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ABSTRACT
Database indices provide a non-discriminative navigational
infrastructure to localize tuples of interest. Their mainte-
nance cost is taken during database updates. In this pa-
per, we study the complementary approach, addressing in-
dex maintenance as part of query processing using continu-
ous physical reorganization, i.e., cracking the database into
manageable pieces. The motivation is that by automatically
organizing data the way users request it, we can achieve fast
access and the much desired self-organized behavior.

We present the first mature cracking architecture and re-
port on our implementation of cracking in the context of a
full fledged relational system. It led to a minor enhancement
to its relational algebra kernel, such that cracking could be
piggy-backed without incurring too much processing over-
head. Furthermore, we illustrate the ripple effect of dynamic
reorganization on the query plans derived by the SQL opti-
mizer. The experiences and results obtained are indicative of
a significant reduction in system complexity. We show that
the resulting system is able to self-organize based on incom-
ing requests with clear performance benefits. This behavior
is visible even when the user focus is randomly shifting to
different parts of the data.

1. INTRODUCTION
Nowadays, the challenge for database architecture design

is not in achieving ultra high performance but to design sys-
tems that are simple and flexible. A database system should
be able to handle huge sets of data and self-organize ac-
cording to the environment, e.g., the workload, available re-
sources, etc. A nice discussion on such issues can be found in
[6]. In addition, the trend towards distributed environments
to speed up computation calls for new architecture designs.
The same holds for multi-core cpu architectures that are
starting to dominate the market and open new possibilities
and challenges for data management. Some notable depar-
tures from the usual paths in database architecture design
include [2, 3, 9, 14].
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In this paper, we explore a radically new approach in data-
base architecture, called database cracking. The cracking ap-
proach is based on the hypothesis that index maintenance
should be a byproduct of query processing, not of updates.
Each query is interpreted not only as a request for a partic-
ular result set, but also as an advice to crack the physical
database store into smaller pieces. Each piece is described
by a query, all of which are assembled in a cracker index to
speedup future search. The cracker index replaces the non-
discriminative indices (e.g., B-trees and hash tables) with a
discriminative index. Only database portions of past inter-
est are easily localized. The remainder is unexplored terri-
tory and remains non-indexed until a query becomes inter-
ested. Continuously reacting on query requests brings the
powerful property of self-organization. The cracker index is
built dynamically while queries are processed and adapts to
changing query workloads.

The cracking technique naturally provides a promising ba-
sis to attack the challenges described in the beginning of this
section. With cracking, the way data is physically stored
self-organizes according to query workload. Even with a
huge data set, only tuples of interest are touched, leading
to significant gains in query performance. In case the focus
shifts to a different part of the data, the cracker index auto-
matically adjusts to that. In addition, cracking the database
into pieces gives us disjoint sets of our data targeted by spe-
cific queries. This information can be nicely used as a basis
for high-speed distributed and multi-core query processing.

The idea of physically reorganizing the database based on
incoming queries has first been proposed in [10]. The con-
tributions of this paper are the following. We present the
first mature cracking architecture (a complete cracking soft-
ware stack) in the context of column oriented databases. We
report on our implementation of cracking on top of Mon-
etDB/SQL, a column oriented database system, showing
that cracking is easy to implement and may lead to fur-
ther system simplification. We present the cracking algo-
rithms that physically reorganize the datastore and the new
cracking operators to enable cracking in MonetDB. Using
SQL micro-benchmarks, we assess the efficiency and effec-
tiveness of the system at the operator level. Additionally, we
perform experiments that use the complete software stack,
demonstrating that cracker-aware query optimizers can suc-
cessfully generate query plans that deploy our new cracking
operators and thus exploit the benefits of database cracking.
Furthermore, we evaluate our current implementation and
discuss some promising results. We clearly demonstrate that
the resulting system can self-organize according to query



workload and that this leads to significant improvement to
data access response times. This behavior is visible even
when the user focus is randomly shifting to different parts
of the data.

Finally, we sketch a research landscape with a large num-
ber of challenges and opportunities that cracking brings into
database design. We argue that cracking can be explored in
multiple areas of database research to bring the property
of self-organization, e.g., distributed and parallel databases,
P2P databases etc.

The remainder of this paper is organized as follows. In
Section 2, we briefly recap the MonetDB system. Section 3
discusses database cracking in more detail and introduces
the cracking architecture. Then, Section 4 motivates crack-
ing against traditional index based strategies. In Section 5,
we present the algorithms to perform physical reorganiza-
tion while Section 6 describes some cracking operators and
their impact on the query plan. In Section 7, we provide an
evaluation of our current implementation. Then, Section 8
discusses open research and opportunities. Finally, in Sec-
tion 9, we discuss related work, and Section 10 concludes
the paper.

2. THE MONETDB SYSTEM
In this section, we will briefly describe the MonetDB sys-

tem to introduce the necessary background for the rest of
our presentation.

MonetDB1 differs from the mainstream systems in its re-
liance on a decomposed storage scheme, a simple (closed)
binary relational algebra, and hooks to easily extend the re-
lational engine. In MonetDB, every n-ary relational table is
represented by a group of binary relations, called BAT s [5].
A BAT represents a mapping from an oid-key to a single
attribute attr. Its tuples are stored physically adjacent to
speed up its traversal, i.e., there are no holes in the data
structure. The oids represent the identity of the original n-
ary tuples, linking their attribute values across the BATs
that store an n-ary table. For base tables, they form a
dense ascending sequence enabling highly efficient positional
lookups. SQL statements are translated by the compiler
into a query execution plan composed of a sequence of sim-
ple binary relational algebra operations. In MonetDB, each
relational operator materializes the result as a temporary
BAT or a view over an existing BAT. For example, assume
the following query:

select R.c from R where 5 ≤ R.a ≤ 10 and 9 ≤ R.b ≤ 20

This query is translated into the following (partial) plan:

Ra1 := algebra.select(Ra, 5, 10);

Rb1 := algebra.select(Rb, 9, 20);

Ra2 := algebra.OIDintersect(Ra1, Rb1);

Rc1 := algebra.fetch(Rc, Ra2);

This plan uses three binary relational algebra operations:

• algebra.select(b,low,high) searches all (oid,attr)
pairs in b that satisfy the predicate low ≤ attr ≤
high.

