Query Processing in Super-Peer Networks with
Languages Based on Information Retrieval: the
P2P-DIET Approach*

Stratos Idreos!, Christos Tryfonopoulos!, Manolis Koubarakis', and
Yannis Drougas?

! Intelligent Systems Laboratory, Department of Electronic and Computer
Engineering, Technical University of Crete, 73100 Chania, Crete, Greece
{sidraios, trifon, manolis}@intelligence.tuc.gr
2 Department of Computer Science and Engineering, University of California
Riverside, CA 92521, USA
drougas@cs.ucr.edu

Abstract. This paper presents P2P-DIET, an implemented resource
sharing system that unifies ad-hoc and continuous query processing in
super-peer networks. P2P-DIET offers a simple data model for the de-
scription of network resources based on attributes with values of type
text and a query language based on concepts form Information Re-
trieval. The focus of this paper is on the main modelling concepts of
P2P-DIET (meta-data, advertisements and queries), the routing algo-
rithms (inspired by the publish/subscibe system SIENA) and the scal-
able indexing of resource meta-data and queries.

1 Introduction

The main application scenario considered in recent peer-to-peer (P2P) data shar-
ing systems is that of ad-hoc querying: a user poses a query (e.g., “I want music
by Moby”) and the system returns a list of pointers to matching files owned by
various peers in the network. Then, the user can go ahead and download files
of interest. The complementary scenario of selective dissemination of informa-
tion(SDI) or publish/subscribe [6,2] has started receiving attention only recently
[2,7,16,10,15,17]. In an SDI scenario, a user posts a continuous query or profile
to the system to receive notifications whenever certain resources of interest are
published (e.g., when a song of Moby becomes available). SDI can be as useful as
ad-hoc querying in many target applications of P2P networks ranging from file
sharing, to more advanced applications such as alert systems for digital libraries,
e-commerce networks etc.

At the Intelligent Systems Laboratory of the Technical University of Crete,
we have recently concentrated on the problem of SDI in P2P networks in the

* This work was partially supported by project DIET (IST-1999-10088), within the
UIE initiative of the IST/FET Programme of the European Commission.

context of project DIET!. Our work, summarized in [11], has culminated in the
implementation of P2P-DIET, a service that unifies ad-hoc and continuous query
processing in P2P networks with super-peers. P2P-DIET will be demonstrated
at EDBT 2004 [9].

A high-level view of the P2P-DIET architecture and its software layers is
shown in Figure 1. There are two kinds of nodes: super-peers and clients. All
super-peers are equal and have the same responsibilities, thus the super-peer
subnetwork is a pure P2P network (it can be an arbitrary undirected graph).
Each super-peer serves a fraction of the clients and keeps indices on the resources
of those clients.

Clients can run on user computers. Resources (e.g., files in a file-sharing ap-
plication) are kept at client nodes, although it is possible in special cases to
store resources at super-peer nodes. Clients are equal to each other since the
software running at each client node is equivalent in functionality. Clients re-
quest resources directly from the resource owner client. A client is connected
to the network through a single super-peer node, which is the access point of
the client. It is not necessary for a client to be connected to the same access
point continuously; client migration is supported in P2P-DIET. Clients can con-
nect, disconnect or even leave from the system silently at any time. To enable
a higher degree of decentralization and dynamicity, we also allow clients to use
dynamic IP addresses. If clients are not on-line, notifications matching their
interests are stored for them by their access points and delivered once clients
reconnect. If resource owners are not on-line, requesting clients can set up a ren-
dezvous to obtain the required resources. P2P-DIET offers the ability to add or
remove super-peers. Additionally, it supports a simple fault-tolerance protocol
based on are-you-alive messages among super-peers, and among super-peers and
their clients. Finally, P2P-DIET provides message authentication and message
encryption using public key cryptography.

Conceptually, P2P-DIET is a direct descendant of DIAS, a Distributed In-
formation Alert System for digital libraries, that was presented in [10] but was
not fully implemented. P2P-DIET combines ad-hoc querying as found in other
super-peer networks [19] and SDI as proposed in DIAS. P2P-DIET has been im-
plemented on top of the open source DIET Agents Platform? and it is currently
available at http://www.intelligence.tuc.gr/p2pdiet.

The contributions of this paper are the following:

— We review the P2P-DIET data model AWP for describing resources using
textual meta-data. We show how to express formally publications, queries
and advertisements in AWP.

