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ABSTRACT
The database research community has been building methods to
store, access, and update data for more than four decades. Through-
out the evolution of the structures and techniques used to access
data, access methods adapt to the ever changing hardware and work-
load requirements. Today, even small changes in the workload or
the hardware lead to a redesign of access methods. The need for
new designs has been increasing as data generation and workload
diversification grow exponentially, and hardware advances intro-
duce increased complexity. New workload requirements are intro-
duced by the emergence of new applications, and data is managed
by large systems composed of more and more complex and het-
erogeneous hardware. As a result, it is increasingly important to
develop application-aware and hardware-aware access methods.

The fundamental challenges that every researcher, systems ar-
chitect, or designer faces when designing a new access method are
how to minimize, i) read times (R), ii) update cost (U), and iii)
memory (or storage) overhead (M). In this paper, we conjecture
that when optimizing the read-update-memory overheads, optimiz-
ing in any two areas negatively impacts the third. We present a
simple model of the RUM overheads, and we articulate the RUM
Conjecture. We show how the RUM Conjecture manifests in state-
of-the-art access methods, and we envision a trend toward RUM-
aware access methods for future data systems.

1. INTRODUCTION
Chasing Access Paths. Picking the proper physical design (through
static autotuning [14], online tuning [13], or adaptively [31]) and
access method [27, 49] have been key research challenges of data
management systems for several decades. The way we physically
organize data on storage devices (disk, flash, memory, caches) de-
fines and restricts the possible ways that we can read and update it.
For example, when data is stored in a heap file without an index,
we have to perform costly scans to locate any data we are interested
in. Conversely, a tree index on top of the heap file, uses additional
space in order to substitute the scan with a more lightweight in-
dex probe. Over the years, we have seen a plethora of exciting
and innovative proposals for data structures and algorithms, each
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one tailored to a set of important workload patterns, or for match-
ing critical hardware characteristics. Applications evolve rapidly
and continuously, and at the same time, the underlying hardware
is diverse and changes quickly as new technologies and architec-
tures are developed [1]. Both trends lead to new challenges when
designing data management software.
The RUM Tradeoff. A close look at existing proposals on access
methods1 reveals that each is confronted with the same fundamen-
tal challenges and design decisions again and again. In particular,
there are three quantities and design parameters that researchers
always try to minimize: (1) the read overhead (R), (2) the up-
date overhead (U), and (3) the memory (or storage) overhead (M),
henceforth called the RUM overheads. Deciding which overhead(s)
to optimize for and to what extent, remains a prominent part of the
process of designing a new access method, especially as hardware
and workloads change over time. For example, in the 1970s one
of the critical aspects of every database algorithm was to minimize
the number of random accesses on disk; fast-forward 40 years and
a similar strategy is still used, only now we minimize the number
of random accesses to main memory. Today, different hardware
runs different applications but the concepts and design choices re-
main the same. New challenges, however, arise from the exponen-
tial growth in the amount of data generated and processed, and the
wealth of emerging data-driven applications, both of which stress
existing data access methods.
The RUM Conjecture: Read, Update, Memory – Optimize Two
at the Expense of the Third. An ideal solution is an access method
that always provides the lowest read cost, the lowest update cost,
and requires no extra memory or storage space over the base data.
In practice, data structures are designed to compromise between the
three RUM overheads, while the optimal design depends on a mul-
titude of factors like hardware, workload, and user expectations.

We analyze the lower bounds for the three overheads (read - up-
date - memory) given an access method which is perfectly tailored
for minimizing each overhead and we show that such an access
method will impact the rest of the overheads negatively. We take
this observation a step further and propose the RUM Conjecture:
designing access methods that set an upper bound for two of the
RUM overheads, leads to a hard lower bound for the third over-
head which cannot be further reduced. For example, in order to
minimize the cost of updating data, one would use a design based
on differential structures, allowing many queries to consolidate up-
dates and avoid the cost of reorganizing data. Such an approach,
however, increases the space overhead and hinders read cost as now
queries need to merge any relevant pending updates during process-
ing. Another example is that the read cost can be minimized by
1Access methods: algorithms and data structures for organizing
and accessing data [27].



storing data in multiple different physical layouts [4, 17, 46], each
layout being appropriate for minimizing the read cost for a partic-
ular workload. Update and space costs, however, increase because
now there are multiple data copies. Finally, the space cost can be
minimized by storing minimal metadata and, hence, pay the price
of increased search time when reading and updating data.