1For a complete description, see the documentation of Mon-
etDB Version 5 at http://monetdb.cwi.nl/.

• algebra.OIDintersect(r,s) returns all (oid,attr)
pairs from r where r.oid is found in s.oid, imple-
menting the conjunction of the selection predicate.

• algebra.fetch(r,s) returns all (oid,attr) pairs that
reside in r at the positions specified by s.oid, perform-
ing the projection.

The relational operations are grouped into modules, e.g.
algebra, aggr and bat. The modules represent a logical
grouping and they provide a name space to differentiate sim-
ilar operations.

The actual implementation consists of several tens of rela-
tional primitive implementations, but they are ignored here
for brevity. They do not introduce extra complexity either.
Each relational operator is a function implemented in C and
registered in the database kernel using its extension mecha-
nism.

We will now proceed with the rest of our cracking descrip-
tion to see the cracking architecture and how cracking can
be realized into a real query plan. In the rest of the paper,
we will use the simple example of the MonetDB query plan
introduced in this section, to demonstrate how cracking af-
fects it and what modifications had to be done to correctly
and efficiently plug-in cracking.

3. CRACKING
In this section, we will introduce the cracking architec-

ture. We will see the necessary data structures and a simple
example. Let us now describe how cracking takes place in a
column oriented database. It is as follows:

• The first time a range query is posed on an attribute
A, a cracker database makes a copy of column A. This
copy is called the cracker column of A, denoted as
Acrk.

• Acrk is continuously physically reorganized based on
queries that need to touch attribute A.

Definition. Cracking based on a query q on an attribute A
is the act of physically reorganizing Acrk in such a way that
the values of A that satisfy q are stored in a contiguous space.

Creating a copy of the column and cracking on it is useful,
as it leaves the original column intact, allowing fast recon-
struction of records by exploiting the insertion order. In a
column oriented database system, every attribute in a rela-
tion is represented as a column. Thus, when a query needs
to see multiple attributes of the same relation, then tuples in
multiple columns have to be combined to produce the result.
As shown in [4, 11], this can be done efficiently (by avoiding
random access) if all tuples with the same id (i.e., attribute
values that belong to the same row) are placed in the same
position in each column and this position is reflected by the
value of id. In the cracker columns the original position (in-
sertions sequence) of the tuples is spoiled by physical reorga-
nization. Consequently, we will use the cracker columns for
fast value selections while we will use the original columns
for efficient projections, exploiting positional lookups based
on the tuples’ ids.

The cracker column is being continuously split into more
and more pieces as queries arrive. Thus, we need a way to
be able to quickly localize a piece of interest in the cracker
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Figure 1: Cracking a column

column. For this purpose, we introduce for each cracker
column c a cracker index, that maintains information on how
values are distributed in c. In our current implementation,
the cracker index is an AVL-tree. Each node in the tree
holds information for one value v, i.e., it stores a position
p referring to the cracker column such that all values that
are before position p are smaller than v and all values that
are after p are greater. Whether v is left or right inclusive
is also maintained in a separate field in the node.

This information can be used to speed up subsequent
queries significantly, i.e., queries that request ranges that
are an exact match on values known by the index can be
answered at the cost of searching the index, only. Even if
there is no exact match, the index significantly restricts the
values of the column that a query has to analyze.

Consider the example in Figure 1. First, query Q1 triggers
the creation of cracker column Acrk, i.e., a copy of column
A where the tuples are clustered in three pieces, reflecting
the ranges defined by the predicate. The result of Q1 is then
retrieved at no extra cost as a view on Piece 2 that does not
require additional copying of the respective data. We also
refer to such views as column slices. Later, query Q2 benefits
from the information in the cracker index, requiring an in-
place refinement of Pieces 1 & 3, only, splitting each in two
new pieces, but leaving Piece 2 untouched. The result of Q2
is again a zero-cost column slice, covering the contiguous
Pieces 2–4. A third query requesting A > 16 would then
even exactly match the existing Piece 5.

The observation is that by “learning” what a single query
can “teach” us, we can speed up multiple queries in the fu-
ture that request similar, overlapping or even disjoint data of
the same attribute. Some of the questions that immediately
arise are the following.

1. How does this compare to sorting, i.e., why not sort
upfront?

2. How expensive is it to physically reorganize (part of)
the column each time and how we do that?

3. How does cracking fit in the query plan of a modern
DBMS?

We will try to address these issues in detail and motivate
our choices at each step. Question 1 will be discussed in
Section 4, Question 2 in Section 5 and finally Question 3
in Section 6. At this point, note that cracking is an open
research topic and our goal is to carefully identify the re-
search space, the opportunities and the pitfalls. The goal

of the paper is not to present solid solutions for each issue
that appears but to argue that the cracking direction de-
serves our attention and research since: (a) it is possible
to design and implement a cracking database system, (b)
clear benefits appear from preliminary results, and (c) mul-
tiple exciting opportunities set a promising future research
agenda for cracking.

3.1 Cracking a row oriented database
In this work, cracking is described in the context of column

oriented databases. However, we envision that cracking can
potentially be a useful strategy for row-oriented databases
too. For example, the scheme described in this section is
applicable in a row oriented database as well with minor
modifications. A row oriented database needs to create a
cracker column for the attribute that is to be cracked. This
could be a binary relation storing reference-value (r, v) pairs
where for each value v, reference r points to the location
where the actual record that v belongs to is stored. Such an
architecture could also be the basis for a hybrid DSM/NSM
system with the cracker column providing a fast entry point
to interesting data in the query plan and then the original
records of the row oriented system will give the rest of the
data without any need for combining multiple columns to
reconstruct records.

4. CRACKING VS. SORTING & INDICES
One of the main questions is how cracking compares to a

sort-based strategy and to traditional indices. In this sec-
tion, we will try to motivate cracking as an alternative strat-
egy targeted to specific environment conditions that cannot
be handled efficiently by a sort-based or a traditional index-
based strategy.

