
Publish/Subscribe for RDF-based P2P Networks

Paul - Alexandru Chirita1, Stratos Idreos2, Manolis Koubarakis2, and Wolfgang Nejdl1

1 L3S and University of Hannover
Deutscher Pavillon Expo Plaza 1

30539 Hannover, Germany
{chirita, nejdl }@learninglab.de

2 Intelligent Systems Laboratory, Department of Electronic and Computer Engineering,
Technical University of Crete, 73100 Chania, Crete, Greece
{sidraios, manolis }@intelligence.tuc.gr

Abstract. Publish/subscribe systems are an alternative to query based systems
in cases where the same information is asked for over and over, and where clients
want to get updated answers for the same query over a period of time. Recent
publish/subscribe systems such as P2P-DIET have introduced this paradigm in
the P2P context. In this paper we built on the experience gained with P2P-DIET
and the Edutella P2P infrastructure and present the first implementation of a P2P
publish/subscribe system supporting metadata and a query language based on
RDF. We define formally the basic concepts of our system and present detailed
protocols for its operation. Our work utilizes the latest ideas in query processing
for RDF data, P2P indexing and routing research.

1 Introduction

Consider a peer-to-peer network which manages metadata about publications, and a
user of this network, Bob, who is interested in the new publications of some specific
authors, e.g. Koubarakis and Nejdl. With conventional peer-to-peer file sharing net-
works like Gnutella or Kazaa, this is really difficult, because sending out queries which
either include “Koubarakis” or “Nejdl” in the search string will return all publications
from one these authors, and Bob has to filter out the new publications each time. With
an RDF-based peer-to-peer network, this is a bit easier, because Bob can formulate
a query, which includes a disjunction for the attribute “dc:creator” (i.e. dc:creator in-
cludes “Nejdl” or dc:creator includes “Koubarakis”), as well as a constraint on the date
attribute (i.e. dc:date> 2003), which includes all necessary constraints in one query and
will only return answers containing publications from 2004 on. Still, this is not quite
what Bob wants, because if he uses this query now and then during 2004, he will get all
2004 publications each time.

What Bob really needs from his peer-to-peer file sharing network are publish/subscribe
capabilities:

1. Advertising: Peers sends information about the content they will publish, for ex-
ample a Hannover peer announces that it will make available all L3S publications,
including publications from Nejdl, a Crete peer announces that it would do the same
for Koubarakis’ group.

2

2. Subscribing: Peers send subscriptions to the network, defining the kind of docu-
ments they want to retrieve. Bob’s profile would then express his subscription for
Nejdl and Koubarakis papers. The network should store these subscriptions near
the peers which will provide these resources, in our case near the Hannover and the
Crete peer.

3. Notifying: Peers notify the network whenever new resources become available.
These resources should be forwarded to all peers whose subscription profiles match
them, so Bob should regularily receive all new publications from Nejdl and Koubarakis.

In this paper we will describe how to provide publish/subscribe capabilities in an
RDF-based peer-to-peer system, which manages arbitrary digital resources, identified
by their URL and described by a set of RDF metadata. Our current application scenar-
ios are distributed educational content repositories in the context of the EU/IST project
ELENA [16], whose participants include e-learning and e-training companies, learn-
ing technology providers, and universities and research institutes (http://www.elena-
project.org/), our second application scenario being digital library environments.

Section 2 specifies the formal framework for RDF based pub/sub systems, including
the query language used to express subscriptions in our network. Section 3 discusses
the most important design aspects and optimizations necessary to handle large num-
bers of subscriptions and notifications, building upon the Super-Peer architecture and
HyperCuP protocol implemented in the Edutella system [10], as well as on index opti-
mizations first explored in the RDF context in P2P-DIET [9]. Section 4 includes a short
discussion of other important features of our system, and section 5 includes a survey of
related work.

2 A Formalism for Pub/Sub Systems Based on RDF

In this section we formalize the basic concepts of pub/sub systems based on RDF: ad-
vertisements, subscriptions, and publications. We will need atyped first-order language
L.L is equivalent to a subset of the Query Exchange Language (QEL) but has a slightly
different syntax that makes our presentation more formal. QEL is a Datalog-inspired
RDF query language that is used in the Edutella P2P network [11].