— We present briefly the super-peer architecture of P2P-DIET, the protocols
for handling advertisements, publications, queries, answers and notifications
and discuss how they relate to the protocols of SIENA [2] and EDUTELLA
[14]. With respect to our earlier proposal DIAS [10], the new concept here
(and in the data model) is that of advertisement. Other new features that

! http://www.dfki.de/diet
2 http://diet-agents.sourceforge.net/

Graphic User Interface
Client Application Specific Agents
Agent C Protocols
Filtering Algorithms
Application Language

T T T

Agent C Protocols

Q0

. P2P-DIET CP .

resource metadata rendezvous /
stored notification

Directories

Routing Core Layer

Network topology
Fault-tolerance mechanism

DIET Agents Platform

(a) (b)

request / send resource

Fig. 1. The architecture and the layered view of P2P-DIET

distinguish P2P-DIET from DIAS and other recent systems [2,7, 16,15, 17]
(client migration, dynamic IP addresses, stored notifications and rendezvous,
fault-tolerance mechanisms, and message authentication and encryption) are
not discussed and can be found in [8].

— We introduce the new filtering algorithm BestFitTrie used by super-peers in
P2P-DIET for matching textual resource meta-data with continuous queries.
We compare BestFitTrie with appropriate extensions of the algorithms used
by the earlier SDI system SIFT [18], and discuss their relative strengths and
weaknesses.

The rest of the paper is organized as follows. Section 2 presents the meta-
data model and query language used for describing and querying resources in
the current implementation of P2P-DIET. Section 3 discusses the protocols for
processing advertisements, publications, queries, answers and notifications. Sec-
tion 4 presents BestFitTrie and compares it with other alternatives. Section 5
concludes the paper. There is no related work section; instead, comparison of
P2P-DIET with related systems is interspersed with our presentation.

2 The Data Model AWP

In [10] we have presented the data model AWP for specifying queries and teztual
resource meta-data in SDI systems such as P2P-DIET. AWP is based on the
concept of attributes with values of type text. The query language of AWP offers
Boolean and prozimity operators on attribute values as in the work of [3] which
is based on the Boolean model of Information Retrieval (IR).

Syntax. Let X be a finite alphabet. A word is a finite non-empty sequence of
letters from X. Let V be a (finite or countably infinite) set of words called the

vocabulary. A text value s of length n over vocabulary V is a total function
s:{1,2,...,n} = V.

Let Z be a set of (distance) intervals T = {[l,u] : L,bu € NJI > 0and ! <
utU{[l,00): I € Nand > 0}. A proxzimity formula is an expression of the form
w1 <4y - <4, , W, Where wy, ..., w, are words of V and 4, ...,i, are intervals
of Z. Operators <; are called proximity operators and are generalizations of
the traditional IR operators kW and kN [3]. Proximity operators are used to
capture the concepts of order and distance between words in a text document.
The proximity word pattern wy <) w2 stands for “word w, is before wy and
is separated by ws by at least | and at most u words”. The interpretation of
proximity word patterns with more than one operator <; is similar. A word
pattern over vocabulary V is a conjunction of words and proximity formulas. An
example of a word pattern is applications A selective <[g) dissemination <o 3
in formation.

Let A be a countably infinite set of attributes called the attribute universe.
In practice attributes will come from namespaces appropriate for the application
at hand e.g., from the set of Dublin Core Metadata Elements?.

A publication n is a set of attribute-value pairs (4, s) where A € A, s is a
text value over V, and all attributes are distinct. The following is a publication:

{ (AUTHOR, “John Smith”),
(TITLE, “Selective dissemination of information in P2P systems”),
(ABSTRACT, “In this paper we show that ...”) }

A query is a conjunction of atomic formulas of the form A = s or A J wp
where A € A, s is a text value and wp is a word pattern. The following is a

query:

AUTHOR = “John Smith” A
TITLE J (peer-to-peer A (selective <[o,o) dissemination <[) information))

Advertisements in P2P-DIET come in two kinds. An attribute advertisement
is a subset of the attribute universe A. An attribute/value advertisement is a
set of pairs (4, {s1,...,s,}) where every A € A and every s1,...,s, are text
values. Intuitively, advertisements are intentional descriptions of the content a
peer expects to publish to the network. In this matter we follow STENA [2] and
EDUTELLA [14]. The former kind of advertisement gives only the attributes
used by a peer to describe its content (e.g., a peer might use only TITLE and
AUTHOR), while the latter also lists the expected values of certain attributes
(e.g., a peer might have only John Smith, John Brown and Tom Fox as authors).
Attribute/value advertisements can be interpreted as disjunctions of equalities
of the form A = s;. As we will see in Section 3, advertisements are used to prune
the paths of queries broadcasted in the super-peer network.

