
Enhanced Stream Processing in a DBMS Kernel

Erietta Liarou? Stratos Idreos† Stefan Manegold† Martin Kersten†

?EPFL, Switzerland
erietta.liarou@epfl.ch

†CWI, Amsterdam
{idreos,manegold,mk}@cwi.nl

ABSTRACT
Continuous query processing has emerged as a promising query
processing paradigm with numerous applications. A recent devel-
opment is the need to handle both streaming queries and typical
one-time queries in the same application. For example, data ware-
housing can greatly benefit from the integration of stream seman-
tics, i.e., online analysis of incoming data and combination with
existing data. This is especially useful to provide low latency in
data-intensive analysis in big data warehouses that are augmented
with new data on a daily basis.

However, state-of-the-art database technology cannot handle streams
efficiently due to their “continuous" nature. At the same time,
state-of-the-art stream technology is purely focused on stream ap-
plications. The research efforts are mostly geared towards the cre-
ation of specialized stream management systems built with a dif-
ferent philosophy than a DBMS. The drawback of this approach is
the limited opportunities to exploit successful past data processing
technology, e.g., query optimization techniques.

For this new problem we need to combine the best of both worlds.
Here we take a completely different route by designing a stream en-
gine on top of an existing relational database kernel. This includes
reuse of both its storage/execution engine and its optimizer infras-
tructure. The major challenge then becomes the efficient support
for specialized stream features. This paper focuses on incremen-
tal window-based processing, arguably the most crucial stream-
specific requirement. In order to maintain and reuse the generic
storage and execution model of the DBMS, we elevate the problem
at the query plan level. Proper optimizer rules, scheduling and in-
termediate result caching and reuse, allow us to modify the DBMS
query plans for efficient incremental processing. We describe in
detail the new approach and we demonstrate efficient performance
even against specialized stream engines, especially when scalabil-
ity becomes a crucial factor.

1. INTRODUCTION
Kranzberg’s second law states that “invention is the mother of ne-
cessity". Though history proves that great technological innova-
tions were given birth at certain periods to fulfill stressed human
needs, the technological evolution of the recent years in many sci-
entific areas, creates new needs all over again.

Scientific evolution on various research areas brought data over-
loading on many aspects of our lives. Modern applications com-
ing from various fields, e.g., astronomy, physics, finance and web
applications, require fast data analysis over data that are continu-
ously growing. The Large Synoptic Survey Telescope (LSST) [3]
is a characteristic paradigm. In 2015 astronomers will be able to
scan the sky from a mountain-top in Chile, recording 30 Terabytes
of data every night which incrementally will lead a 150 Petabyte
database (over the operation period of ten years). It will be captur-
ing changes to the observable universe, evaluating huge statistical
calculations over the entire database. Another characteristic data-
driven example is the Large Hadron Collider (LHC) [2], a particle
accelerator that will revolutionize our understanding for the uni-
verse, generating 60 Terabytes of data every day (4Gb/sec). The
same model stands for modern data warehouses which enrich their
data on a daily basis creating a strong need for quick reaction and
combination of scalable stream and traditional processing [35].

A new processing paradigm is born [27, 14, 18] where we need
to quickly analyze incoming streams of data and possibly combine
them with existing data in order to discover trends and patterns.
Subsequently, we may also store the new data to the data warehouse
for further analysis in the future if necessary. This new paradigm
requires scalable query processing that can combine continuous
querying for fast reaction to incoming data with traditional query-
ing for access to existing data. However, neither pure database tech-
nology nor pure stream technology are designed for this purpose.

The traditional database technology typically faces a data process-
ing problem, by first loading and organizing all data before it can
analyze it. In most cases this strategy works fine, but when the
requirement for fast and on-the-fly continuous analysis of high vol-
ume data becomes essential, this model becomes inefficient and
slow-witted. Databases do not contain the mechanisms to support
continuous query processing. In a stream application, queries re-
spond to data arriving continuously at high rates. To achieve good
processing performance, i.e., handling input data within strict time
bounds, a system should provide incremental processing to avoid
considering the same data over and over again. In addition, it
should scale to handle numerous queries at a time [33] as each
query stays alive for a long time. Furthermore, environment and

workload changes call for adaptive processing strategies to achieve
the best query response time. The hooks for building a continu-
ous streaming application are not commonly available in Database
Management Systems (DBMS) and thus the pioneering Data Stream
Management Systems (DSMS) architects naturally designed sys-
tems from scratch giving birth to interesting novel ideas and system
architectures [7, 8, 12, 13, 15, 20].

On the other hand, the current generation of data stream systems are
purely specialized on query processing over streaming (temporary)
data. By designing from scratch completely different architectures
aimed at the specifics of streaming applications, very few of the ex-
isting techniques for relational databases were reused. This became
more pressing as the stream applications demanded more database
functionality and scalability, which called for more generic solu-
tions. For this reason, [10] argues towards “mimicking" how tra-
ditional relational engines work by decoupling the storage man-
agement part from the query processing part in a stream engine
towards a more generic system. A simple way to achieve process-
ing integration of persistent and temporary data, is by externally
connecting a stream engine with a foreign-body DBMS [5, 1, 11].
However, these are not scalable solutions for high volume data.

This way, a few efforts have emerged the last few years towards a
complete integration of database and streaming technology [27, 14,
18]. The past years we are developing a system, named DataCell
[27, 28], that integrates both streaming and database technologies
in the most natural way; a fully functional stream engine is de-
signed on top of an extensible DBMS kernel. The goal is to fully
exploit the generic storage and execution engine as well as its com-
plete optimizer stack. Stream processing then becomes primarily a
query scheduling task, i.e., make the proper queries see the proper
portion of stream data at the proper time. A positive side-effect is
that our architecture supports SQL’03, which allows stream appli-
cations to exploit sophisticated query semantics.

Numerous research and technical questions immediately arise. The
most prominent issues are the ability to provide specialized stream
functionality and hindrances to guarantee real-time constraints for
event handling. [27] illustrates the DataCell architecture and sets
the research path and critical milestones.

Contributions. In this paper, we focus on the core of stream-
ing applications, i.e., incremental stream processing and window-
based processing. Window queries form the prime programming
paradigm in data streams, i.e., we break an initially unbounded
stream into pieces and continuously produce results using a focus
window as a peephole on the data content passing by. Successively
considered windows may overlap significantly as the focus window
slides over the stream. It is the cornerstone in the design of stream
engines and typically specialized operators are designed to avoid
work when part of the data falls outside the focus window. Most
relational operators underlying traditional DBMSs cannot operate
incrementally without a major overhaul of their implementation.
Here, we show that efficient incremental stream processing is, how-
ever, possible in a DBMS kernel handling the problem at the query
plan and scheduling level. For this to be realized the relational
query plans are transformed in such a way that the stream is broken
into pieces and different portions of the plan are assigned to differ-
ent portions of the focus window data. DataCell takes care that this
“partitioning" happens in such a way that we can exploit past com-
putation during future windows. As the window slides, the stream
data also “slides" within the continuous query plan.