The logical symbols ofL include parentheses, a countably infinite set of variables
(denoted by capital letters), the equality symbol= and the standard sentential con-
nectives. The parameter (or non-logical) symbols ofL include types, constants and
predicates.L has four types:U (for RDF resource identifiersi.e., URI referencesor
URIrefs), S (for RDF literals that arestrings), Z (for RDF literals that areintegers),
andUL (for the union of RDF resource identifiers and RDF literals that are strings or
integers). The predicates of our language are< of type (Z,Z), w of type (S,S), and
t of type (U ,U ,UL). Predicate< will be used to compare integers, predicatew (read
“contains”) will be used to compare strings andt (read “triple”) will be used to repre-
sentRDF triples. Following the RDF jargon, in an expressiont(s, p, o), s will be called
thesubject, p thepredicateando theobjectof the triple.

The well-formed formulas ofL (atomic or complex) can now be defined as usual.
We can also define a semantics forL in the usual way. Due to space considerations, we
omit the technical details.

3

The following definitions give the syntax of our subscription language.

Definition 1. Anatomicconstraint is a formula ofL in one of the following three forms:
(a) X = c whereX is a variable andc is a constant of typeU , (b) X r c whereX is
a variable of typeZ, c is a constant of typeZ and r is one of the binary operators
=, <,≤, >,≥, and (c)X w c whereX is a variable andc is a constant, both of type
S. A constraintis a disjunction of conjunctions of atomic constraints (i.e., it is in DNF
form).

We can now define the notion of asatisfiableconstraint as it is standard.

Definition 2. A query (subscription)is a formula of the form

X1, . . . , Xn : t(S, p1, O1) ∧ t(S, p2, O2) ∧ · · · ∧ t(S, pm, Om) ∧ φ

whereS is a variable of typeU , p1, . . . , pm are constants of typeU , O1, . . . , Om are
distinctvariables of typeUL, {X1, . . . , Xn} ⊆ {S, O1, . . . , Om}, andφ is a constraint
involving a subset of the variablesS, O1, . . . , Om.

The above definition denotes the class ofsingle-resource multi-predicatequeries in
QEL. This class of queries can be implemented efficiently (as we will show in Section
3) and contains many interesting queries for P2P file sharing systems based on RDF. It
is easy to see that onlyjoin on S is allowed by the above class of queries (i.e.,S is a
subjectcommon to alltriples appearing in the subscription).

As it is standard in RDF literature, the triple notation utilizesqualified names or
QNamesto avoid having to write long formulas. A QName contains a prefix that has
been assigned to a namespace URI, followed by a colon, and then alocal name. In this
paper, we will use the following prefixes in QNames:

@prefix dc: <http://purl.org/dc/elements/1.1/>

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix isl: <http://www.intelligence.tuc.gr/publications/>

Example 1.The subscription “I am interested in articles authored by Nejdl or Koubarakis
in 2004” can be expressed by the following subscription:1

X: t(X,<rdf:type>, <dc:article>) ∧ t(X,<dc:creator>,Y) ∧
t(X,<dc:date>,D) ∧(Y w "Nejdl" ∨ Y w "Koubarakis") ∧ D=2004)

Queries(subscriptions) are evaluated over sets of RDF triples. IfT is a set of RDF
triples, thenans(q, T) will denote the answer set ofq when it is evaluated overT . This
concept can be formally defined as for relational queries with constraints.

We can now define the concept of subscription subsumption that is heavily exploited
in the architecture of Section 3.

Definition 3. Letq1, q2 be subscriptions. We will say thatq1 subsumesq2 iff for all sets
of RDF triplesT , ans(q2, T) ⊆ ans(q1, T).

1 Sometimes we will abuse Definition 2 and write a constantoi in the place of variableOi to
avoid an extra equalityOi = oi in φ.

4

We now define the concept ofpublication: the meta-data clients send to super-peers
whenever they make available new content. Publications and subscriptions are matched
at super-peers and appropriate subscribers are notified.

Definition 4. A publicationb is a pair (T, I) whereT is a set of ground (i.e., with no
variables) atomic formulas ofL of the formt(s, p, o) with thesameconstants (i.e., a set
of RDF triples with thesamesubject-URIref) andI is a client identifier. A publication
b = (T, I) matchesa subscriptionq if ans(q, T) 6= ∅.

Notice that because URIrefs are assumed to beunique, and subscriptions and publica-
tions obey Definitions 2 and 4, publication matching in the architecture of Section 3
takes placelocally at each super-peer.

Example 2.The publication

({t(<isl:esws04.pdf>, <rdf:type>, <dc:article>),

t(<isl:esws04.pdf>, <dc:creator>, "Koubarakis"),

t(<isl:esws04.pdf>, <dc:date>,2004) }, C3)

matches the subscription of Example 1.