Consider sorting first since this may be a more natural
question. A cracking strategy eventually enforces order in
a cracker column, i.e., the pieces of a cracker column are
ordered. Every value in a cracker piece p is larger than
every value in all pieces pi such that pi is before p in the
cracker column. Similarly every value in p is smaller than
every value in all pieces pj such that pj is after p in the
cracker column. So let us discuss how this cracking scheme
compares to a sorting strategy, i.e., sort the data upfront
and then perform very fast binary search operations.

Assume an environment where it is known upfront which
data is interesting for the users/queries, i.e., which single
(combination of) attribute(s) is primarily requested, and
hence should determine the physical order of tuples. As-
sume also that there is the luxury of time and resources to
create this physical order before any query arrives and that
there are no updates or the time difference between any up-
date and an incoming query is sufficient for maintaining this
physical order (or maintaining the appropriate indices that
provide an order, e.g., B-trees). If all these are true, then
sorting is a superior strategy.

Cracking is not challenging any strategy in such condi-
tions. Instead, it mainly targets environments where:

• there is not any knowledge about which part of the
data is interesting, i.e., which attributes and ranges
(and with what selectivities) will be requested.

• there is not enough time to restore or maintain the
physical order after an update.



Algorithm 1 CrackInTwo(c,posL,posH,med,inc)
Physically reorganize the piece of column c between posL
and posH such that all values lower than med are in a con-
tiguous space. inc indicates whether med is inclusive or not,
e.g., if inc = false then θ1 is “<” and θ2 is “>=”

1: x1 = point at position posL
2: x2 = point at position posH
3: while position(x1) < position(x2) do
4: if value(x1) θ1 med then
5: x1 = point at next position
6: else
7: while value(x2) θ2 med &&

position(x2) > position(x1) do
8: x2 = point at previous position
9: end while

10: exchange(x1,x2)
11: x1 = point at next position
12: x2 = point at previous position
13: end if
14: end while

Additionally, cracking allows to maintain independent in-
dividual physical orders for each attribute. In the exper-
iments section, cracking is compared against the sort ap-
proach to demonstrate these issues. We will clearly show
that cracking is a lightweight operation compared to sorting
and that a cracking strategy needs no upfront knowledge to
achieve fast data access.

The same arguments stand against any indexed-based strat-
egy or any strategy that tries to prepare by cleverly cluster-
ing together interesting data. For such a strategy, workload
knowledge is necessary to identify the interesting data. Ad-
ditionally, a time and a resource investment has to be done
upfront to prepare the data. Thus, similarly to our previous
discussion, a strategy that knows the query patterns and can
afford to properly prepare and maintain the data is superior
to cracking. But if these circumstances are not true, then
cracking is a promising alternative.

5. CRACKING ALGORITHMS
In this section, we will present the algorithms that perform

the physical reorganization of a column.
Physical reorganization or cracking is an operation that

operates on an entire column or on a column slice. Two ba-
sic cracking operations are considered, called two-piece and
three-piece cracking, respectively. They both have the effect
that they physically reorganize a column of an attribute A
given a range predicate such as all values of A that sat-
isfy the predicate are in a contiguous space. The former
splits the given column into two new pieces using single-
sided predicates A θ med while the latter uses double-sided
predicates low θ1 A θ2 high, where low, high and med are
values in the value range of A and θ, θ1 and θ2 are bound
conditions. Three-piece cracking is semantically equivalent
to two subsequent two-piece crackings (low θ1 A & A θ2

high). However, being a single-pass algorithm itself, it pro-
vides a faster alternative for double-sided predicates.

The algorithms for cracking are formally described in Al-
gorithms 1 and 2. Both algorithms touch as little data as
possible. The core idea is that, while going through the tu-
ples of a column using 2 or 3 pointers to read, cases where

Algorithm 2 CrackInThree(c,posL,posH,low,high,incL,incH)
Physically reorganize the piece of column c between posL
and posH such that all values in the range low high are in a
contiguous space. incL and incH indicate whether low and
high respectively are inclusive or not, e.g., if incL = false
and incH = false then θ1 is “>=”, θ2 is “>” and θ3 is “<”

1: x1 = point at position posL
2: x2 = point at position posH
3: while value(x2) θ1 high &&

position(x2) > position(x1) do
4: x2 = point at previous position
5: end while
6: x3 = x2

7: while value(x3) θ2 low &&
position(x3) > position(x1) do

8: if value(x3) θ1 high then
9: exchange(x2,x3)

10: x2 = point at previous position
11: end if
12: x3 = point at previous position
13: end while
14: while position(x1) <= position(x3) do
15: if value(x1) θ3 low then
16: x1 = point at next position
17: else
18: exchange(x1,x3)
19: while value(x3) θ2 low &&

position(x3)>position(x1) do
20: if value(x3) θ1 high then
21: exchange(x2,x3)
22: x2 = point at previous position
23: end if
24: x3 = point at previous position
25: end while
26: end if
27: end while

two tuples can be exchanged are carefully identified. The
cracking algorithms are cache conscious in the sense that
they always try to exploit tuples that are recently read if
these tuples must be touched again in the future.

Multiple algorithms were created before ending up with
these simple ones. Algorithms that tried to invest in cleverly
detecting situations that required fewer exchange operations
or allowed early retirement, turned out to be more expensive
due to more complex code (e.g., more branches).

We also experimented with “stable” cracking algorithms,
i.e., maintain the insertion order of tuples with values in
the same range (i.e., tuples that belong in the same piece of
the cracker column). The algorithms became more complex
and two times slower. The fast stable algorithms required
a buffer space to temporarily store values subject to move,
which is an extra memory overhead. The goal was to exploit
this order for faster reconstructions of records, but this is
not yet verified. The experiments reported use non-stable
cracking.