Semantics. The semantics of AWP have been defined in [10] and will not be
presented here in detail. It is straightforward to define when a publication n

3 http://purl.org/dc/elements/1.1/

satisfies an atomic formula of the form A = s or A J wp, and then use this
notion to define when n satisfies a query or an advertisement [10].

Let ¢; and g2 be queries. We will say that go subsumes q; if every publication
n that satisfies ¢; also satisfies ¢o. The notion of advertisement subsumption is
defined in the same way.

Let a be an attribute advertisement and g be a query. We will say that
a covers q if the set of attributes of ¢ are a subset of a. The advertisement
a={AUTHOR, TITLE, ABSTRACT, BODY, DATE} covers the example query
given above.

Let a be an attribute/value advertisement and ¢ be a query. We will say that
a covers q if a subsumes gq. We will say that a and ¢ are inconsistent if there is
no publication n that satisfies both. The advertisement
{(AUTHOR, {“John Smith”, “John Brown”,“Tom Fox”})} covers the example
query given above. The advertisement {(AUTHOR, {“John Brown”, “Tom Fox”})}
is inconsistent with the above query.

Although AWP concentrates only on textual information, it is straightfor-
ward to extend it with numeric attributes (e.g., PRICE etc.).

3 Routing and Query Processing

P2P-DIET targets content sharing applications such as digital libraries [10] and
networks of learning repositories [13]. Assuming that these applications are sup-
ported by P2P-DIET, we expect that there will be a stakeholder (e.g., a content
provider such as Akamai) with an interest in building and maintaining the super-
peer subnetwork. Thus super-peer subnetworks in P2P-DIET are expected to be
more stable than typical pure P2P networks such as Gnutella. As a result, we
have chosen to use routing algorithms appropriate for such networks. The rest of
this section discusses these routing algorithms; the detailed protocols for super-
peer join/leave, client join/leave, client migration, etc. are discussed in [8].

Advertisements. P2P-DIET clients advertise the resources they expect to pub-
lish in the system by sending an advertisement message to their access point.
Advertisement forwarding in the super-peer backbone is then realized by the
classic reverse path forwarding algorithm [20]: each advertisement message ar-
riving at super-peer X through edge FE is forwarded along all edges different
than E if X believes that the best way to get to the source of the query is via F.
This requires computation and storage of one-to-all shortest path information
at each super-peer. Our measure of delay (weight on the edges of the network
graph) is number of hops but we can easily implement other measures such as la-
tency. As in SIENA, an advertisement poset is kept at each super-peer encoding
advertisement subsumption as originally suggested in [2].

Ad-hoc queries. In the typical ad-hoc query scenario, a client C' can post a
query ¢ to its access point AP through a query message. The message contains
the identifier of C) the IP address and port of C and the query ¢q. AP broad-
casts ¢ to all super-peers using reverse path forwarding. The advertisements

present at each super-peer are used to prune broadcasting paths. An attribute
advertisement a blocks further propagation of query ¢ if ¢ does not cover q. An
attribute/value advertisement a blocks further propagation of query ¢ if ¢ and
a are inconsistent. Answers are produced for all matching network resources,
by the super-peers that hold the appropriate resource metadata. A super-peer
that generates an answer a, forwards a directly to C using the IP address and
port of C' included in the query ¢. Each super-peer can be understood to store
a relation resource(ID, Ay, As, ..., A,) where ID is a resource identifier and
Ay, As, ..., A, are the attributes of A4 used by the super-peer. In our implemen-
tation, relation resource is implemented by keeping an inverted file index for
each attribute A;. The index maps every word w in the vocabulary of A; to the
set of resource I Ds that contain word w in their attribute A;. Query evaluation
at each super-peer is then implemented efficiently by utilizing these indices in
the standard way [1].