We now define three progressively more comprehensive kinds of advertisement.
Advertisements formalize the notion of what clients or super-peers send to other nodes
of the network to describe their content in ahigh-level intentionalmanner. Super-peers
will match client subscriptions with advertisements to determine the routes that sub-
scriptions will follow in the architecture of Section 3. This is formalized by the notion
of “covers” below.

Definition 5. A schema advertisementd is a pair (S, I) whereS is a set of schemas
(constants of typeU i.e., URIrefs) andI is a super-peer id. Ifd = (S, I) then the
expressionschemas(d) will also be used to denoteS. A schema advertisementd covers
a subscriptionq if schemas(q) ⊆ schemas(d).

Example 3.The schema advertisement({dc, lom }, SP 1) covers the subscription
of Example 1.

Definition 6. A property advertisementd is a pair (P, I) whereP is a set of properties
(constants of typeU i.e., URIrefs) andI is a super-peer identifier. Ifd = (P, I) then
the expressionproperties(d) will also be used to denoteP . A property advertisement
d coversa subscriptionq if properties(q) ⊆ properties(d).

Example 4.The property advertisement({<dc:subject>, <lom:context> },
SP6) covers the subscription of Example 1.

Definition 7. A property/value advertisementd is a pair ((P1, V1), . . . , (Pk, Vk)), I)
whereP1, . . . , Pk are distinctproperties (constants of typeU i.e., URIrefs),V1, . . . , Vk

are sets of values forP1, . . . , Pk (constants of typeUL) andI is a super-peer identifier.

Definition 8. Let q be a subscription of the form of Definition 2 andd be a prop-
erty/value advertisement of the form of Definition 7. LetY1, . . . , Yk (1 ≤ k ≤ m)
be the variables among the objectso1, . . . , om of the triples ofq that correspond to the

5

propertiesP1, . . . , Pk of d. We will say thatd coversa subscriptionq if there exist val-
uesv1 ∈ V1, . . . , vk ∈ Vk such that the constraintφ[Y1 ← v1, . . . , Yk ← vk] resulting
from substituting variablesY1, . . . , Yk with constantsv1, . . . , vk in φ is satisfiable.

Example 5.The property/value advertisement

((<dc:creator>, { W. Nejdl, P. Chirita }),
(<dc:title>, {"Algorithms", "Data Structures" }),
(<dc:year>, [2002, ∞]), SP 1)

covers the subscription of Example 1. In the architecture of Section 3 this advertisement
will be sent using the RDF file given in the appendix of this paper.

3 Processing Advertisements, Subscriptions and Notifications

Efficiently processing advertisements, subscriptions and notifications is crucial for pub-
lish/subscribe services. After discussing our basic peer-to-peer topology based on the
super-peer architecture described in [10], we will describe the optimizations necessary
for processing advertisements, subscriptions and notifications in an efficient manner.

3.1 Basic Network Topology: Super-Peers and HyperCuP

Our publish/subscribe algorithm is designed for working with super-peer networks, i.e.
peer-to-peer networks, where peers are connected to super-peers who are responsible
for peer aggregation, routing and mediation.

Super-peer based infrastructures are usually based on a two-phase routing architec-
ture, which routes queries and subscriptions first in the super-peer backbone and then
distributes them to the peers connected to the super-peers. Super-peer based routing can
be based on different kinds of indexing and routing tables, as discussed in [4, 10]. In
the following sections we will also present indexing and routing mechanisms appro-
priate for publish/subscribe services. These will be based on two levels of indices, one
storing information to route within the super-peer backbone, and the other handling the
communication between a super-peer and the peers connected to it. These indices will
draw upon our previous work for query routing, as discussed in [10], as well as further
extensions and modifications necessary for publish/subscribe services.

Our super-peers are arranged in the HyperCuP topology, not only because this is
the solution adapted in the Edutella infrastructure [11], but also because of its special
characteristics regarding broadcasts and network partitioning. The HyperCuP algorithm
described in [15] is capable of organizing super-peers of a P2P network into a recursive
graph structure called hypercube that stems from the family of Cayley graphs. Super-
peers join the network by asking any of the already integrated super-peers which then
carries out the super-peer integration protocol. No central maintenance is necessary.

HyperCuP enables efficient and non-redundant query broadcasts. For broadcasts,
each node can be seen as the root of a specific spanning tree through the P2P network,
as shown in figure 1. The topology allows forlog2N path length andlog2N number
of neighbors, whereN is the total number of nodes in the network (i.e., the number of

6

Fig. 1.HyperCuP Topology and Spanning Tree Example
super-peers in this case). Peers connect to the super-peers in a star-like fashion, provid-
ing content and content metadata. Alternatives to this topology are possible provided
that they guarantee the spanning tree characteristic of the super-peer backbone, which
we exploit for maintaining our index structures.