The two algorithms presented in this section are sufficient
to cover the needs of a column oriented cracking DBMS
in terms of physical reorganization. Obviously, the sec-
ond algorithm that performs three-piece cracking is signif-
icantly more expensive than the two-piece cracking algo-
rithm. It is a more complex algorithm with more pointers,



more branches etc. However, notice that in practice two-
piece cracking is the algorithm that is actually used more
often. This is the case even when queries use double-sided
predicates. Three-piece cracking is used only when all the
tuples with values in the range requested by a select oper-
ator fall into the same piece of the cracker column. This is
more likely to happen for the first queries that physically
reorganize a column. While the column is split in multi-
ple pieces the chances of requesting a result that falls into
only one piece decrease. In general, the range requested will
span over multiple contiguous pieces of a cracker column and
then only the first and the last piece must be physically re-
organized using two-piece cracking. For example, recall the
example in Figure 1. Query Q1 uses a double-sided predi-
cate and since it is the first query that cracks the column
it uses three-piece cracking. However, the second query Q2
that also uses a double-sided predicate does not have to use
three-piece cracking. The interesting tuples for Q2 span over
Pieces 1, 2 and 3. Cracking does not need to analyze Piece 2
since it is known that all tuples there qualify for the result.
Thus, only Piece 1 is physically reorganized with two-piece
cracking to create two new pieces; one that qualifies for the
result and one that does not. Likewise for Piece 3.

6. THE CRACKING QUERY PLANS
Let us proceed on how we fit the cracking technique in the

query plan generator. Our description is based on MonetDB,
where the relational algebra is extended with a small collec-
tion of cracker-aware operations. The relational query plan
can easily be transformed into one that uses cracker-based
algorithms. Eventually, we envision that many operators
will be able to benefit from cracking by using information
in the cracker index and column.

6.1 The crackers.select operator
The first step is to replace the algebra.select operator.

Recall that the motivation is that cracking happens while
processing queries and based on queries. The select operator
is typically the main operator that provides access on data
and typically feeds the rest of the operators in a query plan.
Thus, it is a natural step to choose to experiment with this
operator first.

As already discussed, operators in MonetDB materialize
their result. Here is how a simple select operation works: it
receives the column storing a specific attribute, scans it, and
creates a new column, containing only tuples with values
that satisfy the selection predicate. In our case, in order
to explore cracking the select operation will be responsible
for the physical reorganization part too. Thus, this new
operation should work as follows:

1. search in the cracker index to determine which piece(s)
of the cracker column should be touched/physically
reorganized

2. physically reorganize the cracker column

3. update the cracker index

4. return a slice of the cracker column as the result (at
zero cost).

We extended the algebra with the crackers.select op-
erator that performs the above steps. Although this may at

first seem as if we added additional overhead in the select
operation, this is not the case. The fact that the number
of tuples to be touched/analyzed is significantly restricted,
along with a carefully crafted implementation of the physical
reorganization step, leads to an operation orders of magni-
tude faster than algebra.select in MonetDB that needs
to scan all tuples in the column for each query. The initial
crackers.select call on an attribute is typically 30% slower
than algebra.select since it has to reorganize large parts
of the column. However, all subsequent calls will be faster.
As more queries arrive, a select operation on the same at-
tribute becomes cheaper since the cracker index learns more
and allows us to touch/analyze smaller pieces of the column
(see Section 7 for a detailed experimental analysis).

6.2 The crackers.rel select operator
In the previous paragraphs we described the crackers se-

lect function. Let us now see what is the effect of replacing
a simple select with a crackers select in the query plan of
MonetDB. Assume the query plan in Section 2. This will be
replaced with the following plan.

Ra1 := crackers.select(Ra, 5, 10);

Rb1 := crackers.select(Rb, 9, 20);

Ra2 := algebra.OIDintersect(Ra1, Rb1);

Rc1 := algebra.fetch(Rc, Ra2);

Although the crackers.select is much faster, its initial
overall effect on the plan turned out to be negligible. The
reason is that the OIDintersect became more expensive.
MonetDB’s algebra.select produces a result column that
is ordered on the insertion sequence of its oid values. In this
way, a subsequent OIDintersect can be executed very fast
in MonetDB, by exploiting the oid-order of both operands
in a merge-like implementation (i.e., it avoids any random
memory access patterns). However, the crackers.select

returns a column that is no longer ordered on oid, since it
is physically reorganized. This results in a more expensive
OIDintersect for cracking, requiring a hash-based imple-
mentation with inherent random access. For example, ex-
periments with TPC-H query 6 of scale factor 0.1, led to
OIDintersect being 7 times more expensive.

This side-effect opens a road for detailed studies on both
the algebraic operations used and the plan generation scheme
of the SQL compiler. Cracker-aware query plans are called
for. An example is the new cracking operator rel select.
The goal is to completely avoid the OIDintersect. The
rel select replaces a pair of a select and a OIDintersect,
performing both simultaneously. It takes an intermediate
column c1 and a base column c2 as arguments. Due to
cracking, c1 is no longer ordered on oid. However, being
an un-cracked base column, c2 has a dense sequence of oid
values, stored in ascending order. Thus, iterating over c1,
rel select exploits very fast positional lookup into c2 to
find the matching tuple (c1.oid = c2.oid), and subsequently
checks the selection predicate on c2.attr. The plan transfor-
mation was handled readily by the optimizer infrastructure,
leading to the following plan for our example.

Ra1 := crackers.select(Ra, 5, 10);

Rb1 := crackers.rel select(Rb, 9, 20, Ra1);

Rc1 := algebra.fetch(Rc, Rb1);

This minimal set of just the two cracker operators intro-
duced in this section was sufficient to significantly improve
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the performance of SQL queries. We explore a much larger
set of algebraic cracking operators to exploit the information
available in the cracker columns and the cracker indices.

7. EXPERIMENTATION
In this section, we peek into the experimental analysis of

our current implementation. The development of cracking
was done in MonetDB 5.0alpha and its SQL 2.12 release. All
experiments were done on a 2.4GHz AMD-Athlon 64 with
2GB memory and a 7200 rpm SATA disk. The experiments
are based on a complete implementation. We first discuss a
micro-benchmark to assess the individual relational opera-
tions. Then, we present results obtained using the complete
software stack. Together they provide an outlook on the
impact of database cracking.