Continuous queries. SDI scenarios are also supported. Clients may subscribe
to their access point with a continuous query expressing their information needs.
Super-peers then forward posted queries to other super-peers. In this way, match-
ing a query with meta-data of a published resource takes place at a super-peer
that is as close as possible to the origin of the resource. A continuous query pub-
lished by a client C' is identified by the identifier of C' and a very large random
number, query id assigned by C at the time that the query was generated.

Whenever a resource is published by a client, P2P-DIET makes sure that it
satisfies the advertisements made previously by the same client or else a new ad-
vertisement message, that contains the extra information for this client must be
submitted to the client’s access point and forwarded in the super-peer backbone.
Then, other clients with continuous queries matching this resource’s meta-data
are notified. A notification is generated at the access point AP; where the re-
source was published, and travels to the access point AP, of every client that has
posted a continuous query matching this notification following the shortest path
from AP; to AP,. Then, the notification is delivered to the interested clients for
further processing [8].

Each super-peer manages an index over its continuous queries. This index is
used to solve the filtering problem: Given a database db of conjunctive continuous
queries g expressed in the Boolean subset of AWPS and a resource meta-data
item r, find all continuous queries ¢ € db that match r. Using this index, a super-
peer can generate notifications when resource meta-data items are published by
its clients. Additionally, each super-peer manages a continuous query poset that
keeps track of the subsumption relations among the continuous queries posted
to the super-peer by its clients or forwarded by other super-peers. This poset is
again inspired by SIENA [2] and it is used to minimize network traffic: in each
super-peer no continuous query that is less general than one that has already
been processed is actually forwarded. Using this data structure each super-peer in
the shortest path that connects AP, to AP, finds out neighbouring super-peers
or client-peers that have posted continuous queries that match n (less general
than the query that fired the notification) and forwards n to them. The filtering

algorithm utilised in the current implementation of P2P-DIET is described in
the following section.

We expect P2P-DIET networks to scale to very large numbers of clients,
and high rates of advertisements, publications and queries. While a detailed
performance analysis substantiating our claim is beyond the scope of this paper,
we expect the indexing and poset data structures kept at each super-peer to
be the main technical tools that help us to achieve scalability. To be able to
scale to very large numbers of super-peers, we could substitute our arbitrary
graph super-peer topology with one that guarantees efficient and non-redundant
query broadcasts. In fact this is exactly what we have done in [4] using the
hypercube topology HyperCup. Similar ideas have been presented in [17] where
a distributed hash table topology based on Chord has been used.

4 Filtering Algorithms

In this section we present and evaluate BestFitTrie, a main memory algorithm
that solves the filtering problem for conjunctive queries in AWP. Because our
work extends and improves previous algorithms for SIFT [18], we adopt termi-
nology from SIFT in many cases.

BestFitTrie uses two data structures to represent each published document
d: the occurrence table OT(d) and the distinct attribute list DAL(d). OT(d) is a
hash table that uses words as keys, and is used for storing all the attributes of the
document in which a specific word appears, along with the positions that each
word occupies in the attribute text. DAL(d) is a linked list with one element
for each distinct attribute of d. The element of DAL(d) for attribute A points
to another linked list, the distinct word list for A (denoted by DW L(A)) which
contains all the distinct words that appear in A(d).

To index queries BestFitTrie utilises an array, called the attribute directory
(AD), that stores pointers to word directories. AD has one element for each
distinct attribute in the query database. A word directory W D(DB;) is a hash
table that provides fast access to roots of tries in a forest that is used to organize
sets of words — the set of words in wp; (denoted by words(wp;)) for each atomic
formula B; J wp; in a query. The proximity formulas contained in each wp; are
stored in an array called the prozimity array (PA). PA stores pointers to trie
nodes (words) that are operands in proximity formulas along with the respective
proximity intervals for each formula. There is also a hash table, called equality
table (ET), that indexes all text values s; that appear in atomic formulas of the
form A; = s;.

When a new query g of the form given above arrives, the index structures are
populated as follows. For each attribute A4;,1 < ¢ < n, we hash text value s; to
obtain a slot in ET where we store the value A;. For each attribute B;,1 < j < m,
we compute words(wp;) and insert them in one of the tries with roots indexed
by WD(Bj). Finally, we visit PA and store pointers to trie nodes and proximity
intervals for the proximity formulas contained in wp;.