3.2 Processing Advertisements

The first step in a publish/subscribe scenario is done by a clientc which sends an adver-
tisementa to its access pointAP , announcing what kind of resources it will offer in the
future. Access points use advertisements to constructadvertisement routing indicesthat
will be utilized when processing subscriptions (see Section 3.3 below). Advertisements
are then selectively broadcast fromAP to reach other access points of the network. The
advertisement indices are updated upon each advertisement arrival on three levels (we
use three separate indices): schema level, property (attribute) level, and property/value
level. Table 1 shows examples for these indices.

Schema Index.We assume that different peers will support different RDF schemas
and that these schemas can be uniquely identified (e.g. by an URI). The routing index
contains the schema identifier, as well as the peers supporting this schema. Subscrip-
tions are forwarded only to peers which support the schemas used in the subscription.

Property Index. Peers might choose to use only part of (one or more) schemas,
i.e. certain properties/attributes, to describe their content. While this is unusual in con-
ventional database systems, it is more often used for data stores using semi-structured
data, and very common for RDF-based systems. In this index, super-peers use the prop-
erties (uniquely identified by name space / schema ID plus property name) or sets of
properties to describe their peers. Sets of properties can also be useful to characterize
subscriptions.

Property/Value Index. For many properties it will be advantageous to create a
value index to reduce network traffic. This case is identical to a classical database index

7

Schema RouteTo
{dc, lom } SP1

Property RouteTo
{<dc:subject>, <lom:context> } SP6

{<dc:language> } SP7

Property Set of Values RouteTo
<dc:creator> { W. Nejdl, P. Chirita } SP1

<dc:title> {"Algorithms", "Data Structures" } SP1

<dc:year> [2002, ∞] SP1

<dc:year> [1990, 2000] SP2

Table 1.Advertisement Routing Indices Example: a) Schema Index; b) Property Index; c) Prop-
erty/Value Index

with the exception that the index entries do not refer to the resource, but the super-peer
/ peer providing it.

We use two kinds of indices: super-peer/super-peer indices (handling communica-
tion in the super-peer backbone) and super-peer/peer indices (handling communication
between a super-peer and all peers connected to it). Except for the functionality they
employ, both indices use the same data structures, have the same update process, etc.

Update of Advertisement Indices.Index updates are triggered when a new peer reg-
isters, a peer leaves the system permanently or migrates to another access point, or the
metadata information of a registered peer changes. Peers connecting to a super-peer
have to register their metadata information at this super-peer thus providing the nec-
essary schema information for constructing the SP/P and SP/SP advertisement indices.
During registration, an XML registration message encapsulates a metadata-based de-
scription of the peer properties. A peer is assigned at least one schema (e.g., the dc or
the lom element set) with a set of properties (possibly with additional information) or
with information about specific property values.

If a peer leaves a super-peer all references to this peer have to be removed from the
SP/P indices of the respective super-peer. The same applies if a peer fails to re-register
periodically. In the case of a peer joining the network or re-registering, its respective
metadata/schema information are matched against the SP/P entries of the respective
super-peer. If the SP/P advertisement indices already contain the peers’ metadata, only
a reference to the peer is stored in them. Otherwise the respective metadata with ref-
erences to the peer are added to the indices. The following algorithm formalizes this
procedure:

We defineS as a set of schema elements:S = {si | i = 1...n}. The super-peerSPx

already stores a setSx of schema elements in its SP/P indices. The SP/P indices of a
super-peerSPx can be considered as a mappingsi 7→ {Pj | j = 1...m}. A new peer
Py registers at the super peerSPx with a setSy of schema elements.

1. If Sy ⊆ Sx, then addPy to the list of peers at eachsi ∈ Sy

8

2. Else, ifSy \ Sx = {sn, ..., sm} 6= ∅, then update the SP/P indices by adding new
rowssn 7→ Py, ..., sm 7→ Py.

Generally, upon receiving an advertisement, the access point (let’s call itSPa) will
initiate a selective broadcasting process. After the advertisement has been received by
another super-peer (saySPi), it is matched against its advertisement indices and up-
dated using the algorithm described above. When this operation does not result in any
modification of the advertisement indices, no further broadcasting is necessary. So for
example if a peer publishes something on Physics and the advertisement indices are
already sending subscriptions on this topic towards this partition of the network, then
there is no need to update these indices, nor any other indices further down the spanning
tree of the super-peer network – they will also be pointing towardsSPa already.