7.1 Select operator benchmark
From the large collection of micro-experiments we did to

arrive at an efficient implementation, we summarize the be-
havior of the cracker select against traditional approaches.
We tested three select operator variants, (a) simple, (b) sort,
and (c) crack, against a series of range queries on a given
attribute A. Case (a) uses the default MonetDB select oper-
ator, i.e., it scans the column and picks the tuples with val-
ues that satisfy the predicate. This is done for every query.
Case (b) first performs a sort to physically reorganize the
column based on the values of the existing tuples. Then,
for each incoming query, it picks the tuples with qualifying
values using binary search (e.g., the result is always in a con-
tiguous space in the sorted column). Finally, case (c) uses
cracking, i.e., it physically reorganizes (part of) the column
for each query. The column has 107 tuples (distinct integers
from 1 to 107). Each query is of the form v1 < A < v2 where
v1 and v2 are randomly chosen.

Figure 2(a) shows the results of this experiment. On the
x-axis queries are ranked in execution order. The y-axis
represents the cumulative time for each strategy, i.e., each
point (x, y) represents the sum of the cost y for the first
x queries. Evidently, cracking and sorting beat the simple
scan approach in the long run. The simple scan grows lin-
early with the number of queries. After sorting the data,

the cost of selecting any range in the column is in a few
micro seconds. The overhead is the sorting phase. The sort
loads the first query with an extra cost of 3 seconds, while a
simple scan-select needs 0.27 seconds, and the first cracking
operation costs 0.38 seconds. For cracking, only the first
query is slightly more expensive compared to simple select.
All subsequent queries benefit from previous ones and are
faster since they do not analyze every column value.

The cost of cracking highly depends on the size of the
piece that is being physically reorganized. This is the reason
why as more queries come cracking becomes cheaper. This
is visible in Figure 2(a) by observing the pace with which
the cracking curve grows. Initially, the curve grows faster
and then as more queries arrive, smaller pieces are cracked
and the curve grows with a smaller pace. Note, that in the
experiment of Figure 2(a) cracking has a cost ranging from
10 to 100 micro seconds. Our data show that this variation
is due to the size that is cracked each time. Figure 2(b)
shows the portion of the column that is analyzed each time
by the crackers select operator. The more queries arrive, the
less data need to be touched/physically reorganized.

A critical point when comparing cracking with sort is to
determine the break-even point, i.e., when their cumulative
costs become even. For a 10M values table, this is at around
105 queries in our current implementation (see Figure 2(a)).
Then, the investment of sorting starts to pay off. The over-
head of penalizing the first queries however remains.

Figure 2(c) shows how sort and cracking scale on larger
columns. As the size increases, cracking becomes more ad-
vantageous. For example, observe the points after 105 queries
to see what cracking gains. This phenomenon can be ex-
plained considering the algorithmic complexity. The first
cracking operation has a complexity of O(N), where N is
the size of the column, while sorting costs O(N log N).

The results shown in Figure 2 are subject to significant
improvements by a more “intelligent” maintenance strategy.
The break-even point can be shifted further into the future.
For example, in Figure 2(b) we see that already after the
first 8-10 queries cracking touches an order of magnitude
less data and becomes significantly faster (10 times faster
than simple select). In the experiments so far, the cracker



 1

 10

 100

 1000

 0  200  400  600  800  1000

Re
sp

on
se

 ti
m

e 
(m

illi
 s

ec
s)

Query sequence

0.2  

7000  

 
PostgreSQL
PostgreSQL with B-Tree
MySQL
MySQL with B-Tree
MonetDB/SQL
 
MonetDB/SQL with cracking

(a) A simple count(*) range query

 10

 100

 1000

 10000

 0  5  10  15  20  25

Re
sp

on
se

 ti
m

e 
(m

illi
 s

ec
s)

Query sequence

PostgreSQL with B-Tree
PostgreSQL
 
 
MySQL with B-Tree
MySQL
 
 
 
 
MonetDB/SQL
 
 
MonetDB/SQL with rel_select
 
 
 
 
MonetDB/X100
MonetDB/SQL with cracking
 
MonetDB/X100 clustered

(b) TPC-H query 6

Figure 4: Effect of cracking in some simple queries
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Figure 3: Effect of selectivity in the learning process

index is always updated and some portion is physically re-
organized. Cut-off strategies prove effective in this area,
i.e., we can disable index updates once the differential cost
of subsequent selects drops below a given threshold. Each
time the index is updated we pay the cost of this update
and future searches in the index become more expensive.
We are exploring strategies where there is the option to up-
date the index or not. Experiments where index updating
is manually disabled after a number of queries proved this
concept by speeding up future crackers select calls. Here a
cost model is needed to make a proper decision based on
current workload, size of the column etc.

Figure 3 shows the effect of selectivity on cracking. As
before, on a column of 107 tuples a series of range queries is
fired. This time we vary the selectivity by requesting such
ranges that the result size is always S tuples. The area where

a query range falls into the value space is still random. The
experiment is repeated for S=100,101,102,103 and 104.

In Figure 3, we show the cumulative cost for each run.
The main result seen is that the lower the selectivity the less
effort is needed for cracking to reach optimal performance.
This is explained as follows. With higher selectivities crack-
ing creates small pieces in a cracker column to be the result
of the current query but leave large pieces (those outside the
result set for the current query) to be analyzed by future
queries. In this way, future queries have a high probability
to physically reorganize large pieces. On the contrary, when
selecting large pieces the cracker column is partitioned more
quickly (with less queries) in more even pieces. However,
from Figure 3 it is clear that this pattern can be observed
but it is not one that dramatically affects performance for
cracking. In addition, the fact that ranges requested are
random clearly indicates that cracking successfully brings
the property of self-organization independently of the selec-
tivities used. In all cases, results obtained outperform those
of a sort based or a scan based strategy in a similar way as
observed in Figure 2.