The three RUM overheads form a competing triangle. In modern
implementations of data systems, however, one can optimize up to
some point for all three. Such optimizations are possible by relying
on using inherently defined structure instead of storing detailed in-
formation. A prime example is the block-based clustered indexing,
which reduces both read and memory overhead by storing only a
few pointers to pages (only when an indexed tuple is stored to a
different page than the previous one), hence building a very short
tree. The reason why such an approach would give us good read
performance is the fact that data is clustered on the index attribute.
Even in this ideal case, however, we have to perform additional
computation in order to calculate the exact location of the tuple
we are searching for. In essence, we use computation and knowl-
edge about the data in order to reduce the RUM overheads. An-
other example, is the use of compression in bitmap indexes; we still
use additional computation (compression/decompression) in order
to succeed in reducing both read and memory overhead of the in-
dexes. While the RUM overheads can be reduced by computation
or engineering, their competing nature manifests in a number of ap-
proaches and guides our roadmap for RUM-aware access methods.
RUM-Aware Access Method Design. Accepting that a perfect ac-
cess method does not exist, does not mean the research community
should stop striving to improve; quite the opposite. The RUM Con-
jecture opens the path for exciting research challenges towards the
goal of creating RUM-aware and RUM-adaptive access methods.

Future data systems should include versatile tools to interact with
the data the way the workload, the application, and the hardware
need and not vice versa. In other words, the application, the work-
load, and the hardware should dictate how we access our data, and
not the constraints of our systems. Such versatile data systems will
allow the data scientist of the future to dynamically tune the data
access methods during normal system operation. Tuning access
methods becomes increasingly important if, on top of big data and
hardware, we consider the development of specialized systems and
tools to cater data, aiming at servicing a narrow set of applications
each. As more systems are built, the complexity of finding the right
access method increases as well.
Contributions. In this paper we present for the first time the RUM
Conjecture as a way to understand the inherent tradeoffs of every
access method. We further use the conjecture as a guideline for de-
signing access methods of future data systems. In the remainder of
this paper we charter the path toward RUM-aware access methods:

• Identify and model the RUM overheads (§2).

• Propose the RUM Conjecture (§3).

• Document the manifestation of the RUM Conjecture in state-
of-the-art access methods (§4).

• Use the RUM Conjecture to build access methods for future
data systems (§5).

Each of the above points serves as inspiration for further research
on data management. Finding a concise yet expressive way to
identify and model the fundamental overheads of access methods
requires research in data management from a theory perspective.
Similarly, proving the RUM Conjecture will expand on this line of
research. Documenting the manifestation of the RUM Conjecture
entails a new study of access methods with the RUM overheads

in mind when modeling and categorizing access methods. Finally,
the first three steps provide the necessary research infrastructure to
build powerful access methods.

While we envision that this line of research will enable building
powerful access methods, the core concept of the RUM Conjecture
is, in fact, that there is no panacea when designing systems. It is
not feasible to build the universally best access method, nor to build
the best access method for each and every use case. Instead, we en-
vision that the RUM Conjecture will create a trend toward building
access methods that can efficiently morph to support changing re-
quirements and different software and hardware environments. The
remainder of this paper elaborates one by one the four steps toward
RUM-aware access methods for future data systems.