3.3 Processing Subscriptions

When a clientC posts a subscriptionq to its access pointSP , which describes the re-
sourcesC is interested in,SP introducesq into its local subscription posetand decides
whether to further forward it in the network or not. A subscription poset is a hierarchical
structure of subscriptions and captures the notion of subscription subsumption defined
in Section 2. Figure 2 shows an example of a poset. The use of subscription posets
in pub/sub systems was originally proposed in SIENA [2]. Like SIENA, our system
utilizes the subscription poset to minimize network traffic: super-peers do not forward
subscriptions which are subsumed by previous subscriptions.

Fig. 2.Poset Example

As shown in the example, each super-peer will add to its local subscription poset
information about where the subscription came from (either from one of the peers con-
nected to it or from another super-peer). The addition of super-peer information in the
poset reduces the overall network traffic and is therefore very important.

9

Once a super-peer has decided to send the subscription further, it will initiate a
selective broadcast procedure (based on the HyperCuP protocol). Upon subscription re-
ceival, a super-peer will have to use its advertisement routing indices in order to decide
whether to send it to its neighboring super-peers along the spanning tree or not. There
are two criteria which need checked:

1. If the indices contain a super-peer that supports the targeted schema (or properties),
but there is no information about the values it covers, then we route the subscription
to the respective super-peer, using HyperCuP.2

2. If there is also information about the values it covers, then we check if the values are
consistent with the constraints of the subscription. If yes, we route the subscription
forward, otherwise, we don’t.

We give a more formal description of this routing process in the algorithm below.

Algorithm 1 . Routing subscriptions.

Let q be the subscription. Then, q is of the form:
t1(x,< s1 : p1 >, a1) ∧ ... ∧ tm(x,< sm : pm >, am) ∧ C(ap1) ∧ ... ∧ C(apf)
si are (possibly) different schemas,
pi are (possibly) different attributes,
ai are either constants or variables; for allai which are variables we have

some additional constraints on them at the end of the subscription.
Let us denote theSchema IndexSI,

Property IndexPI,
Property/Value IndexPVI.

Finally, let us consider the subscription came on dimension D of the HyperCuP spanning tree.
1: pvFound← false; pFound← false;
2: for all si : pi do
3: if si : pi ∈ PV I then pvFound← true;
4: if si : pi ∈ PI then pFound← true;
5: if pFound∧ pvFoundthen break;
6: if ¬pFound∧ ¬pvFoundthen
7: for all targetsti ∈ SI, dimension(ti) ≥ D do
8: for all sj do if sj /∈ SI then break;
9: if j=m then routeToti; // All tuples have matched
10: exit;
11: if pFound∧ ¬pvFoundthen
12: for all targetsti ∈ SI ∪ PI, dimension(ti) ≥ D do
13: for all sj : pj do if (sj /∈ SI) ∧ (sj : pj /∈ PI) then break;
14: if j=m then routeToti;
15: exit;

2 The HyperCuP algorithm usesdimensionsto avoid sending a message twice to the same
peer/super-peer. Every broadcast message is sent only on higher dimensions than the dimen-
sion on which it was received. See [10] for more details.

10

16: for all targetsti ∈ PV I, dimension(ti) ≥ D do
17: for all (sj : pj , aj) do
18: if (sj : pj ⊂ l ∈ PV I) ∧ (aj * l ∈ PV I) then break;
19: if (sj : pj /∈ PV I) ∧ (sj : pj /∈ PI ∪ SI) then break;
20: if j=m then routeToti;

3.4 Processing Notifications

When a new notification arrives at the super-peer, it is first matched against the root
subscriptions of its local subscription poset (see also figure 2). In case of a match with
the subscription stored in a root node R, the notification is further matched against
the children of R, which contain subscriptions refining the subscription from R. For
each match, the notification is sent to a group of peers/super-peers (those where the
subscription came from), thus following backwards the exact path of the subscription.
The complete algorithm is depicted in the following lines.

Algorithm 2 . Notification Processing.

Let P be the poset and n the notification.
1: function match (posetEntry pe, notification n)
2: if n ⊇ pe then
3: for all targetsti ∈ pe do routeToti;
4: for all childrenci ∈ pe do match (ci, n);
5: end function;
6:
7: for all rootsri ∈ P do match (ri, n);

4 Handling Dynamicity in a P2P Pub/Sub Network

As peers dynamically join and leave the network, they may be offline when new re-
sources arrive for them. These are lost if no special precautions are taken. In the follow-
ing we discuss which measures are necessary to enable peers to receive notifications
which arrive during off-line periods of these peers.