Receptors EmittersParser/Compiler

Optimizer
Rewriter

Scheduler/Factories

Kernel
Baskets Tables

Figure 1: The DataCell Architecture

We discuss in detail our design of the DataCell prototype, which
is based on the open-source column-store MonetDB. In particular,
we illustrate the methods to extend the optimizer with the ability
to create and rewrite them into incremental plans. A detailed ex-
perimental analysis demonstrates that DataCell supports efficient
incremental processing, comparable to a specialized stream engine
or even better in terms of scalability.

Outline. The remainder of this paper is organized as follows. Sec-
tion 2 provides the necessary background. Section 3 discusses in
detail how we achieve efficient incremental processing in DataCell
followed by an experimental analysis in Section 4. Section 5 briefly
discusses related work while Sections 6 and 7 discuss future work
and conclude the paper.

2. BACKGROUND
A Column-oriented DBMS. MonetDB is a full-fledged column-
store engine. Every relational table is represented as a collection
of Binary Association Tables (BATs), one for each attribute. Ad-
vanced column-stores process one column at a time, using late tu-
ple reconstruction, discussed in, e.g., [4, 23]. Intermediates are
also in column format. This allows the engine to exploit CPU- and
cache-optimized vector-like operator implementations throughout
the whole query evaluation, using an efficient bulk processing model
instead of the typical tuple-at-a-time volcano approach. This way,
a select operator for example, operates on a single column, filtering
the qualifying values and producing an intermediate that holds their
tuple IDs. This intermediate can then be used to retrieve the neces-
sary values from a different column for further actions, e.g., aggre-
gations, further filtering, etc. The key point is that in DataCell these
intermediates can be exploited for flexible incremental processing
strategies, i.e., we can selectively keep around the proper interme-
diates at the proper places of a plan for efficient future reuse.

DataCell. DataCell [27] is positioned between the SQL compiler/ op-
timizer and the DBMS kernel. The SQL compiler is extended with
a few orthogonal language constructs to recognize and process con-
tinuous queries. The query plan as generated by the SQL optimizer
is rewritten to a continuous query plan and handed over to the Dat-
aCell scheduler. In turn, the scheduler handles the execution of the
plan.

Figure 1 shows a DataCell instance. It contains receptors and emit-
ters, i.e., a set of separate processes per stream and per client, re-
spectively, to listen for new data and to deliver results. They form
the edges of the architecture and the bridges to the outside world,
e.g., to sensor drivers.

The key idea is that when an event stream enters the system via a
receptor, stream tuples are immediately stored in a lightweight ta-
ble, called basket. By collecting event tuples into baskets, DataCell
can evaluate the continuous queries over the baskets as if they were
normal one-time queries and thus it can reuse any kind of algorithm
and optimization designed for a DBMS. Once a tuple has been seen
by all relevant queries/operators, it is dropped from its basket.

Continuous query plans are represented by factories, i.e., a kind of
co-routine, whose semantics are extended to align with table pro-
ducing SQL functions. Each factory encloses a (partial) query plan
and produces a partial result at each call. For this, a factory contin-
uously reads data from the input baskets, evaluates its query plan
and creates a result set, which it then places in its output baskets.
The factory remains active as long as the continuous query remains
in the system, and it is always alert to consume incoming stream
data when they arrive.

The execution of the factories is orchestrated by the DataCell sched-
uler, which implements a Petri-net model [30]. The firing condition
is aligned to arrival of events; once there are tuples that may be rel-
evant to a waiting query, we trigger its evaluation. Furthermore,
the scheduler manages the time constraints attached to event han-
dling, which leads to possibly delaying events in their baskets for
some time. One important merit of the architecture, is the natural
integration of baskets and tables within the same processing fab-
ric. As we show in Figure 1, a single factory can interact both with
tables and baskets. In this way, we can naturally support queries
interweaving the basic components of both processing models.

By introducing the baskets, the factories and the scheduler, our ar-
chitecture becomes able to handle data streams sufficiently, without
losing any database functionality. This is the natural first step that
covers the gap between the two originally incompatible process-
ing models. However, numerous research and technical questions
immediately arise. The most prominent issues are the ability to
provide specialized stream functionality and hindrances to guaran-
tee real-time constraints for event handling. In addition, we need
to cope with (and exploit) similarities between standing queries, in
order to deal with high performance requirements.

Albeit a clean and simple approach, by introducing the baskets, the
factories and the DataCell scheduler, and by exploiting a column-
store kernel optimized for modern hardware, DataCell is shown
to perform extremely well, easily meeting the requirements of the
Linear Road Benchmark in [27], without also losing any database
functionality. In this paper, we focus on incremental processing for
efficient and scalable window-based queries.

3. INCREMENTAL PROCESSING
Complete re-evaluation is the straightforward approach when it comes
to continuous queries. The idea is simple; every time a window
is complete, i.e., enough tuples have arrived, we compute the re-
sult over all tuples in the window. In fact, this is the way that
any DBMS can support continuous query processing modulo the
addition of certain scheduling and triggering mechanisms. In Data-
Cell terms, this means that we let factories run every time we have
enough new tuples for the window to slide and once the factory
runs we remove all expired tuples from the baskets. For example,
Algorithm 1 shows such a continuous re-evaluation query plan.

Although this could be sufficient for tumbling and hopping win-
dows, i.e., windows that slide per one or more than a full window

Algorithm 1 The factory for continuous re-evaluation of a tum-
bling window query that selects all values of attribute X in a range
v1-v2.
1: input = basket.bind(X)
2: output = basket.bind(Y)

3: while true do
4: while input.size < windowsize do
5: suspend()

6: basket.lock(input)
7: basket.lock(output)
8: w = basket.getLatest(input,windowsize)

9: result = algebra.select(w,v1,v2)

10: basket.delete(input,windowsize)
11: basket.append(output,result)

12: basket.unlock(input)
13: basket.unlock(output)
14: suspend()

size at a time, it is far from optimal when it comes to the more com-
mon and challenging case of overlapping sliding windows. The
drawback is that we continuously process the same data over and
over again, i.e., a given stream tuple t will be considered by the
same query multiple times until the window slides enough for t to
expire. For this, we need efficient incremental query processing, a
feature missing from DBMSs.

Splitting Streams. Conceptually, DataCell achieves incremental
processing by partitioning a window into n smaller parts, called
basic windows. Each basic window is of equal size to the sliding
step of the window and is processed separately. The resulting par-
tial results are then merged to yield the complete window result.

Assume a window Wi = w1, w2, . . . , wn split into n basic win-
dows. After processing Wi, all windows after that can exploit past
results. For example, for window Wi+1 = w2, w3, . . . , wn+1 only
the last basic window wn+1 contains new tuples and needs to be
processed, merging its result with the past partial results. This pro-
cess continues as the window slides.

Operator-level Vs Plan-level Incremental Processing. The ba-
sic strategy described above is generally considered as the standard
backbone idea in any effort to achieve incremental stream process-
ing. It has been heavily adopted by researchers and has lead to
the design of numerous specialized stream operators (stream joins,
stream aggregates, etc.), e.g., [17, 19, 21, 25, 36, 26].