Id [Query B: J wp: [Identifying Subsets

0 B; 3 databases {databases}

1 B; 1 relational <[2 databases {databases, relational }

2 B; O databases A relational {databases, relational}

3 B; 3 (software <|g 2 neural <o networks) Al||{databases, relational, neural}, ...
(software <[3) relational <o 0 databases)

4 B; J optimal A (artificial <q) intelligence) Al||{databases, relational, artificial, in-
relational A databases telligence, optimal}, ...

5 B; 1 artificial A relational A intelligence Al||{databases, relational, artificial, in-
databases A knowledge telligence, knowledge }, ...

Table 1. Identifying subsets of words(wp;) with respect to S = {words(wp;), i =
0,...,5}.

Let us now explain how each word directory WD(B;) and its forest of tries
are organised. The main idea behind this data structure is to store sets of words
compactly by exploiting their common elements. In this way, memory space is
preserved and filtering becomes more efficient as we will see below.

Definition 1. Let S be a set of sets of words and s1,s2 € S with so C s1. We
say that sy is an identifying subset of s; with respect to S iff ss = s, or Ar € S
such that so C r.

The sets of identifying subsets of two sets of words s; and so with respect to a
set S is the same if and only if s; is identical to so. Table 1 shows some examples
that clarify these concepts.

The sets of words words(wp;) are organised in the word directory WD(B;)
as follows. Let S be the set of sets of words currently in WD(B;). When a new
set of words s arrives, BestFitTrie selects an identifying subset ¢ of s with respect
to S and uses it to organise s in W D(B;). The algorithm for choosing ¢ depends
on the current organization of the word directory and will be given below.

Throughout its existence, each trie T of W D(B;) has the following properties.
The nodes of T store sets of words and other data items related to these sets.
Let sets-of-words(T) denote the set of all sets of words stored by the nodes of
T. A node of T stores more than one set of words if and only if these sets are
identical. The root of T (at depth 0) stores sets of words with an identifying
subset of cardinality one. In general, a node n of T at depth i stores sets of
words with an identifying subset of cardinality « + 1. A node n of T at depth 4
storing sets of words equal to s is implemented as a structure consisting of the
following fields:

— Word(n): the i + 1-th word w; of identifying subset {wq,...,w;—1,w;} of
s where wy,...,w;_1 are the words of nodes appearing earlier on the path
from the root to node n.
— Query(n): a linked list containing the identifier of query ¢ that contained
word pattern wp for which {wy, . .., w; } is the identifying subset of sets-of-words(T).

{Networks, Software}

Intelligence N
(4]
Knowledge

(a) BestFitTrie (b) PrefixTrie

[51

Fig. 2. BestFitTrie vs. PrefixTrie for the atomic queries of Table 1

— Remainder(n): if node n is a leaf, this field is a linked list containing the
words of s that are not included in {wy,...,w;}. If n is not a leaf, this field
is empty.

— Children(n): a linked list of pairs (w;y1, ptr), where w; ;1 is a word such
that {wo, ..., w;, w;y1} is an identifying subset for the sets of words stored
at a child of w; and ptr is a pointer to the node containing the word w;1.

The sets of words stored at node n of T are equal to {wy, . . ., w, }URemainder(n),
where wg, . .., w, are the words on the path from the root of T' to n. An identi-
fying subset of these sets of words is {wo, ..., w, }. Figure 2(a) shows the general
form of our index structure (we have omitted ET and PA). The part of WD(B;)
corresponding to the queries of Table 1 is shown in full including lists Query(n)
and Remainder(n). The purpose of Remainder(n) is to allow for the delayed
creation of nodes in trie. This delayed creation lets us choose which word from
Remainder(n) will become the child of current node n depending on the sets of
words that will arrive later on.