7.2 Full query evaluation
A novel query processing technique calls for an evaluation

in the context of a fully functional system. In this section,
we provide an outlook on the evaluation of cracking using
SQL queries processed by MonetDB/SQL. Figure 4(a) shows
the results for the following query.

select count(*) from R where R.a > v1 and R.a < v2

The same experiment is ran with PostgreSQL and MySQL
both with and without using a B-tree on the attribute. To
avoid seeing the DSM/NSM effect, a a single column table is
used populated with 107 randomly created values between
0 and 9999. We fire a series of a thousand random queries.
Cracking quickly learns and significantly reduces the cost of
MonetDB (eventually more than two orders of magnitude)
while the rest of the systems maintain a quite stable perfor-
mance. Since queries are random, selectivities are random.
This example clearly demonstrates the ability of cracking to



adapt in an environment where there is no upfront knowl-
edge of what queries will be fired. For example, observe
that MySQL with a B-tree also reaches high performance for
some queries. These are queries with high selectivity where
the B-tree becomes useful. However, in order to maintain
such performance levels, a traditional system needs upfront
knowledge and a stable query workload.

Figure 4(b) shows the results for TPC-H query 6. Again,
cracking significantly improves the performance of MonetDB.
The graph flattens quickly due to the limited variation in the
values of the lineitem shipdate attribute (which is the one
that is being cracked). All systems have an extra cost for
the first query since this includes the cost of fetching the
data. Since in this query the rel select operator is used,
we include a run with the new rel select operator, but
without cracking, to clearly show the positive cracking ef-
fect. Detailed analysis of the trace shows room for further
improvement by exploiting the cracking information in other
operators as well.

We also include results obtained with the MonetDB/X100
prototype [15, 16]. Its architecture is aimed at pure pipelined
query performance and currently lacks a SQL front-end.
With cracking enabled, MonetDB/SQL performs slightly
better than MonetDB/X100 on unclustered data. It can be
beaten using a pre-clustered, compressed table and a hand-
compiled query plan, ignoring administrative and transac-
tion overhead. Moreover, the cost of the initial clustering
is ignored. This way, it shows the base-line performance
achievable in an ideal case. Since the techniques in both
source lines are orthogonal, we expect that applying crack-
ing in MonetDB/X100 will have a significant effect as well.

8. A RESEARCH LANDSCAPE
The study underway explores the consequences of crack-

ing in all corners of a database system architecture. It calls
for a reconsideration of both its algebraic core and its im-
pact on plan generation. In this section, we give a snippet
of the topics under investigation, open research issues and
challenging opportunities for cracking in a modern DBMS.

8.1 Optimizing for cracked query plans
There are some clear optimization opportunities in a cracked

query plan. For example, the cracked query plans for TPC-H
illustrate many opportunities for query optimization. With
the introduction of the crackers.rel select operator only
one attribute/column for each distinct relation involved in
a query, is physically reorganized. Thus, a choice needs to
be taken to decide which attribute to crack each time. This
is a choice that can affect performance significantly. Possi-
ble criteria may be the existence or not of a cracker index
and a cracker column, e.g., if there is a choice between two
attributes A1 and A2, where A1 has already been cracked
in the past while A2 has not, then it could be of benefit to
crack A1. This is because if A2 is cracked, then a copy of
the A2 column has to be created to be the cracker column
and the cracking algorithm has to go through all tuples of
A2 since this would be the first cracking operation on this
attribute. However, it is not clear whether this direction
will always be the right choice to make. For example, if the
query is not selective enough in A1 and highly selective in
A2 then a bigger intermediate result is created that leads to
more expensive operations further in the query plan. This
could be avoided if we would choose to crack A2 and pay

an extra cost while cracking. Even if the overall cost is the
same, an investment was made for the future to speed up
queries referring to A2. Spreading the “negative” effect of
cracking on the first query over multiple users is another
possibility.

However, there are even more parameters that one might
want to consider, e.g., storage space limitation. In this case,
our effort would be to minimize the number of attributes
cracked so that columns do not have to be replicated.

Notice, though, that a cracker index and a cracker col-
umn is information that is completely disposable, i.e., they
can be erased at any time without any overhead or per-
sistency issues. This observation means that a potential
self-organizing strategy could be possible where all cracked
columns that exist in a database must not exceed a given
maximum storage size S. Then, the available cracked columns
at each time depend on query workload, i.e., attributes that
are used often will be cracked to speedup future queries. S
may vary over time, allowing the system to adapt to both
query workload and resource restrictions.

Similarly with the above discussion, there is an optimiza-
tion opportunity regarding the order of crackers.rel select

operators (that operate on the same relation) in a query
plan. It is clear that we would like to have lower in the
query plan the crackers.rel select operator that creates
the smaller intermediate result so that we can speed up the
subsequent operators.

8.2 A histogram for free
Up to this point we have “used” the cracking data struc-

tures only in the context of the select operation. In the
following two subsections we will see two examples of how
a cracker index and a cracker column can be used for other
operations too.

The cracker index contains information on actual value
ranges of a given attribute. This is useful information that
can be potentially used in more cases than the select opera-
tor. For example, the cracker index could play the role of a
“histogram” and allow us to take decisions that will speed
up query processing. With a cracker index it is known for a
given range how many tuples in a column are in that range.
This could be a valuable approximate information, e.g., in
the case where the given range is not an exact match with
what exists in the cracker index.

Traditionally histograms are maintained separately, which
leads to an extra storage and operation cost. In addition,
they are not always up to date with the current status in the
database. On the contrary, with cracking the histogram-like
information comes for free since no extra storage or opera-
tions are needed to maintain it. An interesting observation,
is that here the histogram is a self-organized data struc-
ture as well; it creates and maintains information only for
parts of the data that are interesting for the users. This is a
powerful property for a structure that can potentially affect
many aspects of query processing performance.

8.3 Cracker joins
As we discussed in the previous subsection, the cracking

data structures can be useful for a number of operations. For
example consider the join operator. The join operator has
traditionally been the most expensive and challenging op-
erator in database systems. Nowadays, a modern database
system uses a large number of join algorithms to provide



efficient computation for various different cases. The crack-
ing data structures can be used to make the join problem
simpler.

