input/rewritten queries is small. Moreover, the fact that
RIC information is packed with rewritten queries, helps us
to keep the cost of requesting RIC information at low levels
as more tuples are arriving. Depending on the number of
incoming tuples, the difference between making the worst
decision and RJoin can be many orders of magnitude (one
to two in Figure 2(a)). In addition, RJoin is also 4-5 times
cheaper in terms of network traffic compared to the ran-
dom strategy. Indexing queries by a relation-attribute or a
relation-attribute-value combination that is less often trig-
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Figure 5: Effect of skewed data

gered by incoming tuples allows us to avoid creating a huge
amount of traffic because fewer queries have to be forwarded
through the network to be assigned to other nodes. For the
same reason, in Figures 2(b) and 2(c), we see that RJoin gen-
erates significantly less query processing and storage load.

Effect of increasing the rate of incoming tuples.
Here we discuss what happens as more tuples arrive. In a
network of 103 nodes, we insert 2 ∗ 104 queries, like in the
previous experiment but now we consider a higher number
of incoming tuples. Figure 3 shows the results.

Naturally, as more tuples arrive, the messages needed to
handle a new tuple are increased since more queries are
triggered and for different values used in the tuples, more
rewritten queries are created. Initially, the network traffic
for requesting RIC information increases at a high rate, but
as more tuples arrive the rate of increase becomes signifi-
cantly lower since RJoin can reuse knowledge about incom-
ing tuple rates obtained in the past. Since more and more
queries are triggered, the total cost is increased but due to
efficient usage and caching of RIC information this increase
is linear allowing RJoin to scale well with increasing number
of tuples. In Figure 3(b), we see that the total query pro-
cessing load is increased as more tuples arrive for the same
reason as before. However, observe that although initially
the load distribution is uneven, gradually, as more tuples
arrive, more nodes participate to share the query process-
ing load. Finally, after 2500 tuples we observe that almost
all nodes (e.g., 940 nodes) participate in query processing.
This is because more values are being used and rewritten
queries spread throughout the network. Similarly, as we see
in Figure 3(c), the storage load is nicely distributed.

Effect of increasing the number of indexed queries.
Let us now demonstrate the effect of the number of queries
waiting for tuples. We set up a network of 103 nodes and

we insert Q = 2 ∗ 103 queries. Then, we insert 103 tuples
and let the algorithm work. The experiment is repeated
for Q = 4 ∗ 103, 8 ∗ 103, 16 ∗ 103, 32 ∗ 103. Figure 4 shows
the results. The network traffic is of course increased, since
more queries will be triggered by incoming tuples. However,
as more queries are indexed, the rate of increase is smaller
due to the fact that similar queries can be nicely grouped
together to avoid creating extra network traffic, and RIC
information is being reused. For the same reasons, we see
that both query processing and storage load are increased
as it is natural, but the pattern of distribution remains the
same, so the extra load is again shared by multiple nodes.

Varying the skew of the data distribution. As be-
fore we use a network of 103 nodes where we insert 2 ∗ 104

queries. Then, we create 103 tuples using a Zipf distribu-
tion with θ = 0.3 both for choosing the next relation and for
choosing which value to assign to a new attribute. We repeat
the experiment for θ = 0.5, θ = 0.7 and θ = 0.9. The results
are shown in Figure 5. We observe that the more skewed the
workload is (i.e., as θ is growing), the more work is being
done, i.e., all metrics are increased. This is reasonable to
happen since the possibility of having joined tuples is higher
if their value range is more skewed. Thus, more queries are
triggered and processed. In addition, in Figures 5(b) and
(c), we see that the highest loaded node incurs more load as
θ is growing. This is natural since the more skewed the data
distribution is, the fewer options there are to distribute the
rewritten queries. However, even with a very skewed work-
load, RJoin manages to use a large portion of the network
and balance the load well, i.e., the extra load created due to
skew is nicely distributed to the nodes with the same pat-
tern as with the less skewed workloads. Regarding network
traffic, while the cost of requesting RIC information is de-
creasing, the total cost slightly increases with the skewness
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Figure 6: Effect of having more complex queries
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Figure 7: Effect of sliding window size (W)
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Figure 8: Cumulative load created with each new
tuple depending on window size (W)

of distribution. This is due to the fact that by using more
often the skewed values, more queries are triggered, rewrit-
ten and forwarded to other nodes. However, since the same
values are used more often, nodes do not need to acquire
new RIC information and thus this cost is decreased.

Number of joins. Here, we present the effect of the
query complexity by varying the number of joins that queries
contain. In a network of 103 nodes, we insert 2 ∗ 104 k-way
join queries. Then, we insert 103 tuples. We repeat the
experiment for k = 4, 6 and 8. In Figure 6, we see that
naturally, more complex queries require more network traf-
fic, processing and storage space to be evaluated. However,
while queries get more complex, the extra load is shared in
a similar way among the network nodes.

Sliding window size. Here we present the effect of the
sliding window size W . In a network of 103 nodes, we insert
2 ∗ 104 4-way join queries. For clarity of results the sliding
size W is the same for all queries. Figures 7 and 8 show
results for various window sizes. Figure 8 shows the total
cumulative query processing and storage load created for
each sliding window size as the number of tuples increases
from 1 to 103 . With each new tuple arrival we measure

the amount of query processing and storage load needed to
handle this tuple. For clarity of presentation, the graphs
in Figure 8 are cumulative, i.e., for each new tuple we add
the load created due to this tuple to the total load (per
window size). As expected, as the window size grows, more
query processing and storage load is created since there are
more combinations of tuples to consider within each window.
With smaller window sizes rewritten queries are dropped
often and thus the nodes have significantly less data to store
and process. For the same reasons, we observe in Figure
7(a) an increase in the network traffic required for larger
windows since more rewritten queries will be triggered and
reindexed at different nodes. Finally, observe in Figures 7
(b) and (c) that the load is nicely distributed among the
nodes maintaining the same pattern with all window sizes.