The algorithm for inserting a new set of words s in a word directory is as
follows. The first set of words to arrive will create a trie with the first word
as the root and the rest stored as the remainder. The second set of words will
consider being stored at the existing trie or create a trie of its own. In general,
to insert a new set of words s, BestFitTrie iterates through the words in s and
utilises the hash table implementation of the word directory to find all candidate
tries for storing s: the tries with root a word of s. To store sets as compactly
as possible, BestFitTrie then looks for a trie node n such that the set of words
({wo, ..., w,}URemainder(n))Ns, where {wo, ..., w,} is the set of words on the
path from the root to n, has maximum cardinality. There may be more than one
node that satisfies this requirements and such nodes might belong to different
tries. Thus BestFitTrie performs a depth-first search down to depth |s|—1 in all
candidate tries in order to decide the optimal node n. The path from the root ton
is then extended with new nodes containing the words in 7 = (s\ {wg, ..., w, })N

Remainder(n). If s C {wy, . .., w, }URemainder(n), then the last of these nodes
I becomes a new leaf in the trie with Query(l) = Query(n) U {¢q} (q is the
new query from which s was extracted) and Remainder(l) = Remainder(n) \
7. Otherwise, the last of these nodes [points to two child nodes I3 and [s.
Node I; will have Word(l;) = u, where u € Remainder(n) \ 7, Query(ly) =
Query(n) and Remainder(ly) = Remainder(n) \ (7 U {u}). Similarly node Iy
will have Word(lz) = v, where v € s\ ({wo,...,w,} UT), Query(lz) = ¢
and Remainder(lz) = s\ ({wo,...,w,} U7 U {u}). The complexity of inserting
a set of words in a word directory is linear in the size of the word directory
but exponential in the size of the inserted set. This exponential dependency is
not a problem in practice because we expect queries to be small and the crucial
parameter to be the size of the query database (this is a standard data complexity
assumption for an SDI environment).

The filtering procedure utilises two arrays named Total and Count. Total
has one element for each query in the database and stores the number of atomic
formulas contained in that query. Array Count is used for counting how many
of the atomic formulas of a query match the corresponding attributes of a docu-
ment. Each element of array Count is set to zero at the beginning of the filtering
algorithm. If at algorithm termination, a query’s entry in array Total equals its
entry in Count, then the query matches the published document, since all of its
atomic formulas match the corresponding document attributes.

When a document d is published at the server, filtering proceeds as follows.
BestFitTrie hashes the text value C(d) contained in each document attribute
C and probes the ET to find matching atomic formulas with equality. Then
for each attribute C' in DAL(d) and for each word w in DWL(C), the trie
of WD(C') with root w is traversed in a breadth-first manner. Only subtrees
having as root a word contained in C(d) are examined, and hash table OT'(d)
is used to identify them quickly. At each node n of the trie, the list Query(n)
gives implicitly all atomic formulas C' J wp; that can potentially match C(d)
if the proximity formulas in wp; are also satisfied. This is repeated for all the
words in DW L(C), to identify all the qualifying atomic formulas for attribute
C. Then the proximity formulas for each qualifying query are examined using
the polynomial time algorithm prox from [12]. For each atomic formula satisfied
by C(d), the corresponding query element in array Count is increased by one. At
the end of the filtering algorithm arrays Total and Count are traversed and the
values stored for each query are compared. The equal entries in the two arrays
give us the queries satisfied by d.

To evaluate the performance of BestFitTrie we have also implemented algo-
rithms BF, SWIN and PrefixTrie. BF (Brute Force) has no indexing strategy
and scans the query database sequentially to determine matching queries. SWIN
(Single Word INdex) utilises a two-level index for accessing queries in an effi-
cient way. A query of the form presented at the beginning of this section is
indexed by SWIN under all its attributes Ay,...,A,,B1,..., By and also un-
der n text values si, ..., s, and m words selected randomly from wp1, ..., Wpn,.
More specifically SWIN utilises an ET to index equalities and an AD pointing

10

to several W Ds to index the atomic containment queries. Atomic queries within
a WD slot are stored in a list. PrefixTrie is an extension of the algorithm Tree of
[18] appropriately modified to cope with attributes and proximity information.
Tree was originally proposed for storing conjunctions of keywords in secondary
storage in the context of the SDI system SIFT. Following Tree, PrefixTrie uses
sequences of words sorted in lexicographic order for capturing the words appear-
ing in the word patterns of atomic formulas (instead of sets used by BestFitTrie).
A trie is then used to store sequences compactly by exploiting common prefizes
[18].