2. THE RUM OVERHEADS
Overheads of Access Methods. When designing access methods
it is very important to understand the implications of different de-
sign choices. In order to do so, we discuss the three fundamental
overheads that each design decision can affect. Access methods en-
able us to read or update the main data stored in a data management
system (hereafter called base data), potentially using auxiliary data
such as indexes (hereafter called auxiliary data), in order to offer
performance improvements. The overheads of an access method
quantify the additional data accesses to support any operation, rel-
ative to the base data.
Read Overhead (RO). The RO of an access method is given by the
data accesses to auxiliary data when retrieving the necessary base
data. We refer to RO as the read amplification: the ratio between the
total amount of data read including auxiliary and base data, divided
by the amount of retrieved data. For example, when traversing a
B+-Tree to access a tuple, the RO is given by the ratio between the
total data accessed (including the data read to traverse the tree and
the base data) and the base data intended to be read.
Update Overhead (UO). The UO is given by the amount of up-
dates applied to the auxiliary data in addition to the updates to the
main data. We refer to UO as the write amplification: the ratio
between the size of the physical updates performed for one logical
update, divided by the size of the logical update. In the previous
example, the UO is calculated by dividing the updated data size
(both base and auxiliary data) by the size of the updated base data.
Memory Overhead (MO). The MO is the space overhead induced
by storing auxiliary data. We refer to MO as the space amplifica-
tion, defined as the ratio between the space utilized for auxiliary
and base data, divided by the space utilized for base data. Follow-
ing the preceding example, the MO is computed by dividing the
overall size of the B+-Tree by the base data size.
Minimizing RUM overheads. Ideally, when building an access
method, all three overheads should be minimal, however, depend-
ing on the application, the workload, and the available technology
they are prioritized. While access time, optimized by minimizing
read overhead, often has top priority, the workload or the under-
lying technology sometimes shift priorities. For example, storage
with limited endurance (like flash-based drives) favors minimizing
the update overhead, while the slow speed of main memory and the
scarce cache capacity justifies reducing the space overhead. The
theoretical minimum for each overhead is to have the ratio equal to
1.0, implying that the base data is always read and updated directly
and no extra bit of memory is wasted. Achieving these bounds
for all three overheads simultaneously, however, is not possible as
there is always a price to pay for every optimization.

In the following discussion we reason about the three overheads
and their lower bounds using a simple yet representative case for



base data: an array of integers. We organize this dataset consisting
of N (N >> 1) fixed-sized elements in blocks, each one holding a
value. Every block can be identified by a monotonically increasing
ID, blkID. The workload is comprised of point queries, updates,
inserts, and deletes. We purposefully provide simple examples of
data structures in order to back the following hypothesis. The gen-
erality of these examples lies in their simplicity.

Hypothesis. An access method that is optimal with respect to one
of the read, update, and memory overheads, cannot achieve the
optimal value for both remaining overheads.

Minimizing Only RO. In order to minimize RO we organize data
in an array and we store each value in the block with blkID= value.
For example, the relation {1,17} is stored in an array with 17
blocks. The first block holds value 1, the last block holds value
17, and every block in-between holds a null value. RO is now min-
imal because we always know where to find a specific value (if it
exists), and we only read useful data. On the other hand, the ar-
ray is sparsely populated, with unbounded MO since, in the general
case, we cannot anticipate what would be the maximum value ever
inserted. When we insert or delete a value we only update the cor-
responding block. When we change a value we need to update two
blocks: empty the old block and insert the new value in its new
block, effectively, increasing the worst case UO to two physical
updates for one logical update.
Prop. 1 min(RO) = 1.0⇒UO = 2.0 and MO→ ∞

Minimizing Only UO. In order to minimize UO, we append every
update, effectively forming an ever increasing log. That way we
achieve the minimum UO, which is equal to 1.0, at the cost of con-
tinuously increasing RO and MO. Notice that any reorganization of
the data to reduce RO would result in an increase of UO. Hence,
for minimum UO, both RO and MO perpetually increase as updates
are appended.
Prop. 2 min(UO) = 1.0⇒ RO→ ∞ and MO→ ∞

Minimizing Only MO. When minimizing MO, no auxiliary data
is stored and the base data is stored as a dense array. During a se-
lection, we need to scan all data to find the values we are interested
in, while updates are performed in place. The minimum MO=1.0 is
achieved. The RO, however, is now dictated by the size of the rela-
tion since a full scan is needed in the worst case. The UO cost of
in-place updates is also optimal because only the base data intended
to be updated is ever updated.
Prop. 3 min(MO) = 1.0⇒ RO = N and UO = 1.0

3. THE RUM CONJECTURE
Achieving the optimal value for one overhead is not always as

important as finding a good balance across all RUM overheads. In
fact, in the previous section, we saw that striving for the optimal
may create impractical access method designs. The next logical
step is to provide a fixed bound only for one of the overheads, how-
ever, this raises the question of how to quantify the impact of such
an optimization goal for the remaining two overheads. Given our
analysis above, we conjecture that it is not possible to optimize
across all three dimensions at the same time.