Stream engines provide radically different architectures than a DBMS
by pushing the incremental logic all the way down to the opera-
tors. Here, in the context of DataCell we design and develop the
incremental logic at the query plan level, leaving the lower level
intact and thus being able to reuse the complete storage and execu-
tion engine of a DBMS kernel. The motivation is to inherit all the
good properties of the DBMS regarding scalability and robustness
in heavy workloads as demanded by nowadays stream applications.
In addition, an architecture such as DataCell is perfectly applied in
scenarios that need to tightly combine both stream and database
query processing model.

Algorithm 2 The plan for incremental evaluation of a simple win-
dow query that selects all values of attribute X in (v1-v2).
1: input = basket.bind(X)
2: output = basket.bind(Y)
3: while input.size < windowsize do
4: suspend()
5: basket.lock(input)
6: basket.lock(output)
7: w1, w2, . . . , wn = basket.split(input,n)
8: res1 = algebra.select(w1,v1,v2)
9: res2 = algebra.select(w2,v1,v2)

10: . . .
11: resn−1 = algebra.select(wn−1,v1,v2)
12: while true do
13: while input.size < windowsize do
14: suspend()
15: basket.lock(input)
16: basket.lock(output)
17: wn = basket.getLatest(input,stepsize)
18: resn = algebra.select(wn,v1,v2)
19: result = algebra.concat(res1,res2,. . . ,resn)
20: wexp = w1, w1 = w2, w2 = w3, . . . , wn−1 = wn

21: res1 = res2, res2 = res3, . . . , resn−1 = resn
22: basket.delete(input,wexp)
23: basket.append(output,result)
24: basket.unlock(output)
25: basket.unlock(input)
26: suspend()

The questions to answer then are the following.

1) How can we achieve this in a generic and automatic way?

2) How does it compare against state-of-the-art stream systems?

In this section, we will describe our design and implementation
over the MonetDB system where we extended the optimizer to
transform normal plans into incremental ones which a scheduler
is responsible to trigger. In the next section, we will show the ad-
vantages of this approach over specialized stream engines as well
as the possibilities to combine those two extremes.

Plan Rewriting. The key point is careful and generic query plan
rewriting. DataCell takes as input the query plans that the SQL en-
gine creates, leveraging the algebraic query optimization performed
by the DBMS’s query optimizer. Fully exploiting MonetDB’s exe-
cution stack, the incremental plan generated by DataCell is handed
back to MonetDB’s optimizer stack for physical plan optimization.

To rewrite the original query plan into an incremental one, Data-
Cell applies four basic transformations; 1) Split the input stream
into n basic windows, 2) Process each (unprocessed) basic window
separately, 3) Merge partial results, and 4) Slide to prepare for the
next basic window. Figure 2 shows this procedure schematically.
For the first window, we run part of the original plan for each basic
window while intermediates are directed to the remainder of the
plan to be merged and execute the rest of the operators. As the
window slides we need to process only the new data avoiding to
reaccess past basic windows (shown faded in Figure 2) and per-
form the proper merging with past intermediates. Achieving this
for generic and complex SQL plans is everything but a trivial task.

W1

. . .

W1
W2

w1 . . .w2 w3 wnw1 . . .w2 wn

w1 . . .w2 wn-1 wn

. . .

Original
Plan

First Window Second Window

Intermediates
stored

Intermediates
 exploited

Figure 2: Incremental processing at the query plan level

Thus, we begin with an over-simplified example shown in Algo-
rithm 2 to better describe these concepts.

Splitting. The first time the query plan runs, it will split the first
window into n basic windows (line 7). This task is in practice an
almost zero cost operation and results in creating a number of views
over the base input basket.

Query Processing. The next part is to run the actual query opera-
tors over each of the first n− 1 basic windows (lines 8-11), calcu-
lating their partial results. While in general more complicated (as
we will see later on), for this simple single-stream, single-operator
query the task boils down to simply calling the select operator for
each basic window. For more complex queries, we will see that
only part of the plan runs on every single basic window, while there
is another part of the incremental plan that runs on merged results.

Basic Loop. The plan then enters an infinite loop where it (a) runs
the query plan for the last (latest) basic window and (b) merges all
partial results to compose the complete window result. The first
part (line 18) is equivalent to processing each of the first n − 1
basic windows as discussed above. For the simple select query
of our example, the second part can create the complete result by
simply concatenating the n partial results (line 19). We will discuss
later how to handle the merge in more complex cases.

Transition Phase. Subsequently, we start the preparation for pro-
cessing the next window, i.e., for when enough future tuples will
have arrived. Basically, this means that we first shift the basic win-
dows forward by one, as indicated in line 20 for this example. Then,
more importantly, we make the correct correlations between the re-
maining intermediate results. This transition (line 21) is derived
from the previous one. In the current example, both transitions are
aligned, but in the case of more complex queries, e.g., joins, we
need more steps to identify transitions (to be discussed later).

Intermediates Maintenance. Maintaining and reusing the proper
intermediates is of key importance. In our simple example, the
intermediates we maintain are the results of each select operator
which are to be reused in the next window as well. In general, a
query plan may have hundreds or even thousands of operators. The
DataCell plan rewriter maintains the proper intermediates by fol-
lowing the path of operators starting from each basic window to
associate the proper intermediates with the proper basic window

such as to know (a) how to reuse an intermediate and (b) when to
expire it. This becomes a big challenge especially in multi-stream
queries where an intermediate from one stream may be combined
with multiple intermediates from other streams, e.g., for join pro-
cessing (we will see more complex examples later on).

Continuous Processing. The next step is to discard the old tuples
that expire (line 22) and deliver the result to the output stream (line
23). After that, the plan pauses (line 26) and will be resumed by the
scheduler only when new tuples have arrived. Lines 13-14 ensure
that the plan then runs only once there are enough new tuples to fill
a complete basic window.

Discarding Input. In simple cases, as in the given example, once
the intermediate results of the individual basic windows are cre-
ated, the original input tuples are no longer required. Hence, to
reduce storage requirements we can discard all processed tuples
from the input basket, even if they are not yet expired, keeping
only the respective intermediate results for further processing. Ex-
tending Algorithm 2 for achieving this is straightforward. A caveat
seen shortly is that there are cases, e.g., multi-stream matching op-
erations like joins, where we cannot apply this optimization, as we
need access the original input data until it expires.

Generic Plan Rewriting. When considering more complex queries
and supporting the full power of SQL, the above plan rewriting
goals are far from simple to achieve. How and when we split the
input, how and when we merge partial results are delicate issues
that depend on numerous parameters related to both the operator
semantics for a given query plan and the input data distribution.

This way, our strategy of rewriting query plans becomes as follows.
The DataCell plan rewriter takes as input the optimized query plan
from the DB optimizer.

(1) The first step remains intact; it splits the input stream into n =
|W |/|w| disjoint pieces.

(2) In a greedy manner, it then consumes one operator of the target
plan at a time. For each operator it decides whether it is sufficient
to replicate the operator (once per basic window) or whether more
actions need to be taken.

The goal is to split the plan as deep as possible, i.e., allow as much
of the original plan operators to operate independently on each ba-
sic window. This gives maximum flexibility and eventually perfor-
mance as it requires less post processing with every new slide of
the window, i.e., less effort in merging partial results.