Algorithm BestFitTrie constitutes an improvement over PrefixTrie. Because
PrefixTrie examines only the prefixes of sequences of words in lexicographic
order to identify common parts, it misses many opportunities for clustering.
BestFitTrie keeps the main idea behind PrefixTrie but searches exhaustively the
current word directory to discover the best place to introduce a new set of words.
This allows BestFitTrie to achieve better clustering as shown in Figure 2, where
we can see that BestFitTrie needs only one trie to store the set of words for
the formulas of Table 1, whereas PrefixTrie introduces redundant nodes that are
the result of using a lexicographic order to identify common parts. This node
redundancy can be the cause of deceleration of the filtering process as we will
show in the next section. The only way to improve beyond BestFitTrie would
be to consider re-organizing the word directory every time a new set of words
arrives, or periodically. We have not explored this approach in any depth.

4.1 Experimental Evaluation

We evaluated the algorithms presented above experimentally using a set of doc-
uments downloaded from ResearchIndex? and originally compiled in [5]. The
documents are research papers in the area of Neural Networks and we will refer
to them as the NN corpus. Because no database of queries was available to us,
we developed a methodology for creating user queries using words and techni-
cal terms (phrases) extracted automatically from the Research Index documents
using the C-value/NC-value approach of [5].

All the algorithms were implemented in C/C++, and the experiments were
run on a PC, with a Pentium IIT 1.7GHz processor, with 1GB RAM, running
Linux. The results of each experiment are averaged over 10 runs to eliminate
any fluctuations in the time measurements. The time shown in the graphs is
elapsed time in milliseconds and no other processes were run on the PC during
the experiments.

The first experiment that we conducted to evaluate our algorithms tar-
geted the performance of the four algorithms under different sizes of the query
database. In this experiment we randomly selected one hundred documents from
the NN corpus and used them as incoming documents in the query databases
of different sizes. The size and the matching percentage for each document used

4 http://www.researchindex.com

11

2000

1800 | PrefixTrie ---x-
SWIN -8
1600

1400

1200

Throughput (KB / sec)

1000 <

Filtering Time (msec)

800 -

600 |- 4

400 o

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Total Input Size (KB)

| . . L BF-1M —— BF-2M

BestFiTrie-1M ——+— BestFitTrie-2M —— BestFilTrie-3M ——x—
05 1 15 2 25 s PrefixTrie-1M -+ PrefixTrie-2M - PrefixTrie-3M -
Millions of queries SWIN-IM —+ SWIN-2M SWIN-3M

—— BF-3M —x—

(a) (b)

Fig. 3. Effect of the query database size in filtering time and throughput

was different but the average document size was 6869 words, whereas on average
1% of the queries stored matched the incoming documents.

As we can see in Figure 3(a), the time taken by each algorithm grows linearly
with the size of the query database. However SWIN, PrefixTrie and BestFitTrie
are less sensitive than Brute Force to changes in the query database size. The
trie-based algorithms outperform SWIN mainly due to the clustering technique
that allows the exclusion of more non-matching atomic queries filtering. We can
also observe that the better exploitation of the commonalities between queries
improves the performance of BestFitTrie over PrefixTrie, resulting in a significant
speedup in filtering time for large query databases. Additionally, Figure 3(b)
contrasts the algorithms in terms of throughput were we can see that BestFitTrie
gives the best filtering performance managing to process a load of about 150KB
(about 9 ResearchIndex papers) per second for a query database of 3 million
queries.

In terms of space requirements BF needs about 15% less space than the
trie-based algorithms, due to the simple data structure that poses small space
requirements. Additionally the rate of increase for the two trie-based algorithms
is similar to that of BF, requiring a fixed amount of extra space each time. From
the experiments above it is clear that BestFitTrie speeds up the filtering process
with a small extra storage cost, and proves faster than the rest of the algorithms,
managing to filter as much as 3 million queries in less the 200 milliseconds,
which is about 10 times faster than the sequential scan method. Finally the
query insertion rate that the two trie-based algorithms can support is about 40
queries/second for a database containing 2.5 million queries.

We have also evaluated the performance of the algorithms under two other
parameters: document size and percentage of queries matching a published doc-
ument. Finally we have developed various heuristics for ordering words in the

12

tries maintained by PrefixTrie and BestFitTrie when word frequency information
(or word ranking) is available as it is common in IR research [1]. The details of
these experiments are omitted due to space considerations.

5

Conclusions

We presented P2P-DIET, a service that unifies ad-hoc and continuous query
processing in P2P networks with super-peers. Currently our work concentrates
on implementing the super-peer subnetwork of P2P-DIET using topologies with
better properties and compare it analytically and experimentally with our cur-
rent implementation. Our first steps in this direction are presented in [4].