Using lower level interfaces. As mentioned earlier,
RJoin respects the standard DHT APIs. Thus, it can take
advantage of all existing (and possibly future) DHT tech-
niques that implement various low-level optimizations. As
an example, we will use in this experiment the load balancing
technique of [19] which is based on allowing a node to change
its position on the identifier circle. In this way, a node can
also choose for which identifiers it is responsible for. This is
an elegant way to offer low-level load balancing functionality
which is powerful enough to also take into account individ-
ual node characteristics and cope with node heterogeneity
since a node can decide for how many identifiers it will be
responsible for, depending on its system resources. In this
experiment, we use the technique of [19] to equally balance
the responsibility for rewritten queries and tuples among the
nodes. In a network of 103 nodes, we insert 2 ∗ 104 4-way
join queries and then a 103 tuples. In Figure 9, we see that
id movement offers a significant improvement by removing
load from the higher loaded nodes (i.e., the highest loaded
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Figure 9: Effect of Id movement (with and without)

node had originally 4 ∗ 103 hits whereas with id movement
it has only 2 ∗ 103) and allowing more nodes to participate
in query processing (900 nodes participating when id move-
ment is enabled instead of only 700). This example, nicely
demonstrates that RJoin can directly use any low-level tech-
nique offered by a general DHT optimization.

9. RELATED WORK
Let us now briefly survey related work. The most related

previous work is [18], where we study two-way equi-joins
in DHTs. Compared to this work, we have investigated the
general problem of multi-way joins and introduced algorithm
RJoin with various properties not present in the proposal
of [18], i.e., window joins, indexing based on environment
conditions, handle network delays and duplicate answers.

Continuous queries for databases first appeared in [26].
OpenCQ [21] and NiagaraCQ [9] are examples of centralized
systems that support continuous queries. Our work is also
related with work on monitoring and stream processing with
various centralized [22, 8, 23] and distributed proposals [11,
10, 2, 4, 5, 24, 13]. In addition, distributed and parallel
databases [20] are highly related.

PeerCQ [11] is a system for continuous queries on top of
DHTs. PeerCQ does not concentrate on the relational data
model and the SQL query language, and assumes that data
is not stored in a DHT but is kept locally at external data
sources (e.g., web sources). One of the main contributions
of PeerCQ is that peers are considered heterogeneous and a
sophisticated model of peer capabilities is used to distribute
the evaluation of continuous queries.

[5] considers distributed equi-join evaluation in wide-area
networks consisting of many heterogeneous hosts concentrat-
ing on network locality and data locality trying to optimize
the delay of output tuples. In a similar manner, [4] shows
the benefits of using the locality-aware DHT Tapestry [27]
to implement distributed operator placement for continuous
query processing of data streams. [24] is another recent pa-
per that considers distributed query optimization in stream
overlay networks and points out differences with distributed
query optimization. Finally, [13] is another recent paper
that makes the case for distributed triggers in the context
of wide-area monitoring applications.

10. CONCLUSIONS AND FUTURE WORK
We presented the RJoin algorithm for the evaluation of

continuous multi-way joins on top of DHTs. RJoin exploits
the resources of multiple DHT nodes to distribute the query
processing load by dynamically creating query plans accord-
ing to values used in incoming tuples. It takes into account
the rate of incoming tuples to create plans that lead to a
limited amount of network traffic and query processing and

allow RJoin to keep distributing the load nicely among the
nodes even when the workload is increased.

Our future plans regarding RJoin include developing tech-
niques to eliminate the effect of skewed values. We are cur-
rently investigating strategies based on self-organization to
further balance the load. In addition, we are working on
techniques to make RJoin sensitive to environment changes,
e.g., workload changes by on-line adaptation of the exist-
ing distributed query plans (by query migration) which is
a way to handle updates also. Finally, we are working on
lower level techniques to further optimize network traffic by
allowing a node n to perform batch routing of messages that
need to be routed within the same time window.

11. REFERENCES
[1] S. B. A. Arasu and J. Widom. The CQL Continuous Query

Language: Semantic Foundations and Query Execution. VLDB
Journal, 15(2):121–142, June 2006.

[2] D. Abadi et al. The Design of the Borealis Stream Processing
Engine. CIDR ’05.

[3] K. Aberer et al. The essence of P2P: A reference architecture
for overlay networks. Peer-to-Peer Computing, ’05.

[4] Y. Ahmad and U. Centinemel. Network-Aware Query
Processing for Stream-based Applications. VLDB ’04.

[5] Y. Ahmad et al. Locality-Aware Networked Join Evaluation.
NETDB ’05.

[6] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The
Price of Validity in Dynamic Networks. SIGMOD ’04.

[7] D. Carney et al. Monitoring streams - a new class of data
management applications. VLDB 2002.

[8] S. Chandrasekaran and M. J. Franklin. PSoup: a system for
streaming queries over streaming data. VLDB Journal,
12:140–156, 2003.

[9] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases.
SIGMOD ’02.

[10] M. Cherniack et al. Scalable Distributed Stream Processing.
CIDR ’03.

[11] B. Gedik and L. Liu. PeerCQ: A Decentralized and
Self-Configuring Peer-to-Peer Information Monitoring System.
ICDCS ’03.
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