To ease the discussions towards a generic and dynamic plan rewrit-
ing strategy, we continue by giving a number of characteristic ex-
amples where different handling is needed than the simplistic direc-
tions we have seen before. Figure 3 will help in the course of this
discussion. Note, that we show only the pure SQL query expres-
sion, cutting out the full language statments of the continuous slid-
ing window queries. In Figure 3 we represent the query plans for
a variety of queries. For each query, we show the normal database
query plan (non incremental) as well as the DataCell plan. The
solid lines in the incremental query plan indicate the basic loop,
i.e., the path that is continuously repeated as more and more tuples
arrive. The rest of the incremental plan needs to be executed only
the first time this plan runs.

Exploit Column-store Intermediates. Our design is on top of a
column-store architecture. As we have already discussed in Sec-
tion 2, column-stores exploit vector-based bulk processing, i.e.,
each operator processes a full column at a time to take advantage
of vector-based optimizations. The result of each operator is a new
column (BAT in MonetDB). In DataCell, we do not release these
intermediates once they have been consumed. Instead, we selec-
tively keep intermediates when processing one window to reuse
them in future windows. This effectively allows us to put break-
points in multiple parts of a query plan given that each operator cre-
ates a new intermediate. Subsequently, we can “restart" the query
plan from this point on simply by loading the respective interme-
diates and performing the remaining operators given the new data.
Which is the proper point to “freeze" a query plan depends on the
kind of query at hand. We discuss this in more detail below.

Merging Intermediates. The point where we freeze a query plan
practically means that we no longer replicate the plan. At this point
we need to merge the intermediates so that we can continue with the
rest of the plan. The merging is done using the concat operator.
An example of how we use this can be seen in all instances of Fig-
ure 3. Observe, how before a concat operator the plan forks into
multiple branches to process each basic window separately, while
after the merge it goes back into a single flow. In addition, note
that depending on the complexity of the query, there might be more
than one flow of intermediates that we need to maintain and subse-
quently merge. For example, the plans in Figure 3(a), (b) and (e)
have a single flow of intermediates while the plans in Figure 3(c)
and (d) have two flows.

Simple Concatenation. The simplest case are operators where a
simple concatenation of the partial results forms the correct com-
plete result. Typical representatives are the select operator as fea-
tured in our previous examples, and any map-like operations. In
this case, the plan rewriter can simply replicate the operation, apply
it to each basic window, and finally concatenate the partial results.
Figure 3(a) depicts such an example for a selection query.

Every time the window slides, we only have to go through the part
of the plan marked with solid lines in Figure 3(a), i.e., perform
the selection on the newest basic window and then concatenate the
new intermediate with the old ones that are still valid. The tran-
sition phase which runs between every two subsequent windows
guarantees that all needed intermediates and inputs are shifted by
one position as shown in Algorithm 2.

Concatenation plus Compensation. The next category consists of
operations that can be replicated as-is, but require some compen-
sation after the concatenation of partial results to produce the cor-
rect complete result. Typical examples are aggregations like min,
max, sum, as well as operators like groupby/distinct and
orderby/sort. For these examples, the compensating action is
simply applying the very operation not only on the individual basic
windows, but also on the concatenated result as shown for sum in
Figure 3(b). Other operations might require different compensating
actions, though. For instance, a count is to be compensated by a
sum of the partial results.

Note how Figure 3(b) actually combines the sum with a selection
such that the selection is performed only on the basic windows,
while the sum-compensation is required after the concatenation.

a) select a from stream where a<v1

select

select

split

concat

result

stream stream

result

Normal Incremental

b) select sum(a) from stream where a<v1

select

select

split

concat

result

stream stream

Normal Incremental

sum

sum

result

sum

transition

suspend

transition

suspend

c) select avg(a) from stream where a<v1

select

select

split

concat

result

stream stream

Normal Incremental

avg

sum

result

sum

transition

suspend

count

concat

sum

div

d) select a1,max(a2) from stream where a1<v1 group by a1

select

result

a1

groupby

a2

reconstruct

max

select

split

concat

a1

groupby

result

groupby

transition

suspend

reconstruct

max

a2

concat

max

Normal Incremental

e) select max(a1) from streamA, streamB where a1<v1 and b1<v2 and a1=b1
Normal Incremental

select

result

a1 b1

join

max

split

a1

max

concat

max

result

suspend

transition

join

b1

split

select select

Figure 3: Examples of query plan transformations

Expanding Replication. A third category consists of operations
that cannot simply be replicated to the basic windows as-is, but
need to be represented by multiple different operations. For in-
stance, Figure 3(c) sketches the incremental calculation of an average.
Instead of simply replicating the average operation, we first need
to calculate sum and count separately for each basic window, cre-
ating two separate data flows. Then, the global sum and count
after concatenation are derived using the respective compensating
actions as introduced above. Finally, dividing the global sum by
the global count the two data flows are merged again to yield the
requested global average.

Synchronous Replication. All cases discussed so far consider
unary operations, either individually or in linear combinations, in-
volving only a single attribute, and hence a single input data flow
with columnar evaluation. Once multiple attributes are involved,
we get multiple, possibly interconnected data flows as depicted for
a grouped aggregation query in Figure 3(d). Canonically apply-
ing the rewrite rules discussed above, we can replicate the different
data flows synchronously over the basic windows and use the com-

pensating actions to merge the data flows into a single result just as
in the original query plan.

Multi-stream Queries. All cases so far only consider a single
data stream and (from an N -ary relational point of view) unary
(i.e., single-input) operations. In these cases, it is sufficient to sim-
ply replicate the operations as often as there are basic windows.
For multiple data streams and N -ary operations to combine them,
the situation is more complex. Consider, for instance, the case of
two streams and a join to match them as depicted in Figure 3(e).
For simplicity of presentation we assume that both streams use the
same window size |W | and the same step size |w|. Given that we
create the n = |W |/|w| basic windows per stream as time slices,
i.e., independently of the actual data (e.g., the join attribute values),
we need to replicate the join operator n2 times to join each basic
window from the left stream with each basic window from the right
stream. As with the other examples, the dashed operator instances
in Figure 3(e) need to be evaluated only once during the initial pref-
ace. The solid operator instances need to be evaluated repeatedly,
once for each step of the sliding window. Note that in this case

we cannot discard the selection results once the join has consumed
them for the first time. Rather, they need to be kept and joined with
newly arriving data until the respective basic windows expire.

Landmark Window Queries. Landmark queries differ from slid-
ing window queries in that subsequent windows share the same
fixed starting point (“landmark”), i.e., tuples do not expire per win-
dow step. Tuples either never expire, or at most very infrequently,
and then all past tuples expire by resetting the global landmark.

Supporting such queries is straightforward in our design. Since
data never expires, we do not have to keep individual intermedi-
ate results per basic windows to concatenate the active ones per
step. Instead, we need to keep only one cumulative result for each
concat operation in our DataCell plans in Figure 3. In fact, there
is not even a need to split the preface in n basic windows. The
initial window can be evaluated in one block; only newly arriving
data is evaluated once a basic windows is filled as discussed above.