The RUM Conjecture. An access method that can set an upper
bound for two out of the read, update, and memory overheads, also
sets a lower bound for the third overhead.

In other words, we can choose which two overheads to prioritize
and optimize for, and pay the price by having the third overhead

greater than a hard lower bound. In the following section we de-
scribe how the RUM Conjecture manifests in existing access meth-
ods by showing that current solutions are typically optimized for
one of the three overheads, while in Section 5 we discuss a roadmap
for RUM access methods.

4. RUM IN PRACTICE
The RUM Conjecture captures in a concise way the tension be-

tween different optimization goals that researchers face when build-
ing access methods. We present here the competing nature of the
RUM tradeoffs, as it manifests in state-of-the-art access methods.
Different access method designs can be visually represented based
on their RUM balance. The RUM tradeoffs can be seen as a three
dimensional design space or, if projected on a two-dimensional
plane, as the triangle shown in Figure 1. Each access method is
mapped to a point or – if it can be tuned to have varying RUM be-
havior – to an area. Table 1 shows the time and size complexity
of representative data structures, illustrating the conflicting read,
update, and memory overheads.
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Figure 1: Popular data structures in the RUM space.

Read-optimized access methods (top corner in Figure 1) are opti-
mized for low read overhead. Examples include indexes with con-
stant time access such as hash-based indexes or logarithmic time
structures such as B-Trees [22], Tries [19], Prefix B-Trees [9], and
Skiplists [45]. Typically, such access methods offer fast read access
but increase space overhead and suffer with frequent updates.

Write-optimized differential structures (left corner in Figure 1)
reduce the write overhead of in-place updates by storing updates in
secondary differential data structures. The fundamental idea is to
consolidate updates and apply them in bulk to the base data. Ex-
amples include the Log-structured Merge Tree [44], the Partitioned
B-tree (PBT) [21], the Materialized Sort-Merge (MaSM) algorithm
[7, 8], the Stepped Merge algorithm [35], and the Positional Dif-
ferential Tree [28]. LA-Tree [3] and FD-Tree [38] are two prime
examples of write optimized trees aiming at exploiting flash while
respecting at the same time its limitations, e.g., the asymmetry be-
tween read and write performance [6] and the bounded number of
physical updates flash can sustain [7]. Typically, such data struc-
tures offer good performance under updates but increase read costs
and space overhead.

Space-efficient access methods (right corner in Figure 1) are de-
signed to reduce the storage overhead. Example categories include
compression techniques and lossy index structures such as Bloom
filters [12], lossy hash-based indexes like count-min sketches [16],
bitmaps with lossy encoding [51], and approximate tree indexing
[5, 40]. Sparse indexes, which are light-weight secondary indexes,
like ZoneMaps [18], Small Materialized Aggregates [42] and Col-



Parameter N m B P T MEM
Explanation dataset size query result size block size partition size LSM levels memory

(#tuples) (#tuples) (#tuples) (#tuples) ratio (#pages)

Access Method Bulk Creation Cost Index Size Point Query Range Query (size: m) Insert/Update/Delete
B+-Tree O

(
N/B · logMEM/B(N/B)

) O (N/B) O (logB(N)) O (logB(N)+m) O (logB(N))
Perfect Hash Index O (N) O (N/B) O (1) O (N/B) O (1)
ZoneMaps O (N/B) O (N/P/B) O (N/P/B) O (N/P/B) O (N/P/B)

Levelled LSM N/A O
( N·T

T−1
)