For every attribute cracked, there exists a cracker col-
umn where tuples are clustered in various value ranges and
these clusters are partially sorted/clustered. In this way, it
is straightforward to device a sort merge-like algorithm that
operates directly on the cracker columns. The advantage is
that in this case there is no need to invest any time and re-
sources in preparing for the join, e.g., sort the data or create
a hash table. Instead, the join can directly start.

We envision that this can lead to significant speedup but
also it could potentially simplify the code base of a modern
DBMS by eliminating the need for all the different join im-
plementations. In addition, in a multi-core or distributed
environment, the natural properties of cracker columns will
allow us to identify disjoint sets of the two join operands
that can be computed at a different CPU or site.

8.4 More cracking operators
Until now we discussed open research directions where the

the cracked query plans can be optimized or the already ex-
isting cracking data structures can be exploited. The future
research agenda for cracking also includes the design of new
operators that exploit the basic concepts of cracking.

The core principles of a cracking operation is that it phys-
ically reorganizes data such that the result tuples of an op-
erator are cluster together. This happens while processing
queries and it is based on queries which gives the property
of self-organization. The challenge is to investigate if such
an approach is possible to design and implement in more
operators, other than the select operator. For example, is
it possible to apply this strategy for joins or aggregate op-
erations? This includes the creation of new algorithms that
apply physical reorganization, investigating the impact on
existing query plans and possible new operators or modifi-
cations necessary to materialize the cracking benefits. If this
is achieved, it will bring substantial improvements on overall
database performance since joins and aggregate operations
are amongst the most demanding operations.

An important challenge in this area is to efficiently sup-
port multiple cracking operators on the same attribute in a
query plan, e.g., is it possible to apply a cracking select op-
erations and a cracking join operation on the same attribute
for the same query?

8.5 Concurrency issues
Cracking means physical reorganization which naturally

creates various concurrency considerations. For example,
such a situation can occur when a query is using a cracker
column to feed a next operator in its query plan while an-
other query wants to start a cracking select on the same
attribute, and thus on the same cracker column. One can
think of various situations where concurrency issues arise.
Supporting concurrent access on cracker columns is an open
area with multiple opportunities.

For example, a first simple solution would be to restrict
access at the operator level, i.e., do not allow a query q1

to physically reorganize a cracker column c as long as c is
needed to be read by another operator in another query q2.
In this case, q1 might wait until q2 releases c or fall back to
the traditional non-cracking select operator on the original
columns. More exciting solutions can be created by carefully
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Figure 5: Behavior of cracking after batch insertions

identifying disjoint parts of the cracker column where queries
can safely operate (i.e., read and/or physically reorganize)
in parallel, e.g., the lock table can be defined in terms of the
cracker index.

8.6 Updates
Another important issue is that of updates. In prac-

tice, tables do not appear as fully instantiated before be-
ing queried; they grow over time. For the original columns,
that maintain the insertion order, an update is translated
in appending any new tuples. The critical issue is how the
cracker columns are updated.

In MonetDB, we experiment with an architecture to defer
updates using delta tables with pending insertions, deletions
and simple updates. Propagation to the original column
happens upon transaction commit. One approach for crack-
ing is to keep the modifications separate until their table size
surpasses a threshold. Pending update tables are merged
into the query plan by the cracker optimizer to compensate
for an out-of-date original column and cracker index.

In insert-only situations, all new tuples can be näıvely
appended at the end of a cracker column and “forget” the
cracker index. Rebuilding the index happens soon by queries
interested in the specific attribute. As the cracker column is
already partially sorted, future cracking operations become
faster. Figure 5 shows an example of what happens un-
der batch inserts. 103 queries are fired against a 10 million
column. Then we perform a batch insertion of another 10
million tuples, which are appended to the cracker column.
The cracker index is erased and we continue for another 103

queries, and so on. The figure clearly shows that cracking
quickly reaches high performance after each insertion.

8.7 Cracking out of memory
The experiments presented in this paper are all in an in-

memory environment. This is a reasonable choice to begin
with to avoid seeing any swapping overheads. One of the
next steps for cracking is to gracefully handle out of memory
data, i.e., how to crack a column when the column does
not fit in memory? Our initial experiments indicate that
cracking remains a significantly more lightweight operation
compared to sorting, or scanning a column. However, it is
clear that there are more opportunities in this area.



One of the options is to logically split the column into
multiple partitions in advance. Each partition fits in mem-
ory, for example the first partition contains the first x tuples,
the second one contains the next x tuples and so on. Thus,
partitioning is a zero cost operation since it only includes
marking each partition with its start and end position in the
cracker column. Then, each partition is cracked separately,
namely there exist a separate cracker column cracker index
pair for each partition. When processing queries a select
operator will search all cracker indices for a given attribute
and will physically reorganize each partition separately only
if it is needed. Results can be merged within the query
plan while the various partitions can be eventually merged
or further split into smaller ones.

This is a very flexible approach that leaves the core crack-
ing routines untouched and requires mainly some scheduling
at a higher level.

8.8 When to crack
The cracking architecture has been described with a basic

assumption/step, i.e., that physical reorganization happens
for each incoming query. However, it is clear from our exper-
imentation and experience that when cracking for very large
query sequences, we may face such conditions where it may
be of benefit not to further partition a cracker column. Ad-
ministration and maintenance of the cracker column-cracker
index pair becomes obviously more expensive when the num-
ber of pieces is increased.

There is a large number of opportunities here to explore in
order to further optimize data access. For example, we envi-
sion that there is a cut-off point in terms of the minimum size
for a piece in a cracker column, e.g., a disk page or a cache
line leading to a more cache conscious architecture. Fur-
thermore, following the self-organizing roots of cracking one
may invest research on designing algorithms where pieces
in a cracker column are not only partitioned when queries
arrive but also are merged, to reduce maintenance and ac-
cess cost on the cracker index. Here there is a need for
the proper cost models to take the various decisions on-line
while processing queries.