Time-based sliding windows. Our approach is generic enough to
support both main sliding window types, i.e., count-based and time-
based queries. In the first case, the window size and the sliding
function are expressed in quantity of tuples, so counting and slicing
the input stream is a straightforward process. In the case of time-
based queries, the window parameters are defined in terms of time,
e.g., a query with window size 1 hour that slides per 10 minutes.
Once a tuple arrives into the system it is tagged with a timestamp
that indicates its arrival time (we could also process the window
based on the generation tuple time). The splitting of the stream data
now happens by taking into account the tuple timestamps. We de-
vide the stream into time intervals; say equal to the sliding period.
This means that each basic window contains as many tuples as they
arrived in the corresponding time interval. In this way, we could
end up with unequally filled basic windows. After that point, Dat-
aCell processes the time-based window query following the same
methodology we have discussed so far. Empty basic windows are
recognized and simply skipped.

Optimized Incremental Plans. The decision to split the initial
window into n = |W |/|w| basic windows is purely driven by the
semantics of sliding window queries. Further performance consid-
erations are not involved. Consequently, the DataCell incremental
plans as described so far start processing the next step only once
sufficient tuples have arrived to fill a complete basic window. The
response time from the arrival of the last tuple to fill the basic win-
dow until the result is produced is hence determined by the time to
process a complete basic window of |w| tuples (plus merging the
partial results of all n active basic windows).

However, since tuples usually arrive in a steady stream, a fraction
of the basic window could be processed before the last tuple arrives.
This would leave fewer tuples to be processed after the arrival of
the last tuple, and could hence shorten the effective response time.

In fact, the above described DataCell approach provides all tools
to implement this optimization. The idea is to process the latest
basic window incrementally just as we process the whole window
incrementally. Instead of waiting for |w| tuples, the basic loop is
triggered for every |v| = |w|/m tuples, splitting the basic window
in m chunks. The results of the chunks are collected, but no global
result is returned, yet. Only once m chunks have been processed,
the m chunk results are merged into the basic window result, just
like the n basic window results are merged into the window result

above. Then, the n basic window results are merged and returned.
This way, once the last basic window tuple has arrived, only |v| =
|w|/m tuples have to be processed before the result can be returned.

Choosing m and hence |v| is a non-trivial optimization task. m =
|w|minimizes |v| and thus the pure data processing after the arrival
of the last tuple, but maximizes the overhead of maintaining and
merging the chunk results. m = 1 is obviously the original case
without optimization.

Given that both processing costs and merging overhead depend on
numerous hardly predictable parameters, ranging from query char-
acteristics over data distributions to system status, we consider an-
alytical models with reasonable accuracy hardly feasible. Instead,
we propose a dynamic self-adapting solution. Starting with m = 1,
we successively increase m, monitoring the response time for each
m for a couple of sliding steps. It is to be expected that the response
times initially decrease with increasing m as less data needs to be
processed after the arrival of the last tuple. Only once the increas-
ing merging overhead outweighs the decreasing processing costs,
the response times increase, again. Then, we stop increasing m
and reset it to the value that resulted in the minimal response time.
Next to increasing m linearly or exponentially (e.g., doubling with
each step), bisection in the interval [1, |w|] is a viable alternative
for finding the best value for m.

Row-store Processing. This paper presents incremental process-
ing in DataCell designed over a column-store. However, we do not
see any reason why our techniques could not be applied in row-
stores, too, possibly with some modifications to handle N -ary re-
lations. The key point is to be able to split the stream and then
“freeze" and “resume" execution of a plan at the proper points. Us-
ing MonetDB with its operator-at-a-time bulk processing and ma-
terialization of all (narrow) intermediate result columns, we get this
“for free”. Row-stores usually use a tuple-at-a-time volcano-style
pipelining execution model. Hence, the major extension required
is to introduce intermediate result materialization for each operator
that precedes a concat operation in the incremental plans in Fig-
ure 3. While this used to be considered an unbearable overhead,
row-stores implement similar techniques for sharing intermediate
results for multi-query optimization, and recently we have seen
successful exploitation of intermediates in eddies [16]. These ideas
combined with the DataCell incremental processing scheme pro-
vide a promising set up for incremental processing in row-stores.

4. EXPERIMENTAL ANALYSIS
In this section, we provide a detailed experimental analysis of in-
cremental processing in our DataCell implementation over Mon-
etDB v5.15 All experiments are on a 2.4 GHz Intel Core2 Quad
CPU equipped with 8 GB RAM and running Fedora 12.

Experimental Set-up and Outline. We compare incremental pro-
cessing in DataCell against the typical re-evaluation approach which
reflects the straightforward way of implementing streaming over a
DBMS. We refer to the latter implementation as DataCellR in the
rest of the experiments. In addition, we compare DataCell against
a state-of-the-art commercial stream engine, clearly demonstrating
the successful design of incremental processing over an extensible
DBMS kernel and the potential of blending ideas from both worlds.

4.1 Re-evaluation Vs Incremental Processing
In the first part of the experimentation we will study DataCell and
DataCellR to acquire a good understanding of how a typical DBMS

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
s
)

i-th window

(a) Single-stream (Query 1)

DataCellR

DataCell

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

i-th window

(b) Multi-stream (Query 2)

DataCellR

DataCell

Figure 4: Basic Performance

performance can be transformed into an incremental one and the
parameters that affect it. Given that these two implementations are
essentially built over the same code base, this gives a clear intuition
of the gains achieved by the incremental DataCell over a solid base-
line. Then, with this knowledge in mind, in the second part we will
see in detail how this performance compares against a specialized
engine and what are the parameters that can swing the behavior in
favor of one or the other approach.

We will use a single stream and a multi-stream query.

(Q1) SELECT x1, sum(x2)
FROM stream
WHERE x1 > v1 GROUP BY x1

(Q2) SELECT max(s1.x1), avg(s2.x1)
FROM stream1 s1, stream2 s2
WHERE s1.x2 = s2.x2

Basic Performance. The first experiment demonstrates the re-
sponse times as the windows slide. Considering the single stream
query first, we use a fixed window size, step and selectivity. Here,
we use window size |W | = 1.024 ∗ 107 tuples, window step
|w| = 2 ∗ 104 tuples, and 20% selectivity. This way, the Data-
Cell plan rewriter splits the initial window into 512 basic windows.
Each time the system gets |w| new tuples, it processes them and
merges the result with those of the previous 511 basic windows.

Figure 4(a) shows the response times for 20 windows. For the ini-
tial window, both DataCellR and DataCell need to process |W | tu-
ples and achieve similar performance. DataCell is slightly faster
mainly because executing the group-by operation on smaller ba-
sic windows yields better locality for random access. For the sub-
sequent sliding steps (windows 2-20), DataCellR shows the same
performance as for the first one, as it needs to perform the same
amount of work each time. DataCell, however, benefits from incre-
mental processing, resulting in a significant advantage over Dat-
aCellR. Reusing the intermediate results of previously processed
basic windows, DataCell only needs to process the |w| tuples of
the new basic window, and merge all intermediate results. This
way, DataCell manages to fully exploit the ideas of incremental
processing even though it is designed over a typical DBMS kernel.
It nicely blends the best of the stream and the DBMS world.