O (logT (N/B) · logB(N)) O
(
logT (N/B) · logB(N)+ m·T

T−1

) O (T/B · logT (N/B))
Sorted column O

(
N/B · logMEM/B(N/B)

) O (1) O (log2(N)) O (log2(N)+m) O (N/B/2)
Unsorted column O (1) O (1) O (N/B/2) O (N/B) O (1)

Table 1: The base data typically exist either as a sorted column or as an unsorted column. When using an additional index we (i)
spend time building it, (ii) allocate space for it, and (iii) pay the cost to maintain it. The I/O cost [2] (time and space complexity) of
four representative access methods (B+-Trees, Hash Indexes, ZoneMaps, and levelled LSM) illustrates that there is no single winner.
ZoneMaps have the smaller size – being a sparse index, but Hash Indexes offer the fastest point queries, while B+-Trees offer the
fastest range queries. Similarly, the update cost is best for Hash Indexes, while LSM can support efficient range queries having very
low update cost as well.

umn Imprints [50] fall into the same category. Typically, such data
structures and approaches reduce the space overhead significantly
but increase the write costs (e.g., when using compression) and
sometimes increase the read costs as well (e.g., a sparse index).

Adaptive access methods (middle region in Figure 1) are com-
prised of flexible data structures designed to gradually balance the
RUM tradeoffs by using the workload access pattern as a guide.
Most existing data structures provide tunable parameters that can
be used to balance the RUM tradeoffs offline, however, adaptive
access methods balance the tradeoffs online across a larger area of
the design space. Notable proposals are Database Cracking [31,
32, 33, 48], Adaptive Merging [22, 25], and Adaptive Indexing [23,
24, 26, 34], which balance the read performance versus the over-
head of creating an index. The incoming queries dictate which part
of the index should be fully populated and tuned. The index cre-
ation overhead is amortized over a period of time, and it gradually
reduces the read overhead, while increasing the update overhead,
and slowly increasing the memory overhead. Although much more
flexible than traditional data structures, existing adaptive data struc-
tures cannot cover the whole RUM spectrum as they are designed
for a particular type of hardware and application.

The RUM tradeoffs of four representative access methods as well
as two data organizations are presented in Table 1 in order to illus-
trate the need to balance them. The memory overhead is repre-
sented in the form of space complexity (index size), and the read
and the update overheads in the form of the I/O complexity of
the operations. We differentiate between point queries and range
queries, to allow for a more detailed classification of access meth-
ods. We examine B+-Trees2, Hash Indexing, ZoneMaps3, and lev-
elled LSM [36], assuming that each LSM level is a B+-Tree with
branch factor B. Typically, sparse indexing like ZoneMaps gives
the lowest access method size, however, it delivers neither the best
point query performance, nor the best range query performance.
The lowest point query complexity is provided by Hash Indexing,
and the lowest range query complexity by B+-Trees. In addition,
even without any additional secondary index, maintaining a sorted
column allows for searching with logarithmic cost, with the down-
side of having linear update cost. Hence, even without an auxiliary
data structure, adding structure to the data affects read and write be-

2Bulk loading requires sorting. The best sorting algorithm depends
on type of storage. Here we assume external multi-way mergesort.
3We consider the best case for ZoneMaps; only a single partition
needs to be read or updated.

Leveln-1 MOn-1 

Leveln MOn 

Leveln+1 MOn+1 

ROn WOn 

ROn+1 WOn+1 

Figure 2: RUM overheads in memory hierarchies.

havior. We envision RUM access methods to take this a step further,
and morph between data structures and different data organizations
in order to build access methods that have tunable performance and
can change behavior both adaptively and on-demand.

The Memory Hierarchy. For ease of presentation, the previous
discussion assumes that all data objects are stored on the same stor-
age medium. Real systems, however, have a more complex mem-
ory/storage hierarchy making it harder to design and tune access
methods. Data is stored persistently only at the lower levels of
the hierarchy and is replicated, in various forms, across all levels
of the hierarchy; each memory level experiences different access
patterns, resulting in different read and write overheads, while the
space overhead at each level depends on how much data is cached.