4.1 Offline Notifications and Rendezvous at Super-Peers

Whenever a clientA disconnects from the network, its access pointAP keepsthe client’s
identification information and subscriptions for a specified period of time, and its in-
dices will not reflect thatA has left the network. This means that notifications forA will
still arrive atAP, which has to store these and deliver them toA after he reconnects.

11

Fig. 3.An off-line notification, rendezvous and migration example

A client may request a resource at the time that it receives a notificationn, or later on,
using a saved notificationn on his localnotifications directory.

Let us now consider the case when a clientA requests a resourcer, but the resource
owner clientB is not on-line. ClientA requests the address ofB from AP2 (the access
point of B). In such a case, clientA may request arendezvouswith resourcer from
AP2with a message that contains the identifier ofA, the identifier ofB, the address of
AP and the location ofr. When clientB reconnects,AP2 informsB that it must upload
resourcer to AP as arendezvous filefor client A. Then,B uploadsr. AP checks ifA is
on-line and if it is,AP forwardsr to A or elser is stored in therendezvous directoryof
APand whenA reconnects, it receives a rendezvous notification fromAP.

The features of off-line notifications and rendezvous take place even if clients mi-
grate to different access points. For example, let us assume that clientA has migrated
to AP3. The client program understands that it is connected to a different access point
AP3, so it requests fromAP any rendezvous or off-line notifications and informsAP
that it is connected to a different access point.A receives the rendezvous and off-line

12

notifications and updates the variable’sprevious access pointwith the address ofAP3.
Then,AP updates its SP/P and SP/SP indices. Finally,A sends toAP3 its subscriptions
andAP3updates its SP/P and SP/SP indices. A complete example is shown in Figure 3.

4.2 Peer Authentication

Typically, authentication of peers in a peer-to-peer network is not crucial, and peers
connecting to the network identify themselves just using their IP-adresses. In a pub/sub
environment, however, where we have to connect peers with their subscriptions and
want to send them all notifications relevant for them, this leads to two problems:

– IP addresses of peers may change. Therefore the network will not be able to deliver
any notifications, which might have been stored for a peer during his absence, after
he reconnects with another IP address. Furthermore, all subscriptions stored in the
network for this peer lose their relationship to this peer.

– Malicious peers can masquerade as other peers by using the IP address of a peer cur-
rently offline. They get all notifications for this peer, which are then lost to the orig-
inal peer. Moreover they can change the original peer’s subscriptions maliciously.

We therefore have to use suitable cryptography algorithms to provide unique iden-
tifiers for the peers in our network (see also the discussion in [7]).

When a new clientx wants to register to the network, it generates a pair of keys
(Ex, Dx) whereEx is thepublic keyof x (or theencryption key) andDx is theprivate
keyof x (or thedecryption key) as in [13]. We assume that the clientx has already found
the IP address and public key of one of the super-peerss, through some secure means
e.g., a secure web site. Then,x securely identifies the super-peers and if this succeeds,
it sends an encrypted message tos (secure identification and encryption are explained
below). The message contains the public key, the IP address and port ofx. The super-
peers decrypts the message and creates aprivate unique identifierand apublic unique
identifier for x by applying the cryptographically secure hash function SHA-1 to the
concatenated values of current date and time, the IP address ofs, the current IP address
of x and a very large random number. The properties of the cryptographically secure
hash function now guarantee that it is highly unlikely that a peer with exactly the same
identifiers will enter the network. Then,s sends the identifiers tox with an encrypted
message. From there on the private identifier is included to all messages fromx to
its access-point and in this way a super-peer knows who sends a message. The private
identifier of a client is never included in messages that other clients will receive; instead
the public identifier is used. To clarify the reason why we need both public and private
identifiers we give the following example. When a clientx receives a notificationn, n
contains the public identifier of the resource ownerx1. Whenx is ready to download
the resource, it communicates with the access-point ofx1and uses this public identifier
to request the address ofx1. If a client-peer knows the private identifier ofx then it can
authenticate itself asx, but if it knows the public identifier ofx then it can only use it
to request the address ofx or set up a rendezvous with a resource owned byx. All the
messages that a client-peerx sends to a super-peer and contain the private identifier of
x are encrypted. In this way, no other client can read such a message and acquire the
private identifier ofx.