For the double stream query, Query 2, we treat both streams equally,

using window size |W | = 1.024 ∗ 105 and window step |w| =
1600, i.e., the initial windows of both streams are split into 64 ba-
sic windows each. Figure 4(b) shows even more significant benefits
for DataCell over DataCellR. The reason is that Query 2, is a com-
plex multi-stream query that contains more expensive processing
steps, i.e., join operators. DataCell effectively exploits the larger
potential for avoiding redundant work.

The fact that incremental processing beats re-evaluation is not sur-
prising of course (although later we will demonstrate the opposite
behavior as well). What is interesting to keep from this experiment
is that by applying the incremental logic at the query plan level we
achieve a significant performance boost achieving efficient incre-
mental processing within a DBMS.

Varying Query Parameters. The processing costs of a query de-
pend on a number of parameters related to the semantics of the
query, e.g., selectivity, window size, step size, etc. These are not
tuning parameters, but reflect the requirements of the user. In gen-
eral, the more data a query needs to handle (less selective/bigger
windows, etc.), the more incremental processing benefits as it avoids
processing the same data over and over again.

Selectivity. We start with Query 1, using a window size of 1.024 ∗
107 tuples and a step of 2∗104 tuples. By varying the selectivity of
the selection predicate from 10% to 90%, we increase the amount
of data that has to be processed by the group-by and aggregation.
Figure 5(a) shows the results. For both DataCellR and DataCell,
the response times for a sliding step increase close to linear with
the increasing data volume. However, the gradient for DataCellR is
much steeper as it needs to process the whole window. Incremental
processing allows DataCell to process only the last basic window,
resulting in a less steep slope, and hence, an increasing advantage
over DataCellR.

A similar effect can be seen with the join query in Figure 5(b). We
use |W | = 1.024∗105 and |w| = 1600 and vary the join selectivity
from 10−5% to 10−2%. Due to the more expensive operators in
this plan, the benefits of DataCell are stronger than before.

Window Size. For our next experiment, we use Query 1 with se-
lectivity 20% and vary the window size. Keeping the number of
basic windows invariant at 512, the step size increases with the to-
tal window size. Figure 6(a) reports the response time required
for a sliding step using three different window sizes. The bigger
the window, i.e., the more data we need to process, the bigger the
benefits of incremental processing with DataCell over DataCellR
materializing more than a 50% improvement. Again this clearly
demonstrates the effectiveness of our incremental design using a
generic storage and execution engine.

Landmark Queries. By definition, the window size of landmark
queries increases with each sliding step, the step size is invariant.
We run the following single-stream query as landmark query, using
|w| = 2.5 ∗ 106 and 20% selectivity.

(Q3) select max(x1),sum(x2)
from stream where x1>v1

Figure 6(b) shows the response time for 40 successive windows.
As in Figure 4, DataCellR and DataCell yield very similar perfor-
mance for the initial window, where both need to process all data.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 20 30 40 50 60 70 80 90

R
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
s
)

Selectivity (%)

(a) Vary query selectivity (Query 1)

DataCellR

DataCell
 0

 1

 2

 3

 4

 5

 6

 7

 8

10
-5

10
-4

10
-3

10
-2

Selectivity (%)

(b) Vary Join Selectivity (Query 2)

DataCellR

DataCell

Figure 5: Varying Selectivity

 0

 1

 2

 3

 4

 5

10
6

10
7

10
8

R
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
s
)

Window size (# of tuples)

(a) Vary window and step size

DataCellR

DataCell 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35 40

i-th window

(b) Landmark Windows (Query 3)

DataCellR

DataCell

Figure 6: Varying Window and Step Size

 0

 1

 2

 3

 4

 5

2 4 8 16 32 64 128
256

512
1024

2048

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
s
)

of basic windows

(a) Single-stream (Query 1)

DataCellR (Total)

DataCell (Total)

DataCell (Main Plan)

DataCell (Merge)

 0

 1

 2

 3

 4

 5

 6

 7

 8

2 4 8 16 32 64

of basic windows

(b) Multi-stream (Query 2)

Figure 7: Decreasing Step (Incr. Number of Basic Windows)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
s
)

i-th window

2 4 8 16 32 64 128 256 512 1024 512 Pieces

DataCellR

DataCell

Figure 8: Query Plan Adaptation

The re-evaluation approach of DataCellR then makes the response
time grow linearly with the growing window size. With DataCell,
the response time for the second query drops to what is required to
process only the new basic windows, and then stays constant at that
level, exploiting the benefits of incremental processing.

With invariant window size, decreasing the step size in turn means
increasing the number of basic windows per window, i.e., the num-
ber of intermediate results that need to be combined per step.

Figure 7(a) shows the results for Query 1. We use window size
w = 1.024 ∗ 107 tuples and a selectivity of 20%. With a small
number of basic windows, i.e., with a big window step, we still
need to process a relatively big amount of data each time a win-
dow is completed. Thus, response times are still quite high, e.g.,
for 2 basic windows. However, as the number of basic windows
increases, DataCell improves quickly until it stabilizes once fixed
initialization costs dominate over data-dependent processing costs.

Figure 7(a) also breaks down the cost of DataCell into two com-
ponents. First, is the actual query processing cost, i.e., the cost
spent on the main operators of the plan that represent the original
plan flow. Second is the merging cost, i.e., all additional opera-
tors needed to support incremental processing, i.e., operators for

merging intermediates, performing the transitions at the end of a
query plan and so on. Figure 7(a) shows that the cost of merging
becomes negligible. The main component is the query processing
cost required for the original plan operators.

Notice also that there is a small rise in the total incremental cost
with many basic windows (i.e., >1024 in Fig. 7(a)). This is at-
tributed to the query processing cost which as we see in Figure 7(a)
follows the same trend. What happens is that with more basic
windows, a larger number of intermediates are maintained. Their
total size remains invariant. However, with more basic windows,
there are more (though smaller) intermediates to be combined and
thus more operator calls required to make these combinations (the
group-by) in this case. The administrative cost of simply calling
these operators becomes visible with many basic windows.

Figure 7(b) shows a similar experiment for Query 2. Overall the
trend is similar, i.e., cutting the stream window into smaller ba-
sic windows, brings benefits. The big difference though is that the
break down costs indicate an opposite behavior than with Query 1.
This time, the query processing cost becomes negligible while the
merging cost is the one that dominates the total cost once the query
processing part becomes small. The reason is that the intermediates
this time are quite big, meaning that simply merging those interme-

 0

 1

 2

 3

 4

 5

 6

 1 5 10

T
o
ta

l
ti
m

e
 (

s
e
c
s
)

Window size (tuples*1000)

SystemX

DataCellR

DataCell

 0

 200

 400

 600

 800

 1000

 1200

 1400

 25 50 75 100

Window size (tuples*1000)

Figure 9: Against a Stream Engine

diates is significantly more expensive. This cost is rather stable
given that the total size of intermediates is invariant with invariant
window size, regardless of the step size.

Optimization. As discussed in Section 3 and supported by the re-
sults of the above experiments, the response time of incremental
DataCell plans can further be improved by pro-actively processing
the last basic window in smaller chunks than the step size defined
in the query. This way, we favor a dynamic self-adapting approach
over a static optimization using an analytical cost model. Figure 8
shows the results of an experiment where DataCell successively
doubles the number m of chunks for a basic window every five
steps as proposed in Section 3. By monitoring the response times
and adjusting m, DataCell provides a steady performance improve-
ment up to m = 512. With m = 1024, the performance starts
degrading, triggering DataCell to resort to m = 512.