Several approaches leverage knowledge about the memory hi-
erarchy to offer better read performance. Fractal Prefetching B+-
Trees [15] use different node sizes for disk-based and in-memory
processing in order to have the optimal for both cases. Cache-
sensitive B+-Trees [47] physically cluster sibling nodes together
to reduce the number of cache misses, and decrease the node size
using offsets rather than pointers. SB-Trees [43] operate in an anal-
ogous way when the index is disk-based, while BW-Tree [37] and
Masstree [41] presents a number of optimizations related to cache
memory, main memory and flash-based secondary storage. SILT
[39] combines write-optimized logging, read-optimized immutable
hashing, and, a sorted store, careful designed around the memory
hierarchy to balance the tradeoffs of its various levels.

The RUM tradeoffs, however, still hold for each level individu-
ally as shown in Figure 2. The fundamental assumption that data
has a minimum access granularity holds for all storage mediums
today, including main memory, flash storage, and disks; the only
difference is that both access time and access granularity vary. The
RUM tradeoffs can also be viewed vertically rather than horizon-
tally. For example, the ROn read and the UOn update overheads at
memory level n can be reduced by storing more data, updates, or
meta-data, at the previous level n− 1, which results, at least, in a



higher MOn−1. Overall, we expect this interaction of hardware and
software to become increasingly more complex as hierarchies be-
come deeper and as hardware trends shift the relative performance
of one level compared to the others, resulting in the need for more
fine tuning of access methods.

Viewing the hierarchy from the bottom towards the top, we first
have cold storage which today may be shingled disks [29], or tradi-
tional rotational disks. They are followed typically by flash storage
for buffering and read performance. The next levels are main mem-
ory and the different levels of cache memory. In the future an ad-
ditional layer of non-volatile main memory will be added or it will
replace main memory altogether [30]. Different layers of this new
storage and memory hierarchy have different requirements. More
specifically, shingled disks are similar to flash devices regarding
the need to minimize update cost to respect their internal charac-
teristics. On the other hand, when designing access methods for
traditional rotational disks – sitting in-between shingled disks and
flash in the hierarchy – we need to minimize the read overhead. As
we move higher in the hierarchy, read performance and index size
is typically more important than update cost.
Cache-Oblivious Access Methods. A different way to build ac-
cess methods is to completely remove the memory hierarchy from
the design space, using cache-oblivious algorithms [20]. Cache-
oblivious access methods, however, achieve that by having a larger
constant factor in read performance [11]. In addition, cache-obli-
vious access methods have a larger memory overhead because they
require more pointers to guarantee that search performance will be
orthogonal to the memory hierarchy [10]. Finally, cache-oblivious
designs are less tunable. In order to tune a data structure and be
able to balance between read performance, update performance,
and memory consumption we need to be cache-aware [10]. As a
result, in order to build RUM-tunable access methods we have to
use a cache-aware design and take into account the exact shape of
the memory hierarchy.

5. BUILDING RUM ACCESS METHODS
For several decades, the database research community has been

redesigning access methods, trying to balance the RUM tradeoffs
with every change in hardware, workload patterns, and applica-
tions. As a result, every few years new variations of data man-
agement techniques are proposed and adaptation to new challenges
becomes increasingly harder. For example, most data management
software is still unfit to natively exploit solid-state drives, multi-
cores, and deep non-uniform memory hierarchies, even though the
concepts used to adapt past techniques and structures rely on ideas
that were proposed several decades ago (like partitioning, and avoid-
ing random access). In other words, what changes is how one tunes
the structures and techniques for the new environment.

Both hardware and applications change rapidly and continuously.
As a result, we need to frequently adjust data management software
to meet the evolving challenges. In the previous sections we laid
the groundwork for RUM access methods, by providing an intuitive
analysis of the RUM overheads and the RUM Conjecture. Moving
further, here we propose the necessary research steps to design ver-
satile access methods that have variable balance between the RUM
overheads. In Figure 3 we visualize the ideal RUM access method,
which will be able to seamlessly transition between the three ex-
tremes: read optimized, write optimized, and space optimized. In
practice, it may not be feasible to aim for building a single access
method able to cover the whole spectrum. Instead, an alternative
approach is to build multiple access methods able to navigate partly
in the RUM space, however, covering the whole space in aggregate.
Studying The RUM Tradeoffs. The first step towards building

Read Optimized 

Write Optimized Space Optimized 

Figure 3: Tunable behavior in the RUM space.