8.9 Apriori cracking
We already discussed that cracking targets environments

where there is not enough time to prepare data (sort/cluster
or create the proper index) and where there is not any work-
load knowledge. Notice though that there could be situa-
tions where there is indeed not enough idle time for a tra-
ditional index-based strategy but since cracking is a very
lightweight operation there might be enough time to per-
form a number of cracking operations. One of the crucial
observations from our experimentation is that already the
second query after a cracking operation shows significant
improvement in response time due to restricted data access.
In this way, one may run a number of fake queries on an
attribute as long as the system is idle so that future real
queries can benefit from an already existing and partitioned
cracker column.

8.10 Distributed cracking
Cracking is a natural way to partition data into “inter-

esting” pieces based on query workload. Therefore crack-
ing can be explored in a distributed or parallel setting by
distributing pieces of the database to multiple nodes. For

example, each node holds one or more pieces. The cracker
index can be known by all nodes so that a query can be
navigated to the appropriate node that holds the interest-
ing data. One can explore more sophisticated architectures
where the cracker index is also distributed to multiple nodes,
to reduce maintenance cost (more expensive in a distributed
setting mainly due to network traffic creation and delays).
In this way, each node has a partial knowledge of the index
and a partial knowledge of the data, thus there is a need for
the proper distributed protocols/query plans to correctly
and completely resolve a query. However, these are typical
requirements/research challenges in any distributed setting.
The key here is that the way data is distributed is done in a
self-organized way based on query workload which we envi-
sion that can lead to a distributed system with less network
overhead since interesting data for queries will be already
together.

Distributed cracking is a wide open research area. It
can be explored in the context of distributed or parallel
databases. Furthermore, it can be explored in the context
of P2P data management architectures where typically cur-
rent research is focusing on a relaxed notion of the strict
ACID database properties to allow for more flexible and
fault tolerant architectures. Distributed cracking can ex-
ploit these new trends to potentially minimize the traffic
creation caused by the self-organizing steps of cracking, i.e.,
data migration in a distributed environment.

8.11 Beyond the horizon
In this section, a large number of open research problems

and potential opportunities for cracking have been identi-
fied. The fact that cracking is possible to design and imple-
ment in a modern DBMS opens a large area for experimenta-
tion. We expect that the core idea of cracking, i.e., react on
the user request and perform the self-organizing step while
processing queries, can be heavily explored within a DBMS
and will lead to interesting results. Furthermore, cracking
can naturally be explored in distributed and parallel envi-
ronments.

9. RELATED RESEARCH
In this section, we briefly discuss related work. The re-

cently proposed system C-Store [14] is related to cracking
in many interesting ways. First, C-Store itself is also a
brave departure from the usual paths in database architec-
ture. C-Store is a column oriented database system, too.
The main architecture novelty of C-Store is that each col-
umn/attribute is sorted and this order is propagated to the
rest of the columns in the relation to achieve fast record re-
construction. In this way, multiple projections of the same
relation can be maintained, up to one for each attribute.
To handle the extra storage space required, compression is
used, which is also shown to speedup query execution in
column oriented databases [1, 16]. Thus, C-Store also phys-
ically reorganizes the data store. In many ways, a com-
parison between a cracking approach with the C-Store one
would contain the arguments used in the comparison with
the sort strategy. The main characteristic of cracking is its
self-organization based on the query workload, doing just
enough, touching enough of the data each time, and being
able to change the focus to different parts of the data dy-
namically. These properties are not explored in the C-Store
approach. On the other hand, taking the extreme route and



not doing just enough (i.e., sort the data) allows C-Store to
exploit compression in a way that is probably hardly jus-
tified in a cracker setting. Another important issue is how
updates are taken care of. While this is still an open issue for
all systems mentioned, it seems that for cracking updates are
a simpler problem since (a) there is less data to update, e.g.,
at most one extra column per attribute, while for C-Store
there are multiple copies of a single column participating in
different projections, and (b) maintaining a partially sorted
column is cheaper than a fully sorted one.

Partial indexing has not received much attention as the
prime scheme for organizing navigational access. Partial in-
dices have been proposed to index only those portions of
the database that are statistically likely to benefit query
processing [13, 12]. They are auxiliary index structures
equipped with range filters to ignore elements that should be
referenced from the index. Simulations and partial imple-
mentations in Postgres have been undertaken. They have
demonstrated the potential. The cracking index proposed
here goes a step further. It creates a partial index over
the storage space dynamically, rather then being told by a
DBA. Moreover, it clusters the data, which improves pro-
cessing significantly. And it has been implemented in its full
breadth in an SQL engine.

Semantic query caching has been proposed as a scheme
to optimize client-server interaction (in web and mobile set-
tings) by keeping track of queries and their answers [7, 8].
Significant performance improvement can be obtained when
a query can be answered through the cached results. Our
cracker maps provide a description of the previous queries
and the cracker index identifies the corresponding answers.
As such, it can act as a server-side semantic query cache.
The cracker map maintenance algorithm is expected to work
better, because the clustering results are kept in persistent
store. Even when we have to trim the cracker index, we can
do so with a clear few on the cost incurred to redo a cracking
over the pieces joined together.

Partitioned databases is another area where physical re-
organization was used to speed up data access. Data is par-
titioned on multiple disks or cites based on some criteria,
e.g., hash-based partitioning, range-based partitioning etc.
Similarly with our discussion for indices in general, in par-
titioned databases we need to decide a partitioning scheme
and then prepare the data. So the notion of self-organization
while queries are processed does not exist. Partitioning has
also been explored in the context of parallel and distributed
databases. Furthermore, it is a concept heavily used in the
current research on P2P databases, e.g., using Distributed
Hash Tables data is split among multiple nodes using hash-
ing. We envision that cracking techniques can be applied
in such distributed environments too, since partitioning is a
natural property that cracking brings into the database.

10. CONCLUSIONS
In this paper we introduced a database architecture based

on cracking. We show that cracking is possible and sim-
ple to implement and that changes required in the modules
of our experimentation platform MonetDB were straight-
forward to do. We clearly demonstrate that the resulting
system can self-organize based on incoming user requests by
significantly restricting data access. We show clear perfor-
mance benefits and we have set a promising future research
agenda.
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