4.2 Comparison with a Specialized Engine
Here, we test our DataCell prototype against a state-of-the-art com-
mercial specialized engine. Due to license restrictions we refrain
from revealing the actual system and we will refer to it as Sys-
temX. In addition, we tested a few open-source systems but we
were not successful in installing and using them, e.g., TelegraphCQ
[12] and STREAM [6]. These systems were academic projects and
are not supported anymore making it very difficult to use them (in
fact we are not aware of any stream papers comparing against any
of these open-source stream systems). For example, TelegraphCQ
compiled on our contemporary Fedora 12 system only after fixing
some architecture-specific code. However, we did not manage to
analyze and fix the crashes that occurred repeatedly when running
continuous queries. System STREAM seemed to work correctly
but the functionalities of getting the performance metrics did not
work. The most important issue though is that it does not support
sliding windows with a slide bigger than a single tuple. Neverthe-
less, we are confident that comparison against a most up-to-date
version of a state-of-the-art commercial engine provides a more
competitive benchmark.

For this experiment, we use the double stream Query 2. The met-
ric reported is the total time needed for the system to consume a
number of sliding windows and produce all results. Using a to-
tal of 100 windows and 64 basic windows per window, we vary
the window size between |W | = 103 and |W | = 105 tuples with
the respective step size growing from |w| = |W |/64 ∼

= 16 to
|w| = |W |/64 ∼= 1600 tuples. Thus, in total, we feed the system
|W | + 100 ∗ |w| ∼= 2600 tuples in the most lightweight case and
with |W |+100∗|w| ∼= 260000 tuples in the most demanding case.

Here, we test the complete software stack of DataCell, i.e., data is
read from an input file in chunks. It is parsed and then it is passed
into the system for query processing. The input file is organized in
rows, i.e., a typical csv file. DataCell has to parse the file and load
the proper column/baskets for each batch. Similarly for SystemX.
For all systems, we made sure that there is no extra overhead due
to tuple delays, i.e., the system never starves waiting for tuples,
representing the best possible behavior.

Figure 9 shows the results. It is broken down into Figure 9(a) for
small windows, i.e., smaller than 104 tuples and into Figure 9(b)
for bigger windows. For very small window sizes, we observe
that plain DataCellR gives excellent results, even outperforming
the stream solutions in the smaller sizes. The amount of data to be
processed is so small that simply the overhead involved around the
incremental logic in a stream implementation becomes visible and
decreases performance. This holds for both DataCell and SystemX,
with the latter having a slight edge for the very small sizes.

Response times though are practically the same for all systems as
they are very small anyway. However, as the window and step size
grow, we observe a very different behavior. In Figure 9(b), we see
that plain DataCellR is losing ground to DataCell. This time, the
amount of data and thus computation needed becomes more and
more significant. The straightforward implementation of stream
processing in a DBMS cannot exploit past computation leading to
large total costs. In addition, we see another trend; DataCell scales
nicely with the window size and now becomes the fastest system.

SystemX fails to keep up with DataCell and even plain DataCellR.
When going for large amounts of data and large windows, batch
processing as exploited in DataCell, gains a significant performance
gain over the typical one tuple at a time processing of specialized
engines. The main reason is that we amortize the continuous query
processing costs over a large number of tuples as opposed to a sin-
gle one. In addition, the incremental logic overhead is moved up to
the query plan as opposed to each single operator.

Modern trends in data warehousing and stream processing support
this motivation [35] where continuous queries need to handle huge
amounts of data, e.g., in the order of Terabytes while the current
literature on stream processing studies only small amounts of data,
i.e., 10 or 100 tuples per window in which case tuple at a time pro-
cessing behaves indeed well. An interesting direction is hybrid sys-
tems, i.e., provide both low-level incremental processing as current
stream engines and high level as we do here, and interchange be-
tween different paradigms depending on the environment. For ex-
ample, here DataCell merely needs to switch between re-evaluation
and incremental processing when the window size becomes quite
small or large respectively.

 0.01

 0.1

 1

 10

 100

 1 10 25 50 75 100

T
im

e
 (

s
e
c
s
)

Window size (tuples*1000)

Total

Query processing

Loading

Finally, the figure on the
right breaks down the Dat-
aCell costs seen in the pre-
vious figure into pure query
processing costs and load-
ing costs, i.e., the costs
spent in parsing and loading
the input file. We see that
query processing is the ma-
jor component while load-
ing represents only a minor
fraction of the total cost.

5. RELATED WORK
DataCell fundamentally differs from existing stream efforts [7, 8,
12, 13, 15, 20, 29], etc. by building on top of the storage and
execution engine of a DBMS kernel. It opens a very interesting path
towards exploiting and merging technologies from both worlds.

Compared to even earlier efforts on active databases, e.g., [32],
DataCell adds support for specialized stream functionalities, i.e.,
incremental processing. Efforts in active databases strongly resem-
ble the simplistic re-evaluation model we studied here as well.

Incremental processing in a DBMS has been studied in the con-
text of updating materialized views, e.g., [9, 22], but there the
scenario is very different given that it targets read-mostly environ-
ments whereas a stream scenario is by definition a write-only one.

Truviso Continuous Analytics system [18], a commercial product
of Truviso, is another recent example that follows the same ap-
proach as DataCell. They extend the open source PostgreSQL
DBMS [31] to enable continuous analysis of streaming data, tack-
ling the problem of low latency query evaluation over massive data
volumes. TruCQ integrates streaming and traditional relational query
processing. It is able to run SQL queries continuously and incre-
mentally over data while they are still coming and before they are
stored (if needed) in active database tables. TruCQ’s query pro-
cessing significantly outperforms traditional store-first-query-later
database technologies as the query evaluation has already been ini-
tiated when the first tuples arrive. It allows evaluation of one-time

queries, continuous queries, as well as combinations of both types.

Another recent work, coming from the HP Labs [14], also confirms
the strong research attraction for this trend. It defines an extended
SQL query model that unifies queries over both static relations and
dynamic streaming data, by developing techniques to generalize the
query engine. It also extends the PostgreSQL database kernel [31],
building an engine that can process persistent and streaming data in
a uniform design. First, they convert the stream into a sequence of
chunks and then continuously call the query over each sequential
chunk. The query instance never shuts down between the chunks,
in such a way that a cycle-based transaction model is formed.

The main difference of DataCell over the above two related efforts
lies in the underlying architecture. DataCell builds over a column-
store kernel using a columnar algebra instead of a relational one,
bulk processing instead of volcano and vectorized query processing
as opposed to tuple-based. Here we exploited all these architectural
differences to provide efficient incremental processing by adapting
the column-store query plans.

So Does one Size Fit all? In recent years, researchers have ar-
gued that the time has come that a generic DBMS can no longer
provide efficient support for all possible kinds of application sce-
narios [34]. The path set by DataCell, Truviso and the HP effort
does not oppose such ideas; quite the contrary. DataCell and other
approaches add significant components that drastically change the
architecture. However, critical core functionality is kept intact, e.g.,
operator implementations, optimizer modules, etc. This way, Dat-
aCell does not build on top of a closed DBMS architecture, but on
top of an extensible database kernel.