RUM access methods is to extend the discussion in Section 4. A
detailed study of the nature of RUM tradeoffs in practice, will lead
to a detailed classification of access methods based on their RUM
balance. Most existing access methods can be depicted as a static
point in the RUM space (Figure 3). The exact position of the point
may differ based on some parameters (for example, the fan-out of
B+-Trees, the number of partitions in PBT, the number of sorted
runs in MaSM). Moreover, adaptive indexing techniques like crack-
ing behave in a dynamic manner yet are not tuneable: as they touch
more data they add structure to the data and gradually reduce the
read overhead at the expense of update overhead.

A concrete outcome of this analysis is the gleaning of all the
fundamental building blocks and strategies of access methods. For
example, logarithmic access cost (trees, exponentially increasing
logs), fixed access cost (tries, hash tables), trading-off computation
for auxiliary data size (hashing for hash tables, compression for
bitmaps), and lazy updates (log-structure approaches).

Tunable RUM Balance. Using the above classification and anal-
ysis we can make educated decisions about which access method
should be used based on the application requirements and the hard-
ware characteristics, effectively creating a powerful access method
wizard. In addition to that, we investigate how to build access meth-
ods that have tunable behavior. Such access methods are not single
points in the RUM space; instead they can move within an area in
the design space.

We envision future data systems with a suite of access methods
that can easily adapt to different optimization goals. For example:

• B+-Trees that have dynamically tuned parameters, including
tree height, node size, and split condition, in order to adjust
the tree size, the read cost, and the update cost at runtime.

• Approximate (tree) indexing that supports updates with low
read performance overhead, by absorbing them in updatable
probabilistic data structures (like quotient filters).

• Morphing access methods, combining multiple shapes at once.
Adding structure to data gradually with incoming queries,
and building supporting index structures when further data
reorganization becomes infeasible.

• Update-friendly bitmap indexes, where updates are absorbed
using additional, highly compressible, bitvectors which are
gradually merged.

• Access methods with iterative logs enhanced by probabilistic
data structures that allows for more efficient reads and up-
dates by avoiding accessing unnecessary data at the expense
of additional space.

Dynamic RUM Balance. We envision access methods that can au-
tomatically and dynamically adapt to new workload requirements



or hardware changes, like a sudden increase or decrease of avail-
ability of storage or memory. For example, in the case of access
methods based on iterative merges, by changing the number of
merge trees dynamically, the depth of the merge hierarchy and the
frequency of merging, we can build access methods that dynami-
cally adapt to workload and hardware changes.
Compression and Computation. Orthogonally to the tension be-
tween the three overheads, when accessing data today compression
is often used to reduce the amount of data to be moved. This trade-
off between computation (compressing/decompressing) and data
size does not affect the fundamental nature of the RUM Conjecture.
Compression is seldom used only for transferring data through the
memory hierarchy. Rather, modern data systems operate mostly on
compressed data and decompress as late as possible, usually when
presenting the final answer of a query to the user.

6. SUMMARY
Changes in hardware, applications and workloads have been the

main driving forces in redesigning access methods in order to get
the read-update-memory tradeoffs right. In this paper, we show
through the RUM Conjecture that creating the ultimate access method
is infeasible as certain optimization and design choices are mutu-
ally exclusive. Instead, we propose a roadmap towards data struc-
tures that can be tuned given hardware and application parameters,
leading to the new family of RUM-aware access methods.

Although building RUM access methods represents a grand new
challenge, we see it as the natural next step inspired by our collec-
tive past efforts. Past research in areas such as data structures, tun-
ing tools, adaptive processing and indexing, and hardware-conscious
database architectures is the initial pool for concepts and principles
to be generalized.
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