13

Secure identificationof peers is carried out as in [7]. A peerA can securely iden-
tify another peerB by generating a random numberr and sendEB(r) to B. PeerB
sends a reply message that contains the numberDB(EB(r)). Then, peerA checks if
DB(EB(r)) = r in which case peerB is correctly identified. For example, in our sys-
tem super-peers securely identify client-peers as described above before delivering a
notification. In this case, the super-peer starts a communication session with a client-
peer so it cannot be sure that the client-peer listens on the specific IP address.

When a client disconnects, its access point does not erase the public key or identi-
fiers of; it only erases the private identifier from the active client list. Later on, when
the client reconnects, it will identify itself using its private identifier and it will send to
its access point, its new IP address. In case that the client migrates to a different access
point, it will notify the previous one, so that it erases all information about the client.
Then, the client securely identifies the new access point and sends a message to it that
contains the public key, the public and the private identifiers and the new IP address of
the client. All the above messages are encrypted since they contain the private identifier
of the client.

5 Analysis of Other Publish/Subscribe Systems

In this section we review related research on pub/sub systems in the areas of distributed
systems, networks and databases.

Most of the work on pub/sub in the database literature has its origins in the paper
[5] by Franklin and Zdonik who coined the termselective dissemination of informa-
tion. Other influential work was done in the context of SIFT [18] where publications
are documents in free text form and queries are conjunctions of keywords. SIFT was
the first system to emphasize query indexing as a means to achieve scalable filtering in
pub/sub systems [17]. Since then work concentrated on query indexing for data models
based on attribute-value pairs and query languages based on attributes with comparison
operators. A most notable effort among these works is [1] because it goes beyond con-
junctive queries – the standard class of queries considered by all other systems. More
recent work has concentrated on publications that are XML documents and queries that
are subsets of XPath or XQuery (e.g., Xtrie [3] and others).

In the area of distributed systems and networks various pub/sub systems with data
models based onchannels, topicsandattribute-value pairs(exactly like the models of
the database papers discussed above) have been developed over the years [2]. Systems
based on attribute-value pairs are usually calledcontent-basedbecause their data mod-
els are flexible enough to express the content of messages in various applications. Work
in this area has concentrated not only on filtering algorithms as in the database papers
surveyed above, but also on distributed pub/sub architectures. SIENA [2] is probably
the most well-known example of system to be developed in this area. SIENA uses a
data model and language based on attribute-value pairs and demonstrates how to ex-
press notifications, subscriptions and advertisements in this language. From the point
of view of this paper, a very important contribution of SIENA is the adoption of apeer-
to-peermodel of interaction among servers (super-peers in our terminology) and the
exploitation of traditional network algorithms based on shortest paths and minimum-

14

weight spanning trees for routing messages. SIENA servers additionally utilize par-
tially ordered sets encoding subscription and advertisement subsumption to minimize
network traffic. The core ideas of SIENA have recently been used by some of us in the
pub/sub systems DIAS [8] and P2P-DIET (http://www.intelligence.tuc.
gr/p2pdiet) [9]. DIAS and P2P-DIET offer data models inspired from Information
Retrieval and, in contrast with SIENA, have also emphasized the use of sophisticated
subscription indexing at each server to facilitate efficient forwarding of notifications. In
summary, the approach of DIAS and P2P-DIET puts together the best ideas from the
database and distributed systems tradition in a single unifying framework. Another im-
portant contribution of P2P-DIET is that it demonstrates how to support by very similar
protocols the traditionalone-timequery scenarios of standard super-peer systems [19]
and the pub/sub features of SIENA [9].

With the advent of distributed hash-tables (DHTs) such as CAN, CHORD and Pas-
try, a new wave of pub/sub systems based on DHTs has appeared. Scribe [14] is a
topic-based publish/subscribe system based on Pastry. Hermes [12] is similar to Scribe
because it uses the same underlying DHT (Pastry) but it allows more expressive sub-
scriptions by supporting the notion of an event type with attributes. Each event type in
Hermes is managed by an event broker which is a rendezvous node for subscriptions
and publications related to this event. PeerCQ [6] is another notable pub/sub system im-
plemented on top of a DHT infrastructure. The most important contribution of PeerCQ
is that it takes into account peer heterogeneity and extends consistent hashing with sim-
ple load balancing techniques based on appropriate assignment of peer identifiers to
network nodes.

6 Conclusions

Publish/subscribe capabilities are a necessary extension of the usual query answering
capabilities in peer-to-peer networks, and enable us to efficiently handle the retrieval of
answer to long-standing queries over a given period of time, even if peers connect to
and disconnect from the network during this period.