References

1.

10.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

. A. Carzaniga, D.-S. Rosenblum, and A.LL Wolf. Design and evaluation of a

wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332-383, August 2001.

C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. Predicate Rewriting for Trans-
lating Boolean Queries in a Heterogeneous Information System. ACM Transactions
on Information Systems, 17(1):1-39, 1999.

P.A. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl. Publish/Subscribe for RDF-
based P2P Networks. In Proceedings of the 1st Furopean Semantic Web Sympo-
stum, May 2004.

L. Dong. Automatic term extraction and similarity assessment in a domain specific
document corpus. Master’s thesis, Dept. of Computer Science, Dalhousie Univer-
sity, Halifax, Canada, 2002.

M.J. Franklin and S.B. Zdonik. “Data In Your Face”: Push Technology in Per-
spective. In Proceedings ACM SIGMOD International Conference on Management
of Data, pages 516519, 1998.

B. Gedik and L. Liu. PeerCQ:A Decentralized and Self-Configuring Peer-to-Peer
Information Monitoring System. In Proceedings of the the 23rd International Con-
ference on Distributed Computing Systems, May 2003.

S. Idreos and M. Koubarakis. P2P-DIET: A Query and Notification Service Based
on Mobile Agents for Rapid Implementation of P2P Applications. Technical Report
TR-ISL-2003-01, Intelligent Systems Laboratory, Dept. of Electronic and Com-
puter Engineering, Technical University of Crete, June 2003.

S. Idreos, M. Koubarakis, and C. Tryfonopoulos. P2P-DIET: Ad-hoc and Con-
tinuous Queries in Super-peer Networks. In Proceedings of the IX International
Conference on Extending Database Technology (EDBT04), March 2004.

M. Koubarakis, T. Koutris, C. Tryfonopoulos, and P. Raftopoulou. Information
Alert in Distributed Digital Libraries: The Models, Languages and Architecture of
DIAS. In Proceedings of the 6th European Conference on Research and Advanced
Technology for Digital Libraries (ECDL 2002), volume 2458 of Lecture Notes in
Computer Science, pages 527-542, September 2002.

13

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Koubarakis, C. Tryfonopoulos, S. Idreos, and Y. Drougas. Selective Infor-
mation Dissemination in P2P Networks: Problems and Solutions. ACM SIGMOD
Record, Special issue on Peer-to-Peer Data Management, K. Aberer (editor), 32(3),
September 2003.

M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris. Data models
and languages for agent-based textual information dissemination. In Proceedings
of 6th International Workshop on Cooperative Information Systems (CIA 2002),
volume 2446 of Lecture Notes in Computer Science, pages 179-193, September
2002.

W. Nejdl, B. Wolf, Changtao Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmer, and T. Risch. Edutella: A P2P Networking Infrastructure Based on
RDF. In Proc. of WWW-2002. ACM Press, 2002.

W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and
A. Loser. Super-peer based routing and clustering strategies for rdf-based peer-to-
peer networks. In Proceedings of the 12th International World Wide Web Confer-
ence, 2003.

P.R. Pietzuch and J. Bacon. Peer-to-Peer Overlay Broker Networks in an Event-
Based Middleware. In Proceedings of the 2nd International Workshop on Dis-
tributed Event-Based Systems (DEBS’03), June 2003.

D. Tam, R. Azimi, and H.-Arno Jacobsen. Building Content-Based Pub-
lish/Subscribe Systems with Distributed Hash Tables. In Proceedings of the 1st In-
ternational Workshop On Databases, Information Systems and Peer-to-Peer Com-
puting, September 2003.

W.W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A.P. Buchmann. A Peer-to-
Peer Approach to Content-Based Publish/Subscribe. In Proceedings of the 2nd In-
ternational Workshop on Distributed Event-Based Systems (DEBS’03), June 2003.
T.W. Yan and H. Garcia-Molina. Index structures for selective dissemination of
information under the boolean model. ACM Transactions on Database Systems,
19(2):332-364, 1994.

B. Yang and H. Garcia-Molina. Designing a super-peer network. In Proceedings of
the 19th International Conference on Data Engineering (ICDE 2003), March 5-8
2003.

Y.K. Dalal and R.M. Metcalfe. Reverse path forwarding of broadcast packets.
Communications of the ACM, 21(12):1040-1048, December 1978.

14