6. FUTURE WORK
The road-map for DataCell research calls for innovation in many
other important aspects of stream processing and the combination
with already stored data. Thus, one can distinguish between chal-
lenges that come from the fact that stream processing is performed
in a DBMS and challenges that arise by combining the two query
processing paradigms in one.

Regarding the first challenge, the goal is to provide all essential
streaming functionality and features without losing the DBMS strong
storage and querying capabilities. We envision that a path where
most of the functionality is provided via plan rewriting and minimal
lower level operator changes is a promising one. For example, re-
source management, scheduling, and optimization in the presence
of numerous queries is a critical topic. Similarly to incremental
processing, this area has received a lot of attention with innovative
solutions, e.g., [33]. DataCell offers all the available ingredients to
achieve similar levels of multi-query optimizations while keeping
the underlying generic engine intact. For example, a single factory
(i.e., plan) may dynamically split into multiple pieces or merge with
other relevant factories to allow for efficient sharing of processing
costs leading to very interesting scenarios in how the network of
factories and baskets is organized and adapts. Again, these issues
can be resolved at a higher level through plan rewriting. The inter-
mediates created for incremental processing can be reused by many
queries, while partitioning and scheduling decisions can also adapt
to the new parameters. For example in [24] we have presented a
scheme of how multiple queries can cache and exploit intermedi-
ates in a column-store kernel. The basic concepts for multi-query
processing in DataCell have been presented in [27].

Regarding the second challenge, we expect a plethora of rich top-
ics to arise especially when optimization becomes an issue. For
example, query plans that touch both streaming data and regular
tables might require new optimizer rules or adaptations of the cur-
rent ones. Overall, DataCell opens the road for an exciting research
path by looking at the stream query processing issue from a differ-
ent perspective.

7. CONCLUSIONS
In this paper, we have shown that incremental continuous query
processing can efficiently and elegantly be supported over an ex-
tensible DBMS kernel. These results open the road for scalable
data processing that combines both stored and streaming data in an
integrated environment in modern data warehouses. This is a topic
with strong interest over the last few years and with a great potential
impact on data management, in particular for business intelligence
and science. Building over an existing modern DBMS kernel to
benefit from existing scalable processing components, continuous
query support is the missing link. Here, we study in this context
one of the most critical problems in continuous query processing,
i.e., window based incremental processing.

Essentially, incremental processing is designed and implemented
at the query plan level allowing to fully reuse (a) the underlying
generic storage and execution engine and (b) the complete opti-
mizer module. In comparison with a state-of-the-art commercial
DSMS, DataCell achieves similar performance with small amounts
of data, but quickly gains a significant advantage with growing data
volumes, bringing database-like scalability to stream processing.

8. REFERENCES
[1] IBM InfoSphere Streams.

http://www-01.ibm.com/software/data/infosphere/streams/.
[2] Large Hadron Collider. http://lhc.web.cern.ch/lhc/.
[3] Large Synoptic Survey Telescope. http://www.lsst.org.
[4] D. Abadi et al. Materialization Strategies in a

Column-Oriented DBMS. In ICDE, 2007.
[5] M. H. Ali et al. Microsoft CEP Server and Online Behavioral

Targeting. PVLDB, 2(2):1558–1561, 2009.
[6] A. Arasu et al. STREAM: The Stanford Stream Data

Manager. In SIGMOD, 2003.
[7] B. Babcock et al. Operator Scheduling in Data Stream

Systems. The VLDB Journal, 13(4):333–353, 2004.
[8] H. Balakrishnan et al. Retrospective on Aurora. The VLDB

Journal, 13(4):370–383, 2004.
[9] J. A. Blakeley et al. Efficiently Updating Materialized Views.

In SIGMOD, 1986.
[10] I. Botan et al. Flexible and scalable storage management for

data-intensive stream processing. In EDBT, 2009.
[11] I. Botan et al. A Demonstration of the MaxStream Federated

Stream Processing Architecture (Demonstration). In ICDE,
2010.

[12] S. Chandrasekaran et al. TelegraphCQ: Continuous Data-
flow Processing for an Uncertain World. In CIDR, 2003.

[13] J. Chen et al. NiagaraCQ: A Scalable Continuous Query
System for Internet Databases. In SIGMOD, 2000.

[14] Q. Chen and M. Hsu. Experience in Extending Query Engine
for Continuous Analytics. In DaWaK, pages 190–202, 2010.

[15] C. D. Cranor et al. Gigascope: A Stream Database for
Network Applications. In SIGMOD, 2003.

[16] A. Deshpande and J. M. Hellerstein. Lifting the burden of
history from adaptive query processing. In VLDB, 2004.

[17] A. Dobra et al. Processing complex aggregate queries over
data streams. In SIGMOD Conference, 2002.

[18] M. J. Franklin et al. Continuous analytics: Rethinking query
processing in a network-effect world. In CIDR, 2009.

[19] T. M. Ghanem et al. Incremental evaluation of sliding
window queries over data streams. TKDE., 19(1), 2007.

[20] L. Girod et al. The Case for a Signal-Oriented Data Stream
Management System. In CIDR, 2007.

[21] L. Golab. Sliding Window Query Processing over Data
Streams. PhD thesis, University of Waterloo, 2006.

[22] T. Griffin and L. Libkin. Incremental maintenance of views
with duplicates. In SIGMOD, 1995.

[23] S. Idreos et al. Self-organizing Tuple-reconstruction in
Column-stores. In SIGMOD, 2009.

[24] M. Ivanova et al. An Architecture for Recycling
Intermediates in a Column-store. In SIGMOD, 2009.

[25] J. Kang et al. Evaluating Window Joins over Unbounded
Streams. In ICDE, 2003.

[26] J. Li et al. No pane, No Gain: Efficient Evaluation of
Sliding-Window Aggregates over Data Streams. SIGMOD
Record, 34:2005, 2005.

[27] E. Liarou et al. Exploiting the Power of Relational Databases
for Efficient Stream Processing. In EDBT, 2009.

[28] E. Liarou et al. MonetDB/DataCell: Online Analytics in a
Streaming Column-Store. PVLDB, 5(12):1910–1913, 2012.

[29] H. Lim et al. Continuous query processing in data streams
using duality of data and queries. In SIGMOD, 2006.

[30] J. L. Peterson. Petri nets. ACM Comput. Surv., 9(3), 1977.
[31] postgreSQL. http://www.postgresql.org/.
[32] U. Schreier et al. Alert: An Architecture for Transforming a

Passive DBMS into an Active DBMS. In VLDB, 1991.
[33] M. A. Sharaf et al. Algorithms and Metrics for Processing

Multiple Heterogeneous Continuous Queries. ACM TODS,
33(1), ’08.

[34] M. Stonebraker and U. Cetintemel. One size fits all: An idea
whose time has come and gone. In ICDE, 2005.

[35] R. Winter and P. Kostamaa. Large scale data warehousing:
Trends and observations. In ICDE, 2010.

[36] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of
thousands of data streams in real time. In VLDB, 2002.