In this paper we have discussed how to incorporate publish/subscribe capabilities in
an RDF-based P2P network, specified a formal framework for this integration, including
an appropriate subscription language, and described how to optimize the processing of
subscriptions and notifications handling in this network.

Further work will include the full integration of these capabilities into our existing
P2P prototypes Edutella and P2P-DIET, as well as further investigations for extend-
ing the query language in this paper with more expressive relational algebra and IR
operators, while still maintaining efficient subscription/notification processing.

7 Acknowledgements

The work of Stratos Idreos and Manolis Koubarakis is supported by project Evergrow
funded by the European Commission under the 6th Framework Programme (IST/FET,
Contract No 001935).

15

References

1. A. Campailla and S. Chaki and E. Clarke and S. Jha and H. Veith. Efficent filtering in
publish-subscribe systems using binary decision diagrams. InProc. of 23rd International
Conference on Software Engineering, Toronto, Ontario, Canada, 2001.

2. A. Carzaniga, D.-S. Rosenblum, and A.L Wolf. Design and evaluation of a wide-area event
notification service.ACM Transactions on Computer Systems, 19(3):332–383, August 2001.

3. C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient Filtering of XML Doc-
uments with XPath Expressions. InProceedings of the 18th International Conference on
Data Engineering, pages 235–244, February 2002.

4. A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. InProceedings
of the 22th International Conference on Distributed Computing Systems, 2002.

5. M.J. Franklin and S.B. Zdonik. “Data In Your Face”: Push Technology in Perspective. In
Proceedings ACM SIGMOD International Conference on Management of Data, 1998.

6. B. Gedik and L. Liu. PeerCQ: A Decentralized and Self-Configuring Peer-to-Peer Infor-
mation Monitoring System. InProceedings of the 23rd IEEE International Conference on
Distributed Computer Systems, May 2003.

7. M. Hauswirth, A. Datta, and K. Aberer. Handling identity in peer-to-peer systems. Technical
report, LSIR-EPFL.

8. M. Koubarakis, T. Koutris, C. Tryfonopoulos, and P. Raftopoulou. Information alert in dis-
tributed digital libraries: Models, languages and architecture of dias. InProceedings of the
6th European Conference on Research and Advanced Technology for Digital Libraries, 2002.

9. M. Koubarakis, C. Tryfonopoulos, S. Idreos, and Y. Drougas. Selective Information Dissem-
ination in P2P Networks: Problems and Solutions.ACM SIGMOD Record, Special issue on
Peer-to-Peer Data Management, K. Aberer (editor), 32(3), September 2003.

10. W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and A. Loser.
Super-peer based routing and clustering strategies for rdf-based peer-to-peer networks. In
Proceedings of the 12th International World Wide Web Conference, 2003.

11. Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambjrn Naeve,
Mikael Nilsson, Matthias Palmer, and Tore Risch. Edutella: A p2p networking infrastructure
based on rdf. InProceedings of the 11th International World Wide Web Conference, 2002.

12. P.R. Pietzuch and J.M. Bacon. Hermes: A distributed event-based middleware architec-
ture. InProceedings of the 1st International Workshop on Distributed Event-Based Systems
(DEBS’02), July 2002.

13. R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digital signatures and
public-key cryptosystems.CACM, 21(2):120–126, February 1978.

14. A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. Scribe: the design of a large-
scale event notification infrastructure. In J. Crowcroft and M. Hofmann, editors,3rd Inter-
national COST264 Workshop, 2001.

15. Mario Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Nejdl. HyperCuP – hyper-
cubes, ontologies and efficient search on peer-to-peer networks. InProceedings of the 1st
Workshop on Agents and P2P Computing, Bologna, 2002.

16. Bernd Simon, Zoltn Mikls, Wolfgang Nejdl, Michael Sintek, and Joaquin Salvachua. Smart
space for learning: A mediation infrastructure for learning services. InProceedings of the
Twelfth International Conference on World Wide Web, Budapest, Hungary, May 2003.

17. T.W. Yan and H. Garcia-Molina. Index structures for selective dissemination of information
under the boolean model.ACM Transactions on Database Systems, 19(2):332–364, 1994.

18. T.W. Yan and H. Garcia-Molina. The SIFT information dissemination system.ACM Trans-
actions on Database Systems, 24(4):529–565, 1999.

19. B. Yang and H. Garcia-Molina. Designing a super-peer network. InProceedings of the 19th
International Conference on Data Engineering (ICDE 2003), March 5–8 2003.

